The Cross-Sectional and Longitudinal Associations Between Adherence to 24-Hour Movement Behavior Guidelines and Bone Health in Young Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Procedures
2.3. Measurement
2.3.1. PA
2.3.2. ST
2.3.3. SD
2.3.4. BMD
2.3.5. Covariates
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics and Adherence to 24-HMB Recommendations
3.2. Cross-Sectional Associations of Meeting 24-HMB Guideline Recommendations with BMD
3.3. Longitudinal Associations of Meeting 24-HMB Guideline Recommendations with BMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kralick, A.E.; Zemel, B.S. Evolutionary perspectives on tshe developing skeleton and implications for lifelong health. Front. Endocrinol. 2020, 11, 99. [Google Scholar] [CrossRef]
- Root, A.W. Bone strength and the adolescent. Adolesc. Med. Clin. 2002, 13, 53. [Google Scholar]
- Rodrick, E.; Kindler, J. Bone mass accrual in children. Curr. Opin. Endocrinol. Diabetes Obes. 2023, 31, 53–59. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef]
- Boudin, E.; Fijalkowski, I.; Hendrickx, G.; Van Hul, W. Genetic control of bone mass. Mol. Cell. Endocrinol. 2016, 432, 3–13. [Google Scholar] [CrossRef]
- Pettifor, J.M. Calcium and vitamin D metabolism in children in developing countries. Ann. Nutr. Metab. 2014, 64, 15–22. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Timmons, B.W.; LeBlanc, A.G.; Carson, V.; Connor, G.S.; Dillman, C.; Janssen, I.; Kho, M.E.; Spence, J.C.; Stearns, J.A.; Tremblay, M.S. Systematic review of physical activity and health in the early years (aged 0–4 years). Appl. Physiol. Nutr. Metab. 2012, 37, 773–792. [Google Scholar] [CrossRef]
- Herrmann, D.; Buck, C.; Sioen, I.; Kouride, Y.; Marild, S.; Molnár, D.; Mouratidou, T.; Pitsiladis, Y.; Paola, R.; Veidebaum, T.; et al. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2–10-year-old children-cross-sectional results from the IDEFICS study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 112. [Google Scholar] [CrossRef]
- Janz, K.F.; Gilmore, J.M.; Burns, T.L.; Levy, S.M.; Torner, J.C.; Willing, M.C.; Marshall, T.A. Physical activity augments bone mineral accrual in young children: The Iowa Bone Development study. J. Pediatr. 2006, 148, 793–799. [Google Scholar] [CrossRef]
- Janz, K.F.; Letuchy, E.M.; Eichenberger Gilmore, J.M.; Burns, T.L.; Torner, J.C.; Willing, M.C.; Levy, S.M. Early physical activity provides sustained bone health benefits later in childhood. Med. Sci. Sports Exerc. 2010, 42, 1072–1078. [Google Scholar] [CrossRef]
- de Lamas, C.; Sánchez-Pintos, P.; José de Castro, M.; Sáenz de Pipaon, M.; Couce, M.L. Screen time and bone status in children and adolescents: A systematic review. Front. Pediatr. 2021, 9, 675214. [Google Scholar] [CrossRef]
- Xie, G.; Deng, Q.; Cao, J.; Chang, Q. Digital screen time and its effect on preschoolers’ behavior in China: Results from a cross-sectional study. Ital. J. Pediatr. 2020, 46, 9. [Google Scholar] [CrossRef]
- Cheng, L.; Pohlabeln, H.; Ahrens, W.; Lauria, F.; Veidebaum, T.; Chadjigeorgiou, C.; Molnár, D.; Eiben, G.; Michels, N.; Moreno, L.A.; et al. Cross-sectional and longitudinal associations between physical activity, sedentary behaviour and bone stiffness index across weight status in European children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 54. [Google Scholar] [CrossRef]
- Cheng, L.; Pohlabeln, H.; Ahrens, W.; Russo, P.; Veidebaum, T.; Hadjigeorgiou, C.; Molnár, D.; Hunsberger, M.; De Henauw, S.; Moreno, L.A.; et al. Cross-sectional and longitudinal associations between sleep duration, sleep quality, and bone stiffness in European children and adolescents. Osteoporos. Int. 2021, 32, 853–863. [Google Scholar] [CrossRef]
