Effects of Therapist Intervention during Upper-Extremity Robotic Rehabilitation in Patients with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample Size
2.2. Patients
2.3. Robot Device
2.4. Interventions
2.5. Clinical Assessments
2.5.1. Brunnstrom Stage
2.5.2. Manual Muscle Strength Evaluation
2.5.3. MAS
2.5.4. FMA-UE
2.5.5. Box and Block Test
2.5.6. FIM
2.6. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Function of Hemiplegic Upper-Extremity
3.2.1. Upper-Extremity Function before Treatment
3.2.2. Upper-Extremity Function after Treatment
3.2.3. Changes in Upper-Extremity Function before and after Treatment
3.2.4. Comparison of Changes before and after Treatment between Each Group
3.2.5. Detailed Classification of FMA-UE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faria-Fortini, I.; Michaelsen, S.M.; Cassiano, J.G.; Teixeira-Salmela, L.F. Upper extremity function in stroke subjects: Relationships between the international classification of functioning, disability, and health domains. J. Hand Ther. 2011, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Nichols-Larsen, D.S.; Clark, P.C.; Zeringue, A.; Greenspan, A.; Blanton, S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 2005, 36, 1480–1484. [Google Scholar] [CrossRef] [PubMed]
- Sveen, U.; Bautz-Holter, E.; Sødring, K.M.; Wyller, T.B.; Laake, K. Association between impairments, self-care ability and social activities 1 year after stroke. Disabil. Rehabil. 1999, 21, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Dromerick, A.W.; Lang, C.E.; Birkenmeier, R.; Hahn, M.G.; Sahrmann, S.A.; Edwards, D.F. Relationships between upper-limb functional limitation and self-reported disability 3 months after stroke. J. Rehabil. Res. Dev. 2006, 43, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef]
- Oujamaa, L.; Relave, I.; Froger, J.; Mottet, D.; Pelissier, J.Y. Rehabilitation of arm function after stroke. Literature review. Ann. Phys. Rehabil. Med. 2009, 52, 269–293. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.E.; Meskers, C.G.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb after Stroke. Neurorehabilit. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Chien, W.T.; Chong, Y.Y.; Tse, M.K.; Chien, C.W.; Cheng, H.Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef] [PubMed]
- Jakob, I.; Kollreider, A.; Germanotta, M.; Benetti, F.; Cruciani, A.; Padua, L.; Aprile, I. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM&R 2018, 10, S189–S197. [Google Scholar] [CrossRef]
- Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2016, 11, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Brunnstrom, S. Motor testing procedures in hemiplegia: Based on sequential recovery stages. Phys. Ther. 1966, 46, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Lip, D.M.; Sangha, H.; Foley, N.C.; Bhogal, S.; Pohani, G.; Teasell, R.W. Recovery from stroke: Differences between subtypes. Int. J. Rehabil. Res. 2005, 28, 303–308. [Google Scholar] [CrossRef]
- Morone, G.; Palomba, A.; Martino Cinnera, A.; Agostini, M.; Aprile, I.; Arienti, C.; Paci, M.; Casanova, E.; Marino, D.; LA Rosa, G.; et al. Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke. Eur. J. Phys. Rehabil. Med. 2021, 57, 238–245. [Google Scholar] [CrossRef]
- Chang, W.H.; Kim, Y.H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174–181. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pollock, A.; Pohl, M.; Kugler, J.; Elsner, B. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. J. Neuroeng. Rehabil. 2020, 17, 83. [Google Scholar] [CrossRef]
- Kim, G.W.; Won, Y.H.; Seo, J.H.; Ko, M.H. Effects of newly developed compact robot-aided upper extremity training system (Neuro-X®) in patients with stroke: A pilot study. J. Rehabil. Med. 2018, 50, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Neuro-X, Manual 2020; Apsun Inc.: Seoul, Korea, 2020.
