Prehospital Time Interval for Urban and Rural Emergency Medical Services: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Outcomes and Inclusion Criteria
2.2. Search Strategy
2.3. Screening Process
2.4. Data Extraction
2.5. Quality Assessment
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Study Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- AlShammari, T.; Jennings, P.; Williams, B. Evolution of emergency medical services in Saudi Arabia. J. Emerg. Med. Trauma Acute Care 2017, 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Jennings, P.; Cameron, P.; Walker, T.; Bernard, S.; Smith, K. Out-of-Hospital Cardiac Arrest in Victoria: Rural and Urban Outcomes. Med. J. Aust. 2006, 185, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, A.; Giannakopoulos, G.; Moerbeek, P.; Jansma, E.; Bonjer, H.; Bloemers, F. The Influence of Prehospital Time on Trauma Patients Outcome: A Systematic Review. Injury 2015, 46, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Rowther, A.A.; Kobusingye, O.; Hyder, A.A. Assessment of Pre-Hospital Emergency Medical Services in Low-Income Settings Using a Health Systems Approach. Int. J. Emerg. Med. 2018, 11, 53. [Google Scholar] [CrossRef]
- Lin, C.B.; Peterson, E.D.; Smith, E.E.; Saver, J.L.; Liang, L.; Xian, Y.; Olson, D.M.; Shah, B.R.; Hernandez, A.F.; Schwamm, L.H.; et al. Emergency Medical Service Hospital Prenotification Is Associated with Improved Evaluation and Treatment of Acute Ischemic Stroke. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Rogers, F.B.; Rittenhouse, K.J.; Gross, B.W. The Golden Hour in Trauma: Dogma or Medical Folklore? Injury 2015, 46, 525–527. [Google Scholar] [CrossRef]
- Hassler, J.; Ceccato, V. Socio-Spatial Disparities in Access to Emergency Health Care-a Scandinavian Case Study. PLoS ONE 2021, 16, e0261319. [Google Scholar] [CrossRef]
- Cabral, E.L.; Castro, W.R.; Florentino, D.R.; Viana, D.D.; Costa Junior, J.F.; Souza, R.P.; Rêgo, A.C.; Araújo-Filho, I.; Medeiros, A.C. Response Time in the Emergency Services. Systematic Review. Acta Cir. Bras. 2018, 33, 1110–1121. [Google Scholar] [CrossRef]
- Kironji, A.G.; Hodkinson, P.; De Ramirez, S.S.; Anest, T.; Wallis, L.; Razzak, J.; Jenson, A.; Hansoti, B. Identifying Barriers for out of Hospital Emergency Care in Low and Low-Middle Income Countries: A Systematic Review. BMC Health Serv. Res. 2018, 18, 291. [Google Scholar] [CrossRef] [Green Version]
- Haghparast-Bidgoli, H.; Hasselberg, M.; Khankeh, H.; Khorasani-Zavareh, D.; Johansson, E. Barriers and Facilitators to Provide Effective Pre-Hospital Trauma Care for Road Traffic Injury Victims in Iran: A Grounded Theory Approach. BMC Emerg. Med. 2010, 10, 20. [Google Scholar] [CrossRef]
- Fatovich, D.M.; Phillips, M.; Langford, S.A.; Jacobs, I.G. A Comparison of Metropolitan vs Rural Major Trauma in Western Australia. Resuscitation 2011, 82, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, O.J.; Paul, R.; Arif, A. An Assessment of the Rural-Urban Differences in the Crash Response Time and County-Level Crash Fatalities in the United States. J. Rural Health 2021, 4, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.P.; Cummings, G.R.; Phelan, H.A.; Mulekar, M.S.; Rodning, C.B. Does Increased Emergency Medical Services Prehospital Time Affect Patient Mortality in Rural Motor Vehicle Crashes? A Statewide Analysis. Am. J. Surg. 2009, 197, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Hashtarkhani, S.; Kiani, B.; Mohammadi, A.; MohammadEbrahimi, S.; Dehghan-Tezerjani, M.; Samimi, T.; Tara, M.; Matthews, S.A. Spatio-Temporal Epidemiology of Emergency Medical Requests in a Large Urban Area. A Scan-Statistic Approach. Geospat. Health 2021, 16. [Google Scholar] [CrossRef] [PubMed]
