Asymptotic and Oscillatory Properties of Third-Order Differential Equations with Multiple Delays in the Noncanonical Case
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Functional differential equations. In Oxford Applied Mathematical Sciences; Springer: New York, NY, USA, 1971; Volume 3. [Google Scholar]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer Nature Singapore Pte Ltd.: Singapore, 2021. [Google Scholar]
- Škerlík, A. Integral criteria of oscillation for a third order linear differential equation. Math. Slovaca 1995, 45, 403–412. [Google Scholar]
- Zhao, K. Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping. Adv. Contin. Discret. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Bouraoui, H.A.; Djebabla, A.; Sahari, M.L.; Boulaaras, S. Exponential Stability and Numerical Analysis of Timoshenko System with Dual-phase-lag Thermoelasticity. Int. J. Numer. Model. Electron. Netw. Devices Fields 2023, 37, e3179. [Google Scholar] [CrossRef]
- Baculíková, B.; Elabbasy, E.; Saker, S.; Džurina, J. Oscillation criteria for third-order nonlinear differential equations. Math. Slovaca 2008, 58, 201–220. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Aktas, M.F. On the oscillation of third order functional differential equations. Indian J. Pure Appl. Math. 2008, 39, 491–507. [Google Scholar]
- Agarwal, R.P.; Aktas, M.F.; Tiryaki, A. On oscillation criteria for third order nonlinear delay differential equations. Arch. Math. 2009, 45, 1–18. [Google Scholar]
- Aktaş, M.F.; Tiryaki, A.; Zafer, A. Oscillation criteria for third-order nonlinear functional differential equations. Appl. Math. Lett. 2019, 23, 756–762. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Al-Askar, F.M.; Cesarano, C. On the Dynamical Behavior of Solitary Waves for Coupled Stochastic Korteweg–De Vries Equations. Mathematics 2023, 11, 3506. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Cesarano, C.; Mohammed, W.W. Effects of the Wiener Process and Beta Derivative on the Exact Solutions of the Kadomtsev–Petviashvili Equation. Axioms 2023, 12, 7488. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Cesarano, C. The Soliton Solutions for the (4 + 1)-dimensional Stochastic Fokas Equation. Math. Methods Appl. Sci. 2022, 46, 7589–7597. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Zafer, A. Oscillatory and Nonoscillatory Properties of Solutions of Functional Differential Equations and Difference Equations; Iowa State University: Ames, IA, USA, 1992. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhong, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Duzrina, J.; Jadlovska, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Alzabut, J.; Grace, S.R.; Santra, S.S.; Chhatria, G.N. Asymptotic and Oscillatory Behaviour of Third Order Non-Linear Differential Equations with Canonical Operator and Mixed Neutral Terms. Qual. Theory Dyn. Syst. 2022, 22, 15. [Google Scholar] [CrossRef]
- Baculíková, B.; Dzurina, J. Oscillation of third-order functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Baculikova, B.; Džurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Baculíkova, B.; Dzurina, J. Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 2010, 24, 466–470. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Dzurina, J.; Jadlovska, I. Oscillation of nth order strongly noncanonical delay differential equations. Appl. Math. Lett. 2021, 115, 106940. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. Oscillation criteria for third-order delay differential equations. Adv. Differ. Equ. 2017, 2017, 330. [Google Scholar] [CrossRef]
- Chatzarakis, G.E. Oscillation of deviating differential equations. Math. Bohem. 2020, 145, 435–448. [Google Scholar] [CrossRef]
- Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation theory for non-linear neutral delay differential equations of third order. Appl. Sci. 2020, 10, 4855. [Google Scholar] [CrossRef]
