A Mathematical Model for RNA 3D Structures
Abstract
:1. Introduction
2. Background
2.1. Architecture of RNA 3D Structure
2.2. Coarse-Grain Modeling
3. The Model
3.1. Parameters for Double Helices
3.2. Parameters for Unpaired Helices
3.3. Top Loop Position Adjustment
3.4. Parameters for Bulges
4. Implementation
4.1. Data Extraction from PDB
4.2. Translation and Rotation Matrices
4.3. Output Format
5. Performance Evaluation
5.1. Performance on Stem–Loops Without Bulge
5.2. Performance on Stem–Loops with Bulge
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gingeras, T.R. Current frontiers in RNA research. Front. RNA Res. 2023, 1, 1152146. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y. Exploring the Possibility of RNA in Diverse Biological Processes. Int. J. Mol. Sci. 2023, 24, 10674. [Google Scholar] [CrossRef] [PubMed]
- Spitale, R.C.; Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 2023, 24, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Leontis, N.B.; Westhof, E. RNA 3D Structure Analysis and Prediction (Nucleic Acids and Molecular Biology); Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Schlick, T. Molecular Modeling and Simulation: An Interdisciplinary Guide: An Interdisciplinary Guide (Interdisciplinary Applied Mathematics); Springer: New York, NY, USA, 2010. [Google Scholar]
- Bernard, C.; Postic, G.; Ghannay, S.; Tahi, F. State-of-the-RNArt: Benchmarking current methods for RNA 3D structure prediction. NAR Genom. Bioinform. 2024, 6, lqae048. [Google Scholar] [CrossRef]
- Parisien, M.; Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008, 452, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.I. RNA 3D Hub: A database of RNA structural motifs and their interactions. Nucleic Acids Res. 2013, 41, D315–D321. [Google Scholar]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef]
- Rother, K.; Rother, M. RNA structure prediction tools and their usage in homologous modeling. Methods Mol. Biol. 2018, 1704, 315–336. [Google Scholar]
- Keating, K.S.; Pyle, A.M. Ribonucleic acid structure: Folding and modeling. Curr. Opin. Struct. Biol. 2012, 22, 317–324. [Google Scholar]
- Zhao, Y.; Gong, Z.; Zhang, H.; Zhou, Y. 3dRNA: 3D structure prediction from linear to tertiary structures. Nucleic Acids Res. 2012, 40, e112. [Google Scholar]
- Cheng, C.Y.; Chou, F.C.; Das, R. Modeling complex RNA tertiary folds with Rosetta. Methods Enzymol. 2015, 553, 35–64. [Google Scholar] [PubMed]
- Das, R.; Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl. Acad. Sci. USA 2007, 104, 14664–14669. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, X.; Yu, S.; Tan, Y.; Tan, Z. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys. J. 2022, 121, 3381–3392. [Google Scholar] [CrossRef] [PubMed]
- Boniecki, M.J.; Lach, G.; Dawson, W.K.; Tomala, K.; Lukasz, P.; Soltysinski, T.; Rother, K.M.; Bujnicki, J.M. SimRNA: A coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 2016, 44, e63. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The AMBER biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, X.; Baturka, M.; Case, D.A. Force field optimization for RNA simulations with explicit solvent and metal ions. RNA 2021, 27, 687–702. [Google Scholar]
- Xu, X.; Zhao, P.; Chen, S. Vfold: A Web Server for RNA Structure and Folding Thermodynamics Prediction. PLoS ONE 2014, 9, e107504. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S. Physics-based RNA structure prediction. Biophys. Rep. 2015, 1, 2–13. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Feng, C.; Pearce, R.; Freddolino, O.L.L.; Zhang, Y. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat. Commun. 2023, 14, 5745. [Google Scholar] [CrossRef]