- Aftyka, A.; Rybojad, B.; Rudnicka-Drozak, E. Are There Any Differences in Medical Emergency Team Interventions between Rural and Urban Areas? A Single-Centre Cohort Study. Aust. J. Rural Health 2014, 22, 223–228. [Google Scholar] [CrossRef]
- Alanazy, A.R.; Wark, S.; Fraser, J.; Nagle, A. A Comparison of Pre-Hospital Emergency Medical Services’ Response and Duration Times in Urban Versus Rural Areas of Saudi Arabia. Australas. J. Paramed. 2020, 17. [Google Scholar] [CrossRef]
- Al-Thani, H.; Mekkodathil, A.; Hertelendy, A.J.; Howland, I.; Frazier, T.; El-Menyar, A. Emergency Medical Services (Ems) Transportation of Trauma Patients by Geographic Locations and in-Hospital Outcomes: Experience from Qatar. Int. J. Environ. Res. Public Health 2021, 18, 4016. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.P.; Mann, N.C.; Dai, M.; Mason, S.A.; Karanicolas, P.; Rizoli, S.; Nathens, A.B. Association between Emergency Medical Service Response Time and Motor Vehicle Crash Mortality in the United States. JAMA Surg. 2019, 154, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Waalwijk, J.F.; van der Sluijs, R.; Lokerman, R.D.; Fiddelers, A.A.A.; Hietbrink, F.; Leenen, L.P.H.; Poeze, M.; van Heijl, M. The Impact of Prehospital Time Intervals on Mortality in Moderately and Severely Injured Patients. J. Trauma Acute Care Surg. 2022, 92, 520–527. [Google Scholar] [CrossRef]
- Mathiesen, W.T.; Bjørshol, C.A.; Kvaløy, J.T.; Søreide, E. Effects of Modifiable Prehospital Factors on Survival after out-of-Hospital Cardiac Arrest in Rural Versus Urban Areas. Crit. Care 2018, 22, 99. [Google Scholar] [CrossRef]
- Cui, E.R.; Beja-Glasser, A.; Fernandez, A.R.; Grover, J.M.; Mann, N.C.; Patel, M.D. Emergency Medical Services Time Intervals for Acute Chest Pain in the United States, 2015–2016. Prehosp. Emerg. Care 2020, 24, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Cui, E.R.; Fernandez, A.R.; Zegre-Hemsey, J.K.; Grover, J.M.; Honvoh, G.; Brice, J.H.; Rossi, J.S.; Patel, M.D. Disparities in Emergency Medical Services Time Intervals for Patients with Suspected Acute Coronary Syndrome: Findings from the North Carolina Prehospital Medical Information System. J. Am. Heart Assoc. 2021, 10, e019305. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Wu, W.T.; Huang, J.B.; Lee, K.H.; Cheng, F.J. Association between Prehospital Prognostic Factors and out-of-Hospital Cardiac Arrest: Effect of Rural-Urban Disparities. Am. J. Emerg Med. 2021, 46, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.G.; Caplan, J.M.; Pryor, J.P.; Branas, C.C. A Meta-Analysis of Prehospital Care Times for Trauma. Prehosp. Emerg. Care 2006, 10, 198–206. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Layon, A.J.; Gabrielli, A.; Goldfeder, B.W.; Hevia, A.; Idris, A.H. Utstein Style Analysis of Rural out-of-Hospital Cardiac Arrest [Oohca]: Total Cardiopulmonary Resuscitation (Cpr) Time Inversely Correlates with Hospital Discharge Rate. Resuscitation 2003, 56, 59–66. [Google Scholar] [CrossRef]
- Ashburn, N.P.; Snavely, A.C.; Angi, R.M.; Scheidler, J.F.; Crowe, R.P.; McGinnis, H.D.; Hiestand, B.C.; Miller, C.D.; Mahler, S.A.; Stopyra, J.P. Prehospital Time for Patients with Acute Cardiac Complaints: A Rural Health Disparity. Am. J. Emerg. Med. 2022, 52, 64–68. [Google Scholar] [CrossRef]
- Breen, N.; Woods, J.; Bury, G.; Murphy, A.W.; Brazier, H. A National Census of Ambulance Response Times to Emergency Calls in Ireland. J. Accid. Emerg. Med. 2000, 17, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.P.; Cummings, G.; Mulekar, M.; Rodning, C.B. Increased Mortality in Rural Vehicular Trauma: Identifying Contributing Factors through Data Linkage. J. Trauma 2006, 61, 404–409. [Google Scholar] [CrossRef]