- Han, T.H.; Bang, M.S.; Jung, S.G. Rehabilitation Medicine, 6th ed.; Korean Academy of Rehabilitation Medicine: Seoul, Republic of Korea; Koonja Publishing Company: Seoul, Republic of Korea, 2019. [Google Scholar]
- Gregson, J.M.; Leathley, M.; Moore, A.P.; Sharma, A.K.; Smith, T.L.; Watkins, C.L. Reliability of the Tone Assessment Scale and the Modified Ashworth Scale as Clinical Tools for Assessing Poststroke Spasticity. Arch. Phys. Med. Rehabil. 1999, 80, 1013–1016. [Google Scholar] [CrossRef]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [PubMed]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef]
- Granger, C.; Hamilton, B.; Keith, R.; Zielezny, M.; Sherwin, F. Advances in functional assessment for medical rehabilitation. Top. Geriatr. Rehabil. 1986, 1, 59–74. [Google Scholar] [CrossRef]
- Ranzani, R.; Lambercy, O.; Metzger, J.C.; Califfi, A.; Regazzi, S.; Dinacci, D.; Petrillo, C.; Rossi, P.; Conti, F.M.; Gassert, R. Neurocognitive robot-assisted rehabilitation of hand function: A randomized control trial on motor recovery in subacute stroke. J. Neuroeng. Rehabil. 2020, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Taveggia, G.; Borboni, A.; Salvi, L.; Mulé, C.; Fogliaresi, S.; Villafañe, J.H.; Casale, R. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: A randomized controlled study. Eur. J. Phys. Rehabil. Med. 2016, 52, 767–773. [Google Scholar] [PubMed]
- Franceschini, M.; Mazzoleni, S.; Goffredo, M.; Pournajaf, S.; Galafate, D.; Criscuolo, S.; Agosti, M.; Posteraro, F. Upper limb robot-assisted rehabilitation versus physical therapy on subacute stroke patients: A follow-up study. J. Bodyw. Mov. Ther. 2020, 24, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Ghosh, N.; Yanni, D.; Lee, S.; Alexandru, D.; Mozaffar, T. A Review of Spasticity Treatments; Pharmacological and Interventional Approaches. Crit. Rev. Phys. Rehabil. Med. 2013, 25, 11–22. [Google Scholar] [CrossRef]
- Gomez-Cuaresma, L.; Lucena-Anton, D.; Gonzalez-Medina, G.; Martin-Vega, F.J.; Galan-Mercant, A.; Luque-Moreno, C. Effectiveness of Stretching in Post-Stroke Spasticity and Range of Motion: Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1074. [Google Scholar] [CrossRef]
- Barker-Collo, S.L.; Feigin, V.L.; Lawes, C.M.; Parag, V.; Senior, H.; Rodgers, A. Reducing attention deficits after stroke using attention process training: A randomized controlled trial. Stroke 2009, 40, 3293–3298. [Google Scholar] [CrossRef] [PubMed]
Variables | Experimental Group | Control Group | Mean | p |
---|---|---|---|---|
Number of participants | 19 | 19 | 19 | NA |
Age (years) | 60.74 (11.84) | 63.42 (06.70) | 62.08 (10.63) | 0.801 |
Sex | 0.652 | |||
Male | 13 | 12 | 12.5 | |
Female | 6 | 7 | 6.5 | |
Diagnosis (Number) | 0.803 | |||
Right hemiplegia | 11 | 10 | 10.5 | |
Left hemiplegia | 8 | 9 | 8.5 | |
Type of lesion (Number) | 0.591 | |||
Infarction | 7 | 9 | 8 | |
Hemorrhage | 12 | 10 | 11 | |
Site of lesion (Number) | 0.612 | |||
Cortex | 6 | 5 | 5.5 | |
Subcortex | 9 | 9 | 9.0 | |
Both (cortex and subcortex) | 4 | 5 | 4.5 | |
Duration (month) | 13.79 (13.48) | 12.21 (10.40) | 13.00 (11.90) | 0.827 |
BMI | 20.63 (3.75) | 21.26 (3.60) | 20.94 (3.64) | 0.600 |
MMSE | 22.13 (7.28) | 21.70 (6.16) | 21.92 (6.73) | 0.764 |
Variables | Experimental Group | Control Group | ||
---|---|---|---|---|
Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment | |
MMT | ||||
Shoulder flexion | 2.21 (0.98) | 2.68 (0.82) * | 2.32 (0.67) | 2.74 (0.56) * |
Elbow flexion | 2.35 (0.94) | 2.68 (0.82) * | 2.34 (0.68) | 2.84 (0.60) * |
Wrist extension | 2.26 (1.19) | 2.63 (1.12) * | 2.02 (0.91) | 2.47 (0.84) * |
Grip power | 15.00 (18.00) | 24.89 (23.43) * | 16.16 (17.21) | 24.79 (22.71) * |
Pinch power | 7.05 (6.64) | 9.66 (6.65) * | 7.10 (5.67) | 9.34 (6.19) * |
MAS | ||||
Shoulder | 1.10 (1.12) | 1.00 (1.00) | 1.10 (0.87) | 0.95 (0.91) |
Elbow | 1.16 (1.12) | 1.10 (1.15) | 1.05 (0.97) | 0.95 (0.91) |
Wrist | 1.12 (1.08) | 1.05 (1.08) | 1.00 (1.20) | 0.95 (0.91) |
Finger | 1.00 (1.20) | 1.11 (1.15) | 1.11 (0.88) | 0.95 (0.91) |
Brunnstrom stage | 2.84 (1.86) | 3.95 (1.27) * | 2.94 (1.47) | 3.63 (1.12) * |
Fugl-Meyer in U/E | 35.05 (25.82) | 44.37 (22.10) *† | 34.95 (22.72) | 39.47 (24.16) * |
Box and block test | 15.68 (18.69) | 23.74 (16.46) *† | 15.95 (17.67) | 19.95 (19.09) * |
FIM | 69.26 (27.17) | 87.84 (24.64) * | 69.05 (27.99) | 78.05 (28.05) * |
Variables | Experimental Group | Control Group | Mean | p |
---|---|---|---|---|
MMT | ||||
Shoulder flexion | 0.47 (0.77) | 0.42 (0.51) | 0.45 (0.64) | 0.851 |
Elbow flexion | 0.37 (0.60) | 0.47 (0.51) | 0.42 (0.55) | 0.421 |
Wrist extension | 0.37 (0.60) | 0.42 (0.61) | 0.39 (0.59) | 0.752 |
Grip power | 9.89 (11.57) | 8.63 (8.86) | 9.26 (10.18) | 0.895 |
Pinch power | 2.61 (3.61) | 2.24 (3.65) | 2.42 (3.58) | 0.656 |
MAS | ||||
Elbow | −0.05 (0.85) | −0.11 (1.05) | −0.08 (0.94) | 0.924 |
Wrist | −0.16 (0.90) | −0.05 (0.71) | −0.10 (0.80) | 0.631 |
Finger | 0.11 (0.94) | −0.16 (0.90) | −0.03 (0.91) | 0.458 |
Brunnstrom stage | 1.11 (1.29) | 0.68 (0.95) | 0.89 (1.13) | 0.340 |
Fugl-Meyer in U/E | 9.32 (5.26) | 4.53 (4.90) | 6.92 (11.44) | 0.045 * |
Box and block test | 8.05 (5.68) | 4.00 (4.99) | 6.03 (5.66) | 0.015 * |
FIM | 18.58 (9.83) | 9.00 (6.00) | 13.79 (9.39) | 0.003 * |
Variables | Experimental Group | Control Group | Mean | p |
---|---|---|---|---|
Category A | 4.50 (9.51) | 2.33 (4.19) | 3.42 (7.32) | 0.767 |
Category B | 1.72 (2.49) | 1.11 (0.96) | 1.42 (1.89) | 0.696 |
Category C | 2.28 (3.37) | 1.61 (1.72) | 1.94 (2.66) | 0.938 |
Category D | 0.61 (1.14) | 0.33 (0.59) | 0.47 (0.91) | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Kim, Y.-M.; Koo, S.-W.; Park, H.-B.; Yoon, Y.-S. Effects of Therapist Intervention during Upper-Extremity Robotic Rehabilitation in Patients with Stroke. Healthcare 2023, 11, 1369. https://doi.org/10.3390/healthcare11101369
Kim S-Y, Kim Y-M, Koo S-W, Park H-B, Yoon Y-S. Effects of Therapist Intervention during Upper-Extremity Robotic Rehabilitation in Patients with Stroke. Healthcare. 2023; 11(10):1369. https://doi.org/10.3390/healthcare11101369
Chicago/Turabian StyleKim, Si-Yun, Yu-Mi Kim, See-Won Koo, Hyun-Bin Park, and Yong-Soon Yoon. 2023. "Effects of Therapist Intervention during Upper-Extremity Robotic Rehabilitation in Patients with Stroke" Healthcare 11, no. 10: 1369. https://doi.org/10.3390/healthcare11101369
APA StyleKim, S. -Y., Kim, Y. -M., Koo, S. -W., Park, H. -B., & Yoon, Y. -S. (2023). Effects of Therapist Intervention during Upper-Extremity Robotic Rehabilitation in Patients with Stroke. Healthcare, 11(10), 1369. https://doi.org/10.3390/healthcare11101369