- Mukherjee, S.; Moafinejad, S.N.; Badepally, N.G.; Merdas, K.; Bujnicki, J.M. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024, 32, 1860–1876. [Google Scholar] [CrossRef]
- Wang, W.; Feng, C.; Han, R.; Wang, Z.; Ye, L.; Du, Z.; Wei, H.; Peng, F.Z.Z.; Yang, J. trRosettaRNA: Automated prediction of RNA 3D structure with transformer network. Nat. Commun. 2023, 14, 7266. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, S.; Lou, E.; Tan, Y.-L.; Tan, Z.-J. RNA 3D structure prediction: Progress and perspective. Molecules 2023, 28, 5532. [Google Scholar] [CrossRef] [PubMed]
- Szikszai, M.; Wise, M.; Datta, A.; Ward, M.; Mathews, D.H. Learning models for RNA secondary structure prediction (probably) do not generalise across families. Bioinformatics 2022, 38, 3892–3899. [Google Scholar] [CrossRef]
- Yuan, J.; Tang, R.; Jiang, X.; Hu, X. Large language models for healthcare data augmentation: An example on patient-trial matching. AMIA Annu. Symp. Proc. 2024, 2023, 1324–1333. [Google Scholar] [PubMed]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019. [Google Scholar]
- Wang, N.; Bian, J.; Li, Y.; Li, X.; Mumtaz, S.; Kong, L.; Xiong, H. Multi-purpose RNA language modelling with motif-aware pretraining and type-guided fine-tuning. Nat. Mach. Intell. 2024, 6, 548–557. [Google Scholar] [CrossRef]
- Shen, T.; Hu, Z.; Sun, S.; Liu, D.; Wong, F.; Wang, J.; Chen, J.; Wang, Y.; Hong, L.; Xiao, J.; et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 2024, 21, 2287–2298. [Google Scholar] [CrossRef]
- Townshend, R.J.L.; Eismann, S.; Watkins, A.M. Geometric deep learning of RNA structure. Science 2021, 373, 1047–1051. [Google Scholar] [CrossRef]
- Krahn, N.; Fischer, J.T.; Söll, D. Naturally occurring tRNAs with non-canonical structures. Front. Microbiol. 2020, 2020, 596914. [Google Scholar]
- Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef]
- Doudna, J.A.; Cech, T.R. The chemical repertoire of natural ribozymes. Nature 2002, 418, 222–228. [Google Scholar] [CrossRef]
- Leontis, N.B.; Lescoute, A.; Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 2006, 16, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Simons, R.W.; Grunberg-Manago, M. (Eds.) RNA Structure and Function; Cold Spring Harbor Monograph Series; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1998. [Google Scholar]
- Westhof, E.; Leontis, N.B. An RNA-centric historical narrative around the Protein Data Bank. J. Biol. Chem. 2023, 296, 100555. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering, and energy sciences. Nucleic Acids Res. 2020, 49, D437–D451. [Google Scholar] [CrossRef] [PubMed]
- RCSB: PDB-101. PDB101: Guide to Understanding PDB Data: Missing Coordinates and Biological Assemblies. Available online: https://www.rcsb.org (accessed on 1 November 2024).
- Schrödinger, L. The PyMOL Molecular Graphics System, Version 3.1. Available online: https://www.pymol.org (accessed on 1 November 2024).
- Westhof, E. Isostericity and tautomerism of base pairs in nucleic acids. FEBS Lett. 2014, 588, 2464–2469. [Google Scholar] [CrossRef]
- Warden, M.S.; Tonelli, M.; Cornilescu, G.; Liu, D.; Hopersberger, L.J.; Ponniah, K.; Pascal, S.M. Structure of RNA Stem Loop B from the Picornavirus replication platform. Biochemistry 2017, 56, 2549–2557. [Google Scholar] [CrossRef]
- Pettersen, E.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.; Ferrin, T. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- MATLAB 9.10.0, R2021a; The MathWorks Inc.: Natick, MA, USA, 2021.