- Grossman, D.C.; Kim, A.; Macdonald, S.C.; Klein, P.; Copass, M.K.; Maier, R.V. Urban-Rural Differences in Prehospital Care of Major Trauma. J. Trauma 1997, 42, 723–729. [Google Scholar] [CrossRef]
- Horeczko, T.; Marcin, J.P.; Kahn, J.M.; Sapien, R.E. Urban and Rural Patterns in Emergent Pediatric Transfer: A Call for Regionalization. J. Rural Health 2014, 30, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Abdel-Aty, M.; Cai, Q.; Wang, L. Effects of Emergency Medical Services Times on Traffic Injury Severity: A Random Effects Ordered Probit Approach. Traffic Inj. Prev. 2018, 19, 577–581. [Google Scholar] [CrossRef]
- Masterson, S.; Wright, P.; O’Donnell, C.; Vellinga, A.; Murphy, A.W.; Hennelly, D.; Sinnott, B.; Egan, J.; O’Reilly, M.; Keaney, J.; et al. Urban and Rural Differences in out-of-Hospital Cardiac Arrest in Ireland. Resuscitation 2015, 91, 42–47. [Google Scholar] [CrossRef] [PubMed]
- McGuffie, A.C.; Graham, C.A.; Beard, D.; Henry, J.M.; Fitzpatrick, M.O.; Wilkie, S.C.; Kerr, G.W.; Parke, T.R. Scottish Urban Versus Rural Trauma Outcome Study. J. Trauma 2005, 59, 632–638. [Google Scholar] [PubMed]
- Mell, H.K.; Mumma, S.N.; Hiestand, B.; Carr, B.G.; Holland, T.; Stopyra, J. Emergency Medical Services Response Times in Rural, Suburban, and Urban Areas. JAMA Surg. 2017, 152, 983–984. [Google Scholar] [CrossRef]
- Jones, M.D.; Paulus, J.A.; Jacobs, J.V.; Bogert, J.N.; Chapple, K.M.; Soe-Lin, H.; Weinberg, J.A. Trauma Patient Transport Times Unchanged Despite Trauma Center Proliferation: A 10-Year Review. J. Trauma Acute Care Surg. 2021, 90, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Moafa, H.N.; van Kuijk, S.M.J.; Alqahtani, D.M.; Moukhyer, M.E.; Haak, H.R. Disparities between Rural and Urban Areas of the Central Region of Saudi Arabia in the Utilization and Time-Centeredness of Emergency Medical Services. Int. J. Environ. Res. Public Health 2020, 17, 7944. [Google Scholar] [CrossRef]
- Moore, M.J.; Hamilton, A.J.; Cairns, K.J.; Marshall, A.; Glover, B.M.; McCann, C.J.; Jordan, J.; Kee, F.; Adgey, A.A. The Northern Ireland Public Access Defibrillation (Nipad) Study: Effectiveness in Urban and Rural Populations. Heart 2008, 94, 1614–1619. [Google Scholar] [CrossRef] [Green Version]
- Morales-Gabardino, J.A.; Redondo-Lobato, L.; Ribeiro, J.M.; Buitrago, F. Geographical Distribution of Emergency Services Times in Traffic Accidents in Extremadura. Port. J. Public Health 2021, 39, 78–87. [Google Scholar] [CrossRef]
- Newgard, C.D.; Fu, R.; Bulger, E.; Hedges, J.R.; Mann, N.C.; Wright, D.A.; Lehrfeld, D.P.; Shields, C.; Hoskins, G.; Warden, C.; et al. Evaluation of Rural vs Urban Trauma Patients Served by 9-1-1 Emergency Medical Services. JAMA Surg. 2017, 152, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, P.; Jonsson, M.; Forsberg, S.; Ringh, M.; Fredman, D.; Riva, G.; Hasselqvist-Ax, I.; Hollenberg, J. The Survival Benefit of Dual Dispatch of Ems and Fire-Fighters in out-of-Hospital Cardiac Arrest May Differ Depending on Population Density--a Prospective Cohort Study. Resuscitation 2015, 90, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Pappinen, J.; Olkinuora, A.; Laukkanen-Nevala, P. Medical First Response Models in Rural Villages and Towns: A Simulation Study of Response Times. Australas. J. Paramed. 2021, 18. [Google Scholar] [CrossRef]