- Fu, Y.; He, W.; He, M.; Liu, Y.; Li, M.; Zhu, M.; Wang, Y.; Lin, W.; Yu, L.; Liu, Y.; et al. Interaction effect of nocturnal sleep duration and physical activity on bone strength: A cross-sectional study of Chinese preschoolers. J. Public Health 2024, 32, 837–845. [Google Scholar] [CrossRef]
- Casazza, K.; Hanks, L.J.; Fernandez, J.R. Shorter sleep may be a risk factor for impaired bone mass accrual in childhood. J. Clin. Densitom. 2011, 14, 453–457. [Google Scholar] [CrossRef]
- Chaput, J.P.; Carson, V.; Gray, C.E.; Tremblay, M.S. Importance of all movement behaviors in a 24 hour period for overall health. Int. J. Environ. Res. Public Health 2014, 11, 12575–12581. [Google Scholar] [CrossRef]
- Rosenberger, M.E.; Fulton, J.E.; Buman, M.P.; Troiano, R.P.; Grandner, M.A.; Buchner, D.M.; Haskell, W.L. The 24-hour activity cycle: A new paradigm for physical activity. Med. Sci. Sports Exerc. 2019, 51, 454. [Google Scholar] [CrossRef]
- Kuzik, N.; Poitras, V.J.; Tremblay, M.S.; Lee, E.Y.; Hunter, S.; Carson, V. Systematic review of the relationships between combinations of movement behaviours and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Rollo, S.; Antsygina, O.; Tremblay, M.S. The whole day matters: Understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J. Sport Health Sci. 2020, 9, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zheng, C.; Sit, C.H.P.; Reilly, J.J.; Huang, W.Y. Associations between meeting 24-hour movement guidelines and health in the early years: A systematic review and meta-analysis. J. Sports Sci. 2021, 39, 2545–2557. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children Under 5 Years of Age. Available online: https://apps.who.int/iris/handle/10665/311664 (accessed on 18 September 2024).
- Hinkley, T.; Timperio, A.; Watson, A.; Duckham, R.L.; Okely, A.D.; Cliff, D.; Carver, A.; Hesketh, K.D. Prospective associations with physiological, psychosocial and educational outcomes of meeting Australian 24-Hour Movement Guidelines for the Early Years. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.T.; Wong, J.E.; Chan, G.K.; Poh, B.K. Association between compliance with movement behavior guidelines and obesity among Malaysian preschoolers. Int. J. Environ. Res. Public Health 2021, 18, 4611. [Google Scholar] [CrossRef]
- Cliff, D.P.; McNeill, J.; Vella, S.A.; Howard, S.J.; Santos, R.; Batterham, M.; Melhuish, E.; de Rosnay, M. Adherence to 24-hour movement guidelines for the early years and associations with social-cognitive development among Australian preschool children. BMC Public Health 2017, 17, 207–215. [Google Scholar] [CrossRef]
- McNeill, J.; Howard, S.J.; Vella, S.A.; Cliff, D.P. Compliance with the 24-Hour movement guidelines for the early years: Cross-sectional and longitudinal associations with executive function and psychosocial health in preschool children. J. Sci. Med. Sport 2020, 23, 846–853. [Google Scholar] [CrossRef]
- Zhu, N.; Guo, H.; Ma, D.; Wang, Q.; Ma, J.; Kim, H. The association between 24 h movement guidelines and internalising and externalising behaviour problems among Chinese preschool children. Children 2023, 10, 1146. [Google Scholar] [CrossRef]
- Yin, L.; Li, F.; Liu, P.; Yin, Z.; Yang, Z.; Pi, L.; Gao, Z. Examining the relationship between meeting 24-hour movement behaviour guidelines and mental health in Chinese preschool children. Front. Pediatr. 2024, 12, 1337158. [Google Scholar] [CrossRef]
- Kuzik, N.; Spence, J.C.; Arkko, K.; Blye, C.J.; Davie, J.; Duddridge, R.; Ekeli, T.; English, A.; Etruw, E.; Hunter, S.; et al. Associations between meeting the Canadian 24-hour movement guidelines and physical, cognitive, social-emotional, and overall development in early childhood. J. Act. Sedentary Sleep Behav. 2022, 1, 2. [Google Scholar] [CrossRef]