- Hermann, T.; Patel, D.J. RNA bulges as architectural and recognition motifs. Structure 2000, 8, R47–R54. [Google Scholar] [CrossRef]
- Evans, P. Rotations and rotation matrices. Acta Crystallogr. Sect. D Biol. Crystallogr. 2001, 57, 1355–1359. [Google Scholar] [CrossRef]
- Arfken, G. Mathematical Methods for Physicists, 3rd ed.; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Palais, B.; Palais, R.; Rodi, S. A disorienting look at Euler’s theorem on the axis of a rotation. Am. Math. Mon. 2009, 116, 892–909. [Google Scholar] [CrossRef]
- Carugo, O. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. J. Appl. Crystallogr. 2003, 36, 125–128. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Sim, A.Y.L.; Wan, Y.; Madhusudhan, M.S.; Verma, C. Topology independent comparison of RNA 3D structures using the CLICK algorithm. Nucleic Acids Res. 2016, 45, e5. [Google Scholar] [CrossRef] [PubMed]
- Kromann, J.C. Charnley/rmsd. GitHub. Available online: https://github.com/charnley/rmsd (accessed on 1 November 2024).
RNA_num | PDB_id | Length (nt) | RMSD (Å) | RMSD_mean (Å) |
---|---|---|---|---|
1 | 1Q75 | 15 | 1.86 | 1.89 |
2 | 2GVO | 18 | 3.09 | 4.33 |
3 | 1ATO | 19 | 2.23 | 2.54 |
4 | 1UUU | 19 | 3.09 | 3.15 |
5 | 2KOC | 14 | 2.07 | 2.28 |
6 | 1RNG | 12 | 1.9 | 2.07 |
7 | 2RLU | 19 | 2.45 | 2.59 |
8 | 6PK9 | 20 | 3.05 | 3.1 |
9 | 2Y95 | 14 | 2.09 | 2.43 |
10 | 1ZIG | 12 | 1.7 | 1.72 |
11 | 1BZ3 | 17 | 2.22 | 2.36 |
12 | 1HS3 | 13 | 2.16 | 2.16 |
13 | 1HS1 | 13 | 2.21 | 2.21 |
14 | 1HS8 | 13 | 2.08 | 2.08 |
15 | 1HS4 | 13 | 2.2 | 2.21 |
16 | 1HS2 | 13 | 2.18 | 2.18 |
17 | 1LK1 | 14 | 2.28 | 2.52 |
18 | 1WKS | 17 | 2.71 | 2.81 |
19 | 1MT4 | 24 | 2.68 | 2.78 |
20 | 1E4P | 24 | 2.73 | 3.12 |
21 | 2MXJ | 11 | 2.17 | 2.23 |
22 | 1BN0 | 20 | 1.54 | 2.26 |
23 | 1AFX | 12 | 1.46 | 1.62 |
24 | 3PHP | 23 | 2.59 | 3.41 |
25 | 1F9L | 22 | 2.35 | 2.48 |
26 | 2M5U | 22 | 1.64 | 1.94 |
27 | 1JTJ | 23 | 4.44 | 4.96 |
28 | 1ZIF | 12 | 1.83 | 1.97 |
29 | 1ZIH | 12 | 1.12 | 1.36 |
30 | 1K5I | 23 | 2.09 | 2.34 |
Parameter | Count | Mean ± Std, Å | Shapiro–W | p-Value |
---|---|---|---|---|
d | 138 | 0.964 | ||
b | 134 | 0.919 |
X-Angle (°) | Z-Angle (°) | Rotation_Itself (°) | PDB_ID | RMSD (Å) |
---|---|---|---|---|
0 | 18 | 19 | 1NBR | 2.46 |
0 | 12 | 10 | 1BVJ | 2.88 |
0 | 15 | −15 | 1TXS | 3.35 |
0 | 21 | 50 | 1MKF | 3.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Cai, L. A Mathematical Model for RNA 3D Structures. Mathematics 2025, 13, 1352. https://doi.org/10.3390/math13081352
Zhang S, Cai L. A Mathematical Model for RNA 3D Structures. Mathematics. 2025; 13(8):1352. https://doi.org/10.3390/math13081352
Chicago/Turabian StyleZhang, Sixiang, and Liming Cai. 2025. "A Mathematical Model for RNA 3D Structures" Mathematics 13, no. 8: 1352. https://doi.org/10.3390/math13081352
APA StyleZhang, S., & Cai, L. (2025). A Mathematical Model for RNA 3D Structures. Mathematics, 13(8), 1352. https://doi.org/10.3390/math13081352