- Peters, G.A.; Ordoobadi, A.J.; Panchal, A.R.; Cash, R.E. Differences in out-of-Hospital Cardiac Arrest Management and Outcomes across Urban, Suburban, and Rural Settings. Prehosp. Emerg. Care 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Raatiniemi, L.; Liisanantti, J.; Niemi, S.; Nal, H.; Ohtonen, P.; Antikainen, H.; Martikainen, M.; Alahuhta, S. Short-Term Outcome and Differences between Rural and Urban Trauma Patients Treated by Mobile Intensive Care Units in Northern Finland: A Retrospective Analysis. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, J.T.; Terkelsen, C.J.; Nørgaard, B.L.; Trautner, S.; Hansen, T.M.; Bøtker, H.E.; Lassen, J.F.; Andersen, H.R. Urban and Rural Implementation of Pre-Hospital Diagnosis and Direct Referral for Primary Percutaneous Coronary Intervention in Patients with Acute St-Elevation Myocardial Infarction. Eur. Heart J. 2011, 32, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stripe, S.C.; Susman, J. A Rural-Urban Comparison of Prehospital Emergency Medical Services in Nebraska. J. Am. Board Fam. Pract. 1991, 4, 313–318. [Google Scholar] [PubMed]
- Varjoranta, T.; Raatiniemi, L.; Majamaa, K.; Martikainen, M.; Liisanantti, J.H. Prehospital and Hospital Delays for Stroke Patients Treated with Thrombolysis: A Retrospective Study from Mixed Rural-Urban Area in Northern Finland. Australas. Emerg. Care 2019, 22, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Vukmir, R.B. The Influence of Urban, Suburban, or Rural Locale on Survival from Refractory Prehospital Cardiac Arrest. Am. J. Emerg. Med. 2004, 22, 90–93. [Google Scholar] [CrossRef]
- Wilson, P.; Alinier, G.; Reimann, T.; Morris, B. Influential Factors on Urban and Rural Response Times for Emergency Ambulances in Qatar. Mediterr. J. Emerg. Med. 2018, 26, 8–13. [Google Scholar]
- Alanazy, A.R.M.; Wark, S.; Fraser, J.; Nagle, A. Factors Impacting Patient Outcomes Associated with Use of Emergency Medical Services Operating in Urban Versus Rural Areas: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1728. [Google Scholar] [CrossRef] [Green Version]
- Razzak, J.A.; Kellermann, A.L. Emergency Medical Care in Developing Countries: Is It Worthwhile? Bull. World Health Organ. 2002, 80, 900–905. [Google Scholar] [PubMed]
- Gale, J.; Coburn, A.; Pearson, K.; Croll, Z.; Shaler, G. Developing Program Performance Measures for Rural Emergency Medical Services. Prehosp. Emerg. Care 2017, 21, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Pennel, C.L.; Tamayo, L.; Wells, R.; Sunbury, T. Emergency Medical Service-Based Care Coordination for Three Rural Communities. J. Health Care Poor Underserved 2016, 27, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.D.; Sweeney, T. Considerations in Establishing Emergency Medical Services Response Time Goals. Prehosp. Emerg. Care 2003, 7, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Svensson, A.; Elmqvist, C.; Fridlund, B.; Rask, M.; Andersson, R.; Stening, K. Using Firefighters as Medical First Responders to Shorten Response Time in Rural Areas in Sweden. Aust. J. Rural Health 2020, 28, 6–14. [Google Scholar] [CrossRef]
- Ro, Y.S.; Shin, S.D.; Song, K.J.; Lee, E.J.; Kim, J.Y.; Ahn, K.O.; Chung, S.P.; Kim, Y.T.; Hong, S.O.; Choi, J.A.; et al. A Trend in Epidemiology and Outcomes of out-of-Hospital Cardiac Arrest by Urbanization Level: A Nationwide Observational Study from 2006 to 2010 in South Korea. Resuscitation 2013, 84, 547–557. [Google Scholar] [CrossRef]
- Subcommittee, A.T.; International ATLS Working Group. Advanced Trauma Life Support (Atls®): The Ninth Edition. J. Trauma Acute Care Surg. 2013, 74, 1363–1366. [Google Scholar]
- Liberman, M.; CBranas, C.H.; Mulder, D.S.; Lavoie, A.; Sampalis, J.S. Advanced Versus Basic Life Support in the Pre-Hospital Setting—the Controversy between the ‘Scoop and Run’ and the ‘Stay and Play’ Approach to the Care of the Injured Patient. Int. J. Disaster Med. 2004, 2, 9–17. [Google Scholar] [CrossRef]