- Li, F.; Yin, L.; Sun, M.; Gao, Z. Examining relationships among Chinese preschool Children’s meeting 24-hour movement guidelines and fundamental movement skills. J. Clin. Med. 2022, 11, 5623. [Google Scholar] [CrossRef]
- Souza, A.R.; Bandeira, P.F.R.; da Silva, M.A.C.; da Cunha, G.L.; Pereira, D.F.; Martins, C. Twenty-Four-Hour Movement Behaviors, Fitness, and Adiposity in Preschoolers: A Network Analysis. Obesities 2023, 3, 36–45. [Google Scholar] [CrossRef]
- Byambaa, A.; Dechinjamts, O.; Jambaldorj, B.; Jones, R.A.; Chong, K.H.; Okely, A.D. Prevalence and Health Associations of Meeting the World Health Organization Guidelines for Physical Activity, Sedentary Behavior, and Sleep in Preschool-Aged Children: The SUNRISE Mongolia Pilot and Feasibility Study. J. Phys. Act. Health 2024, 1, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.G.; Clark, C.C.T.; Bezerra, T.A.; Lemos, L.; Reuter, C.P.; Mota, J.A.P.S.; Duncan, M.J.; Martins, C.M.D.L. Twenty-four-hour movement behaviours and fundamental movement skills in preschool children: A compositional and isotemporal substitution analysis. J. Sports Sci. 2020, 38, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, R.; Ma, X.; Qin, Z.; Yang, Z.; Hong, H.; Lv, H.; Ye, K.; Wei, Y.; Zheng, W.; et al. Adiposity is not beneficial to bone mineral density in 0–5 year old Chinese children: The Jiangsu bone health study. Obes. Res. Clin. Pr. 2020, 14, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Cauwenberghe, E.; Gubbels, J.; Bourdeaudhuij, I.; Cardon, G. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 67. [Google Scholar] [CrossRef]
- Phillips, S.M.; Summerbell, C.; Hobbs, M.; Hesketh, K.R.; Saxena, S.; Muir, C.; Hillier-Brown, F.C. A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 141. [Google Scholar] [CrossRef]
- Luo, X.; Herold, F.; Ludyga, S.; Gerber, M.; Kamijo, K.; Pontifex, M.B.; Hillman, C.H.; Alderman, B.L.; Müller, N.G.; Kramer, A.F.; et al. Association of physical activity and fitness with executive function among preschoolers. Int. J. Clin. Health Psychol. 2023, 23, 100400. [Google Scholar] [CrossRef]
- Choi, L.; Liu, Z.W.; Matthews, C.E.; Buchowski, M.S. Validation of Accelerometer Wear and Nonwear Time Classification Algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef]
- Quante, M.; Kaplan, E.R.; Rueschman, M.; Cailler, M.; Buxton, O.M.; Redline, S. Practical considerations in using accelerometers to assess physical activity, sedentary behavior, and sleep. Sleep Health 2015, 1, 275–284. [Google Scholar] [CrossRef]
- Butte, N.F.; Wong, W.W.; Lee, J.S.; Adolph, A.L.; Puyau, M.R.; Zakeri, I.F. Prediction of energy expenditure and physical activity in preschoolers. Med. Sci. Sports Exerc. 2014, 46, 1216. [Google Scholar] [CrossRef] [PubMed]
- Zadik, Z.; Price, D.; Diamond, G. Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos. Int. 2003, 14, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, G. Quantitative Ultrasound Methods to Assess Bone Mineral Status in Children: Technical Characteristics, Performance, and Clinical Application. Pediatr. Res. 2008, 63, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Pezzuti, I.L.; Kakehasi, A.M.; Filgueiras, M.T.; de Guimarães, J.A.; de Lacerda, I.A.C.; Silva, I.N. Imaging methods for bone mass evaluation during childhood and adolescence: An update. J. Pediatr. Endocrinol. Metab. 2017, 30, 485–497. [Google Scholar] [CrossRef]
- Omar, A.; Turan, S.; Bereket, A. Reference data for bone speed of sound measurement by quantitative ultrasound in healthy children. Arch. Osteoporos. 2006, 1, 37–41. [Google Scholar] [CrossRef]
- World Health Organization Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006, 450, 76–85. [Google Scholar]
- Kassim, J.; Hutagalung, F.D. Socioeconomic status (SES) differences in preschoolers’ social skills. J. Nusant. Stud. 2020, 5, 303–328. [Google Scholar] [CrossRef]
