Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue
Abstract
:1. Introduction
2. Mathematical Model and Preliminary Results
2.1. The Non-Work-Conserving Policy
2.2. The Work-Conserving Policy
3. Problem Statement and Main Results
4. The Non Work-Conserving Policy in Heavy-Traffic
4.1. Areas of Convergence
4.2. Solution of the Functional Equation
4.3. Calculation of Moments
4.4. Examples and Discussions
4.4.1. Bernoulli Arrivals
4.4.2. Arrivals with Infinite Asymptotic Variance
4.4.3. Other Arrival Processes
5. The Work-Conserving Policy in Heavy-Traffic
5.1. Solution of the Functional Equation
5.2. Rewriting the Contour Integral in (85) as a Real Integral
5.3. Calculation of Moments
5.4. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.W.; Boxma, O.J. Boundary Value Problems in Queueing System Analysis; North-Holland: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Fayolle, G.; Malyshev, V.A.; Iasnogorodski, R. Random Walks in the Quarter-Plane; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Malyshev, V.A. An analytical method in the theory of two-dimensional positive random walks. Sib. Math. J. 1972, 13, 917–929. [Google Scholar] [CrossRef]
- Dimitriou, I. A two-class retrial system with coupled orbit queues. Probab. Eng. Inform. Sci. 2017, 31, 139–179. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwaarden, J.S.H.; Resing, J.A.C. A tandem queue with coupled processors: Computational issues. Queueing Syst. 2005, 51, 29–52. [Google Scholar] [CrossRef] [Green Version]
- Boxma, O.J.; Van Houtum, G.J. The compensation approach applied to a 2 x 2 switch. Probab. Eng. Inform. Sci. 1993, 7, 471–493. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, S. The equilibrium distribution for a clocked buffered switch. Probab. Eng. Inform. Sci. 1992, 6, 425–438. [Google Scholar] [CrossRef]
- Xie, J.; Fischer, M.J.; Harris, C.M. Workload and waiting time in a fixed-time loop system. Comput. Oper. Res. 1997, 24, 789–803. [Google Scholar] [CrossRef]
- de Haan, R.; Boucherie, R.J.; van Ommeren, J.K. A polling model with an autonomous server. Queueing Syst. 2009, 62, 279–308. [Google Scholar] [CrossRef] [Green Version]
- Dvir, N.; Hassin, R.; Yechiali, U. Strategic behaviour in a tandem queue with alternating server. Queueing Syst. 2020, 96, 205–244. [Google Scholar] [CrossRef]
- Saxena, M.; Boxma, O.J.; Kapodistria, S.; Queija, N.R. Two queues with random time-limited polling. Probab. Math. Stat. 2017, 37, 257–289. [Google Scholar]
- van Leeuwaarden, J.S.H.; Denteneer, D.; Resing, J.A.C. A discrete-time queueing model with periodically scheduled arrival and departure slots. Perform. Eval. 2006, 63, 278–294. [Google Scholar] [CrossRef] [Green Version]
- van Ommeren, J.K.; Al Hanbali, A.; Boucherie, R.J. Analysis of polling models with a self-ruling server. Queueing Syst. 2020, 94, 77–107. [Google Scholar] [CrossRef] [Green Version]
- Devos, A.; Fiems, D.; Walraevens, J.; Bruneel, H. Approximations for the performance evaluation of a discrete-time two-class queue with an alternating service discipline. Ann. Oper. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Vanlerberghe, J.; Maertens, T.; Walraevens, J.; De Vuyst, S.; Bruneel, H. On the optimization of two-class work-conserving parameterized scheduling policies. 4OR-Q J. Oper. Res. 2016, 14, 281–308. [Google Scholar] [CrossRef]
- Fayolle, G.; Iasnogorodski, R. Two coupled processors: The reduction to a Riemann-Hilbert problem. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 1979, 47, 325–351. [Google Scholar] [CrossRef]
- Konheim, A.G.; Meilijson, I.; Melkman, A. Processor-sharing of two parallel lines. J. Appl. Probab. 1981, 18, 952–956. [Google Scholar] [CrossRef]
- Walraevens, J.; van Leeuwaarden, J.S.; Boxma, O.J. Power series approximations for two-class generalized processor sharing systems. Queueing Syst. 2010, 66, 107–130. [Google Scholar] [CrossRef] [Green Version]
- Bruneel, H.; Kim, B.G. Discrete-Time Models for Communication Systems Including ATM; Kluwer Academic Publisher Group: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Kingman, J.F.C.; Atiyah, M.F. The single server queue in heavy traffic. Math. Proc. Camb. Philos. Soc. 1961, 57, 902–904. [Google Scholar] [CrossRef]
- Knessl, C. On the diffusion approximation to two parallel queues with processor sharing. IEEE Trans. Autom. Control 1991, 36, 1356–1367. [Google Scholar] [CrossRef]
- Knessl, C.; Morrison, J.A. Heavy traffic analysis of two coupled processors. Queueing Syst. 2003, 43, 173–220. [Google Scholar] [CrossRef]
- Morrison, J.A. Diffusion approximation for head-of-the-line processor sharing for two parallel queues. SIAM J. Appl. Math. 1993, 53, 471–490. [Google Scholar] [CrossRef]
- Foschini, G.; Salz, J.A.C.K. A basic dynamic routing problem and diffusion. IEEE Trans. Commun. 1978, 26, 320–327. [Google Scholar] [CrossRef]
- Karpelevich, F.I.; Kreinin, A.Y. Two-phase queuing system GI/G/1→ G′/1/∞ under Heavy Traffic Conditions. Theory Probab. Appl. 1982, 26, 293–313. [Google Scholar] [CrossRef]
- Saxena, M. Two-Dimensional Queueing Models. Doctoral Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, 2020. [Google Scholar]
- Lawrentjew, M.A.; Schabat, B.V. Methoden der Komplexen Funktionentheorie; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1967. [Google Scholar]
- Nehari, Z. Conformal Mapping; Dover Publications: New York, NY, USA, 1982. [Google Scholar]
- Devos, A.; Walraevens, J.; Fiems, D.; Bruneel, H. Analysis of a discrete-time two-class randomly alternating service model with Bernoulli arrivals. Queueing Syst. 2020, 96, 133–152. [Google Scholar] [CrossRef]
- Gonzalez, M. Classical Complex Analysis; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devos, A.; Walraevens, J.; Fiems, D.; Bruneel, H. Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue. Mathematics 2021, 9, 2723. https://doi.org/10.3390/math9212723
Devos A, Walraevens J, Fiems D, Bruneel H. Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue. Mathematics. 2021; 9(21):2723. https://doi.org/10.3390/math9212723
Chicago/Turabian StyleDevos, Arnaud, Joris Walraevens, Dieter Fiems, and Herwig Bruneel. 2021. "Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue" Mathematics 9, no. 21: 2723. https://doi.org/10.3390/math9212723
APA StyleDevos, A., Walraevens, J., Fiems, D., & Bruneel, H. (2021). Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue. Mathematics, 9(21), 2723. https://doi.org/10.3390/math9212723