- Gervin, A.S.; Fischer, R.P. The Importance of Prompt Transport of Salvage of Patients with Penetrating Heart Wounds. J. Trauma 1982, 22, 443–448. [Google Scholar] [CrossRef]
- Esposito, T.J.; Maier, R.V.; Rivara, F.P.; Pilcher, S.; Griffith, J.; Lazear, S.; Hogan, S. The Impact of Variation in Trauma Care Times: Urban Versus Rural. Prehosp. Disaster Med. 1995, 10, 161–166; discussion 66-7. [Google Scholar] [CrossRef]
- Sampalis, J.S.; Lavoie, A.; Williams, J.I.; Mulder, D.S.; Kalina, M. Impact of on-Site Care, Prehospital Time, and Level of in-Hospital Care on Survival in Severely Injured Patients. J. Trauma 1993, 34, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, H.; Miyata, H.; Horiguchi, H.; Tanabe, S.; Akahane, M.; Ogawa, T.; Koike, S.; Imamura, T. Population Density, Call-Response Interval, and Survival of out-of-Hospital Cardiac Arrest. Int. J. Health Geogr. 2011, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Lyon, R.M.; Cobbe, S.M.; Bradley, J.M.; Grubb, N.R. Surviving out of Hospital Cardiac Arrest at Home: A Postcode Lottery? Emerg. Med. J. 2004, 21, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Lilley, R.; de Graaf, B.; Kool, B.; Davie, G.; Reid, P.; Dicker, B.; Civil, I.; Ameratunga, S.; Branas, C. Geographical and Population Disparities in Timely Access to Prehospital and Advanced Level Emergency Care in New Zealand: A Cross-Sectional Study. BMJ Open 2019, 9, e026026. [Google Scholar] [CrossRef] [Green Version]
- Hameed, S.M.; Schuurman, N.; Razek, T.; Boone, D.; van Heest, R.; Taulu, T.; Lakha, N.; Evans, D.C.; Brown, D.R.; Kirkpatrick, A.W.; et al. Access to Trauma Systems in Canada. J. Trauma 2010, 69, 1350–1361; discussion 61. [Google Scholar] [CrossRef] [PubMed]
- Emerson, P.; Dodds, N.; Green, D.R.; Jansen, J.O. Geographical Access to Critical Care Services in Scotland. J. Intensive Care Soc. 2018, 19, 6–14. [Google Scholar] [CrossRef]
- Goto, Y.; Funada, A.; Goto, Y. Relationship between Emergency Medical Services Response Time and Bystander Intervention in Patients with out-of-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2018, 7, e007568. [Google Scholar] [CrossRef] [Green Version]
- Georgakakos, P.K.; Swanson, M.B.; Ahmed, A.; Mohr, N.M. Rural Stroke Patients Have Higher Mortality: An Improvement Opportunity for Rural Emergency Medical Services Systems. J. Rural Health 2022, 38, 217–227. [Google Scholar] [CrossRef]
- Gomez, D.; Berube, M.; Xiong, W.; Ahmed, N.; Haas, B.; Schuurman, N.; Nathens, A.B. Identifying Targets for Potential Interventions to Reduce Rural Trauma Deaths: A Population-Based Analysis. J. Trauma 2010, 69, 633–639. [Google Scholar] [CrossRef]
- do Nascimento Silva, K.S.; Padeiro, M. Assessing Inequalities in Geographical Access to Emergency Medical Services in Metropolitan Lisbon: A Cross-Sectional and Ecological Study. BMJ Open 2020, 10, e033777. [Google Scholar] [CrossRef]
- Hsia, R.; Shen, Y.C. Possible Geographical Barriers to Trauma Center Access for Vulnerable Patients in the United States: An Analysis of Urban and Rural Communities. Arch. Surg. 2011, 146, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleindorfer, D.O.; Lindsell, C.J.; Broderick, J.P.; Flaherty, M.L.; Woo, D.; Ewing, I.; Schmit, P.; Moomaw, C.; Alwell, K.; Pancioli, A.; et al. Community Socioeconomic Status and Prehospital Times in Acute Stroke and Transient Ischemic Attack: Do Poorer Patients Have Longer Delays from 911 Call to the Emergency Department? Stroke 2006, 37, 1508–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissonnette, L.; Wilson, K.; Bell, S.; Shah, T.I. Neighbourhoods and Potential Access to Health Care: The Role of Spatial and Aspatial Factors. Health Place 2012, 18, 841–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, K.; Haas, J.S.; Williams, D.R. Elucidating the Role of Place in Health Care Disparities: The Example of Racial/Ethnic Residential Segregation. Health Serv. Res. 2012, 47 Pt 2, 1278–1299. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.G.; Bowman, A.J.; Wolff, C.S.; Mullen, M.T.; Holena, D.N.; Branas, C.C.; Wiebe, D.J. Disparities in Access to Trauma Care in the United States: A Population-Based Analysis. Injury 2017, 48, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsia, R.Y.; Huang, D.; Mann, N.C.; Colwell, C.; Mercer, M.P.; Dai, M.; Niedzwiecki, M.J. A Us National Study of the Association between Income and Ambulance Response Time in Cardiac Arrest. JAMA Netw. Open 2018, 1, e185202. [Google Scholar] [CrossRef]
Reference | Country | Study Design | Data Collection | Mean Age (SD)–Years | Sample Size | Type of Patient | Conclusion | QA |
---|---|---|---|---|---|---|---|---|
Adeyemi et al. 2021 [12] | USA | Observational | Prospective | 25–49 | 3108 | Crash patients | Favours urban | 9 |
Aftyka et al. 2014 [15] | Poland | Observational | Retrospective | - | 1624 | ER patients | Favours urban | 8 |
Alanazy et al. 2020 [16] | KSA | Observational | Prospective | 42.75/39.72 | 800 | ER patients | Favours urban | 8 |
Al-Thani et al. 2021 [17] | Qatar | Observational | Retrospective | 30.9 ± 15.8 | 1761 | Trauma patients | Favours urban | 10 |
Ashburn et al. 2022 [27] | USA | Observational | Retrospective | 62 (IQR 50–75) | 428,054 | Acute cardiac patients | Favours urban | 9 |
Breen et al. 2000 [28] | Ireland | Observational | Prospective | - | 3351 | ER patients | Favour urban | 6 |
Byrne et al. 2019 [18] | USA | Observational | Prospective | - | 239,464,121 | ER patients | Favours urban | 7 |
Cui et al. 2021 [22] | USA | Observational | Retrospective | 4667 | Acute coronary syndrome | Favours urban | 6 | |
Cui et al. 2019 [21] | USA | Observational | Retrospective | 63.1 (SD, 14.8) | 1,672,893 | Acute chest pain | Favours urban | 8 |
Fatovich et al. 2011 [11] | Australia | Observational | Retrospective | 40.1 ± 22.6 | 3333 | Major trauma patients | Favours urban | 7 |
Gonzalez et al. 2009 [13] | USA | Observational | Retrospective | - | 45,763 | Crashed patients | Favours urban | 7 |
Gonzalez et al. 2006 [29] | USA | Observational | Retrospective | - | 6443 | Crashed patients | Favours urban | 6 |
Grossman et al. 1997 [30] | USA | Observational | Prospective | - | 459 | Major trauma patients | Favours urban | 7 |
Hashtarkhani et al. 2021 [14] | Iran | Observational | Retrospective | 43.6 (SD = 22) | 224,355 | ER patients | Favours urban | 9 |
Hassler et al. 2021 [7] | Sweden | Observational | Retrospective | - | - | ER patients | Favours urban | 8 |
Horeczko et al. 2013 [31] | USA | Observational | Retrospective | <18 | 283,232,058 | ER pediatric patients | 6 | |
Hsu et al. 2020 [23] | Taiwan | Observational | Retrospective | - | 4225 | ER patients | Favours urban | 9 |
Layon et al. 2003 [26] | USA | Observational | Retrospective | 65.9 ± 17.4 | 137 | Cardiac arrest | Favours urban | 6 |
Lee et al. 2018 [32] | USA | Observational | Retrospective | - | 20,100 | Crash patients | Favours urban | 7 |
Masterson et al. 2015 [33] | Ireland | Observational | Retrospective | 67 (52–78) | 1798 | Cardiac arrest | Favours urban | 6 |
Mathiesen et al. 2018 [20] | Norway | Observational | Retrospective | - | 1138 | Cardiac arrest patients | Favours urban | 9 |
McGuffie et al. 2005 [34] | Scotland | Observational | Prospective | 50/64 | 4636 | Traumatic patients | Favours urban | 7 |