- Ming, H.; Zhang, F.; Jiang, Y.; Ren, Y.; Huang, S. Family socio-economic status and children’s executive function: The moderating effects of parental subjective socio-economic status and children’s subjective social mobility. Br. J. Psychol. 2021, 112, 720–740. [Google Scholar]
- De Craemer, M.; McGregor, D.; Androutsos, O.; Manios, Y.; Cardon, G. Compliance with 24-h movement behaviour guidelines among Belgian pre-school children: The ToyBox-study. Int. J. Environ. Res. Public Health 2018, 15, 2171. [Google Scholar] [CrossRef]
- Carson, V.; Ezeugwu, V.E.; Tamana, S.K.; Chikuma, J.; Lefebvre, D.L.; Azad, M.B.; Moraes, T.J.; Subbarao, P.; Becker, A.B.; Turvey, S.E.; et al. Associations between meeting the Canadian 24-hour movement guidelines for the early years and behavioral and emotional problems among 3-year-olds. J. Sci. Med. Sport 2019, 22, 797–802. [Google Scholar]
- Chen, B.; Bernard, J.Y.; Padmapriya, N.; Yao, J.; Goh, C.; Tan, K.H.; Yap, F.; Chong, Y.S.; Shek, L.; Godfrey, K.M.; et al. Socio-demographic and maternal predictors of adherence to 24-hour movement guidelines in Singaporean children. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Vale, S.; Mota, J. Adherence to 24-hour movement guidelines among Portuguese preschool children: The prestyle study. J. Sports Sci. 2020, 38, 2149–2154. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Deeba, I.M.; Hasan, M.; Kariippanon, K.E.; Chong, K.H.; Cross, P.L.; Ferdous, S.; Okely, A.D. International study of 24-h movement behaviors of early years (SUNRISE): A pilot study from Bangladesh. Pilot Feasibility Stud. 2021, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Izquierdo, M.; López-Gil, J.F.; Rincón-Pabón, D.; Martínez-Jamioy, E.N.; Rivera-Ruíz, R.; Castellanos-Montaña, S.; Atencio-Osorio, M.A.; Carrillo-Arango, H.A.; Alonso-Martínez, A.M.; et al. Prevalence of meeting all three 24-h movement guidelines and its correlates among preschool-aged children. Scand. J. Med. Sci. Sports 2023, 33, 979–988. [Google Scholar] [CrossRef]
- Zarghani, N.H.; Jafari, Z.; Amini, F.; Marashi, S.Z.; Ghaffarifar, S.; Ghofranipour, F.; Baghbanian, M.; Okely, A.D. International study of 24-h movement behaviors of the early years (SUNRISE): A pilot study from Iran. Child Care Health Dev. 2024, 50, e13269. [Google Scholar] [CrossRef]
- Chong, K.H.; Suesse, T.; Cross, P.L.; Ryan, S.T.; Aadland, E.; Aoko, O.; Byambaa, A.; Carson, V.; Chaput, J.; Christian, H.; et al. Pooled analysis of physical activity, sedentary behavior, and sleep among children from 33 countries. JAMA Pediatr. 2024, 3330. [Google Scholar] [CrossRef]
- Padmapriya, N.; Fogel, A.; Tan, S.Y.X.; Goh, C.M.J.L.; Tan, S.L.; Chia, A.; Chu, A.H.Y.; Chong, Y.S.; Tan, K.H.; Chan, S.; et al. The cross-sectional and prospective associations of parental practices and environmental factors with 24-hour movement behaviours among school-aged Asian children. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 27. [Google Scholar] [CrossRef]
- Hinkley, T.; Salmon, J.; Okely, A.; Crawford, D.; Hesketh, K. Preschoolers’ physical activity, screen time, and compliance with recommendations. Med. Sci. Sports Exerc. 2012, 44, 458–465. [Google Scholar] [CrossRef]
- Dumuid, D.; Simm, P.; Wake, M.; Burgner, D.; Juonala, M.; Wu, F.; Magnussen, C.G.; Olds, T. The “Goldilocks Day” for children’s skeletal health: Compositional data analysis of 24-hour activity behaviors. J. Bone Miner. Res. 2020, 35, 2393–2403. [Google Scholar] [CrossRef]
- McMichan, L.; Skelton, D.A.; Chastin, S.F.; Mavroeidi, A. 24-hour movement behaviours and bone mineral density in older adults-a rapid narrative review. J. Orthop. Orthop. Surg. 2022, 3, 9–13. [Google Scholar] [CrossRef]