- Moaaz, O.; Cesarano, C.; Muhib, A. Some new oscillation results for fourth-order neutral differential equations. Eur. J. Pure Appl. Math. 2020, 13, 185–199. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Moaaz, O.; Park, C.; Muhib, A.; Bazighifan, O. Oscillation criteria for a class of even-order neutral delay differential equations. J. Appl. Math. Comput. 2020, 63, 607–617. [Google Scholar] [CrossRef]
- Masood, F.; Moaaz, O.; Santra, S.S.; Fernandez-Gamiz, U.; El-Metwally, H.A.; Marib, Y. Oscillation theorems for fourth-order quasi-linear delay differential equations. AIMS Math. 2023, 8, 16291–16307. [Google Scholar] [CrossRef]
- Masood, F.; Moaaz, O.; Santra, S.S.; Fernandez-Gamiz, U.; El-Metwally, H. On the monotonic properties and oscillatory behavior of solutions of neutral differential equations. Demonstr. Math. 2023, 56, 20230123. [Google Scholar] [CrossRef]
- Alrashdi, H.S.; Moaaz, O.; Askar, S.S.; Alshamrani, A.M.; Elabbasy, E.M. More Effective Conditions for Testing the Oscillatory Behavior of Solutions to a Class of Fourth-Order Functional Differential Equations. Axioms 2023, 12, 1005. [Google Scholar] [CrossRef]
- El-Gaber, A.A. On the oscillatory behavior of solutions of canonical and noncanonical even-order neutral differential equations with distributed deviating arguments. J. Nonlinear Sci. Appl. 2024, 17, 82–92. [Google Scholar] [CrossRef]
- Hassan, T.S.; Kong, Q.; El-Matary, B.M. Oscillation criteria for advanced half-linear differential equations of second order. Mathematics 2023, 11, 1385. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Matary, B.M. Asymptotic Behavior and Oscillation of Third-Order Nonlinear Neutral Differential Equations with Mixed Nonlinearities. Mathematics 2023, 11, 424. [Google Scholar] [CrossRef]
- Hartman, P.; Wintner, A. Linear differential and difference equations with monotone solutions. Am. J. Math. 1953, 75, 731–743. [Google Scholar] [CrossRef]
- Erbe, L. Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pac. J. Math. 1976, 64, 369–385. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation criteria of third-order nonlinear delay differential equations. Math. Slovaca 2006, 56, 433–450. [Google Scholar]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On sharp oscillation criteria for general third-order delay differentialequations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Masood, F.; Cesarano, C.; Moaaz, O.; Askar, S.S.; Alshamrani, A.M.; El-Metwally, H. Kneser-Type Oscillation Criteria for Half-Linear Delay Differential Equations of Third Order. Symmetry 2023, 15, 1994. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. Oscillation of third-order differential equations with noncanonical operators. Appl. Math. Comput. 2018, 336, 394–402. [Google Scholar] [CrossRef]
- Kiguradze, I.T.; Chanturia, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Mathematics and Its Applications (Soviet Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 89. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrashdi, H.S.; Moaaz, O.; Alqawasmi, K.; Kanan, M.; Zakarya, M.; Elabbasy, E.M. Asymptotic and Oscillatory Properties of Third-Order Differential Equations with Multiple Delays in the Noncanonical Case. Mathematics 2024, 12, 1189. https://doi.org/10.3390/math12081189
Alrashdi HS, Moaaz O, Alqawasmi K, Kanan M, Zakarya M, Elabbasy EM. Asymptotic and Oscillatory Properties of Third-Order Differential Equations with Multiple Delays in the Noncanonical Case. Mathematics. 2024; 12(8):1189. https://doi.org/10.3390/math12081189
Chicago/Turabian StyleAlrashdi, Hail S., Osama Moaaz, Khaled Alqawasmi, Mohammad Kanan, Mohammed Zakarya, and Elmetwally M. Elabbasy. 2024. "Asymptotic and Oscillatory Properties of Third-Order Differential Equations with Multiple Delays in the Noncanonical Case" Mathematics 12, no. 8: 1189. https://doi.org/10.3390/math12081189
APA StyleAlrashdi, H. S., Moaaz, O., Alqawasmi, K., Kanan, M., Zakarya, M., & Elabbasy, E. M. (2024). Asymptotic and Oscillatory Properties of Third-Order Differential Equations with Multiple Delays in the Noncanonical Case. Mathematics, 12(8), 1189. https://doi.org/10.3390/math12081189