Mell et al. 2017 [35] | USA | Observational | Retrospective | - | - | ER patients | Favours urban | 7 |
Michael et al. 2021 [36] | USA | Observational | Retrospective | - | 266,605 | Trauma patients | Favours urban | 8 |
Moafa et al. 2020 [37] | KSA | Observational | Retrospective | - | 146,639 | ER patients | Favours urban | 6 |
Moore et al. 2008 [38] | Ireland | Observational | Prospective | 67.9 (15.1) | - | Cardiac arrest | Favours urban | 7 |
Morales-Gabardino et al. 2021 [39] | Spain | Observational | Retrospective | - | 5572 | Trauma patients | Favours urban | 8 |
Newgard et al. 2016 [40] | USA | Observational | Prospective | 51.6 ± 26.1 | 53487 | Traumatic patients | 6 | |
Nordberg et al. 2015 [41] | Sweden | Observational | Prospective | 77/72 | 2513 | Cardiac arrest | Favours urban | 7 |
Pappinen et al. 2021 [42] | Finland | RCT | Retrospective | - | 50,000 | Trauma patients | Favours urban | Low |
Peters et al. 2021 [43] | USA | Observational | Retrospective | - | 64,489 | ER patients | Favours urban | 8 |
Raatiniemi et al. 2015 [44] | Finland | Observational | Retrospective | 33 (20–55) | 472 | Traumatic patients | Favours urban | 8 |
Sorensen et al. 2010 [45] | Denmark | Observational | Prospective | 56 to 79 | 759 | Myocardial infarction | Favours urban | 6 |
Stripe and Susman 1991 [46] | USA | Observational | Prospective | - | - | ER patients | Favours urban | 6 |
Varjoranta et al. 2019 [47] | Finland | Observational | Retrospective | 68 (IQR 59, 77) | 232 | Stroke patients | Favours urban | 8 |
Vukmir et al. 2004 [48] | USA | RCT | Prospective | >18 | 874 | Cardiac arrest | Favours urban | Low |
Wilson et al. 2018 [49] | Qatar | Observational | Retrospective | - | 394 | Traumatic patients | Favours urban | 7 |
Reference | Response Time (Mean) | Conclusion | ||
---|---|---|---|---|
Rural | Urban | p-Value | ||
Adeyemi et al. 2021 [12] | 19.7 | 11.1 | - | Favours urban |
Aftyka et al. 2014 [15] | 13.3 | 7.7 | <0.00001 | Favours urban |
Alanazy et al. 2020 [16] | 22 | 15 | <0.001 | Favours urban |
Al-Thani et al. 2021 [17] | 6 * (IQR 4–10) | 7 * (IQR 4–10) | 0.25 | Favours urban |
Ashburn et al. 2022 [27] | 4.36 longer | shorter | - | Favours urban |
Breen et al. 2000 [28] | Longer | Shorter | - | Favours urban |
Byrne et al. 2019 [18] | Longer | Shorter | - | Favours urban |
Cui et al. 2021 [22] | 10–11 longer | shorter | - | Favours urban |
Cui et al. 2019 [21] | 8 * (IQR 5–13) | 7 * (IQR 5–10) | - | Favours urban |
Gonzalez et al. 2009 [13] | 10.67 | 6.5 | <0.0001 | Favours urban |
Gonzalez et al. 2006 [29] | 13.9 | 11.2 | <0.0002 | Favours urban |
Grossman et al. 1997 [30] | 7 | 13.6 | <0.0001 | Favours rural |
Hashtarkhani et al. 2021 [14] | 12.2 | 2.1 | Favours urban | |
Hassler et al. 2021 [7] | 12.2 | 7.1 | <0.01 | Favours urban |
Hsu et al. 2020 [23] | Longer | Shorter | <0.001 | Favours urban |
Lee et al. 2018 [32] | 7.1 (11.3) | 3.7 (8.5) | - | Favours urban |
Masterson et al. 2015 [33] | 8 min longer (9%) | 8 min longer (33%) | <0.001 | Favours urban |
Mathiesen et al. 2018 [20] | 11 * (IQR 7–16) | 9 * (IQR 7–12) | <0.001 | Favours urban |
Mell et al. 2017 [35] | 14.5 (9.5) | 7.0 (4.4) | - | Favours urban |
Moafa et al. 2020 [37] | 20.2 * | 15.2 * | <0.001 | Favours urban |
Moore et al. 2008 [38] | 9 11 | 5–7 | - | Favours urban |
Morales-Gabardino et al. 2021 [39] | 18 (12.6) | 10.7 (7.3) | <0.001 | Favours urban |
Pappinen et al. 2021 [42] | 15 | 1.6 | - | Favours urban |
Peters et al. 2021 [43] | 7.5 | 5.9 | <0.001 | Favours urban |
Sorensen et al. 2010 [45] | 9 min longer | 9 min less | <0.001 | Favours urban |
Stripe and Suaman 1991 [46] | Similar | - | No significance | |
Varjoranta et al. 2019 [47] | 12 * (IQR8, 22) | 8 * (IQR 6, 10) | <0.001 | Favours urban |
Vukmir et al. 2004 [48] | 10.6 | 8.7 | 0.0002 | Favours urban |
Wilson et al. 2018 [49] | 6.22 * | 5.15 * | - | Favours urban |
Reference | Transport Time (Mean) | Conclusion | ||
---|---|---|---|---|
Rural | Urban | p-Value | ||
Ashburn et al. 2022 [27] | 0.62 longer | Shorter | - | Favours urban |
Byrne et al. 2009 [18] | Longer | Shorter | - | Favours urban |
Cui et al. 2021 [22] | Longer | Shorter | - | Favours urban |
Cui et al. 2019 [21] | 15 * (IQR 7–28) | 12 * (IQR 8–19) | - | Favours urban |
Fatovich et al. 2011 [11] | 11.6 h | 59 | <0.0001 | Favours urban |
Gonzalez et al. 2009 [13] | 12.45 | 7.43 | <0.0001 | Favours urban |
Grossman et al. 1997 [30] | 17.2 | 8.2 | <0.0001 | Favours urban |
Hashtarkhani et al. 2021 [14] | 20.3 | 11.2 | Favours urban | |
Hassler et al. 2021 [7] | 28.5 | 7.98 | <0.01 | Favours urban |
Lee et al. 2018 [32] | 41.8 (20.5) | 28.7 (16.3) | - | Favours urban |
Michael et al. 2021 [36] | 1.8 * | 0.9 * | - | Favours urban |
Morales-Gabardino et al. 2021 [39] | 45.2 (25) | 13.2 (11.7) | 0.009 | Favours urban |
Varjoranta et al. 2019 [47] | 65 * (IQR 46, 94) | 15 * (IQR 12, 20) | <0.001 | Favours urban |
Vukmir et al. 2004 [48] | 45.8 | 39.1 | 0.00005 | Favours urban |
Reference | On-Scene Time (Mean) | Conclusion | ||
---|---|---|---|---|
Rural | Urban | p-Value | ||
Al-Thani et al. 2021 [17] | 23 * (IQR 15–37) | 19.5 * (IQR 13–28) | 0.001 | Favours urban |
Byrne et al. 2019 [18] | Longer | Shorter | - | Favours urban |
Cui et al. 2021 [22] | 10–11 longer | Shorter | - | Favours urban |
Cui et al. 2019 [21] | 16 * (IQR 12–20) | 15 * (IQR 11–20) | - | Favours urban |
Gonzalez et al. 2009 [13] | 18.87 | 10.83 | <0.0001 | Favours urban |
Gonzalez et al. 2006 [29] | 16.1 | 11.6 | Favours urban | |
Grossman et al. 1997 [30] | 21.7 | 18.7 | Favours urban | |
Hashtarkhani et al. 2021 [14] | 11.2 | 11.2 | Similar | |
Lee et al. 2018 [32] | 14 (10.3) | 7.8 (6.1) | - | Favours urban |
Varjoranta et al. 2019 [47] | 20 (IQR 14, 27) | 19 (IQR 14, 23) | 0.2 | No significance |
Reference | Pre-Hospital Time (Mean) | Conclusion | ||
---|---|---|---|---|
Rural | Urban | p-Value | ||
Alanazy et al. 2020 [16] | 62 | 43 | <0.001 | Favours urban |
Al-Thani et al. 2021 [17] | 87 * (IQR 67–112) | 64 * (IQR 49–80) | 0.001 | Favours urban |
Ashburn et al. 2022 [27] | 16.67 longer | Shorter | - | Favours urban |
Gonzalez et al. 2009 [13] | 42 | 24.8 | <0.0001 | Favours urban |
McGuffie et al. 2005 [34] | Longer | Shorter | <0.001 | Favours urban |
Moafa et al. 2020 [37] | 79.1 * | 77.5 * | <0.001 | Favours urban |
Nordberg et al. 2015 [41] | longer | Shorter | - | Favours urban |
Raatiniemi et al. 2015 [44]. | longer | Shorter | - | Favours urban |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwaili, A.; Alanazy, A.R.M. Prehospital Time Interval for Urban and Rural Emergency Medical Services: A Systematic Literature Review. Healthcare 2022, 10, 2391. https://doi.org/10.3390/healthcare10122391
Alruwaili A, Alanazy ARM. Prehospital Time Interval for Urban and Rural Emergency Medical Services: A Systematic Literature Review. Healthcare. 2022; 10(12):2391. https://doi.org/10.3390/healthcare10122391
Chicago/Turabian StyleAlruwaili, Abdullah, and Ahmed Ramdan M. Alanazy. 2022. "Prehospital Time Interval for Urban and Rural Emergency Medical Services: A Systematic Literature Review" Healthcare 10, no. 12: 2391. https://doi.org/10.3390/healthcare10122391
APA StyleAlruwaili, A., & Alanazy, A. R. M. (2022). Prehospital Time Interval for Urban and Rural Emergency Medical Services: A Systematic Literature Review. Healthcare, 10(12), 2391. https://doi.org/10.3390/healthcare10122391