- Howie, E.K.; Coenen, P.; Campbell, A.C.; Ranelli, S.; Straker, L.M. Head, trunk and arm posture amplitude and variation, muscle activity, sedentariness and physical activity of 3 to 5 year-old children during tablet computer use compared to television watching and toy play. Appl. Ergon. 2017, 65, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Koedijk, J.B.; Van Rijswijk, J.; Oranje, W.A.; Van Den Bergh, J.P.; Bours, S.P.; Savelberg, H.H.; Schaper, N.C. Sedentary behaviour and bone health in children, adolescents and young adults: A systematic review. Osteoporos. Int. 2017, 28, 2507–2519. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.M.; Kohrt, W.M.; Buxton, O.M.; Everson, C.A.; Wright, K.P., Jr.; Orwoll, E.S.; Shea, S.A. The importance of the circadian system & sleep for bone health. Metabolism 2018, 84, 28–43. [Google Scholar]
- Skinner, A.M.; Barker, A.R.; Moore, S.A.; Soininen, S.; Haapala, E.A.; Väistö, J.; Westgate, K.; Brage, S.; Lakka, T.A.; Vlachopoulos, D. Cross-sectional and longitudinal associations between the 24-hour movement behaviours, including muscle and bone strengthening activity, with bone and lean mass from childhood to adolescence. BMC Public Health 2024, 24, 227. [Google Scholar] [CrossRef]
- Herrmann, D.; Hebestreit, A.; Ahrens, W. Impact of physical activity and exercise on bone health in the life course: A review. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2012, 55, 35–54. [Google Scholar] [CrossRef]
- Carter, D.R.; Van der Meulen, M.C.H.; Beaupre, G.S. Mechanical factors in bone growth and development. Bone 1996, 18, S5–S10. [Google Scholar] [CrossRef]
- Smith, S.L.; Buschang, P.H. Variation in longitudinal diaphyseal long bone growth in children three to ten years of age. Am. J. Hum. Biol. 2004, 16, 648–657. [Google Scholar] [CrossRef]
- Francis, S.L.; Letuchy, E.M.; Levy, S.M.; Janz, K.F. Sustained effects of physical activity on bone health: Iowa Bone Development Study. Bone 2014, 63, 95–100. [Google Scholar] [CrossRef]
- Prisby, R.D. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J. Endocrinol. 2017, 235, R77–R100. [Google Scholar] [CrossRef]
- Yao, Z.; Lafage-Proust, M.H.; Plouët, J.; Bloomfield, S.; Alexandre, C.; Vico, L. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J. Bone Miner. Res. 2004, 19, 1471–1480. [Google Scholar] [CrossRef]
- MacKenzie, M.G.; Hamilton, D.L.; Pepin, M.; Patton, A.; Baar, K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS ONE 2013, 8, e68743. [Google Scholar] [CrossRef]
- Neumeyer, A.M.; Sokoloff, N.C.; McDonnell, E.; Macklin, E.A.; McDougle, C.J.; Misra, M. Bone accrual in males with autism spectrum disorder. J. Pediatr. 2017, 181, 195–201. [Google Scholar] [CrossRef]
Variables | Value a |
---|---|
Age (year) | 4.3 ± 0.6 |
Sex | |
Boy | 61 (56.0) |
Girl | 48 (44.0) |
Height (cm) | 107.4 ± 7.7 |
Weight (kg) | 18.4 ± 5.0 |
BMI (kg/m2) | |
Underweight | 3 (2.8) |
Normal weight | 88 (80.7) |
Overweight | 6 (5.5) |
Obesity | 12 (11.0) |
SES | |
Low | 16 (14.7) |
Middle | 32 (29.4) |
High | 61 (56.0) |
24-HMB | |
LPA (min/day) | 188.0 ± 40.6 |
MVPA (min/day) | 46.7 ± 20.6 |
ST (min/day) | 100.1 ± 91.7 |
SD (h/day) | 11.8 ± 1.7 |
BMD | |
Baseline | |
Normal BMD | 70 (64.2) |
Insufficient BMD | 39 (35.8) |
Follow-up | |
Normal BMD | 76 (69.7) |
Insufficient BMD | 33 (30.3) |
Variables (T1) | BMD (T1) | |
---|---|---|
OR (95% CI) | p | |
The number of recommendations met | ||
Zero | Ref | Ref |
One | 1.38 (0.61, 3.12) | 0.445 |
Two | 0.34 (0.13, 0.88) | 0.026 |
Three | 3.49 (0.56, 21.61) | 0.180 |
24-HMB combinations | ||
Meeting none | Ref | Ref |
Only PA | 1.43 (0.11, 18.18) | 0.781 |
Only ST | 1.35 (0.32, 5.74) | 0.686 |
Only SD | 1.25 (0.52, 3.00) | 0.625 |
PA + ST | 2.36 (0.54, 10.36) | 0.255 |
ST + SD | 0.29 (0.09, 0.95) | 0.041 |
PA + SD | 0.73 (0.20, 2.66) | 0.632 |
PA + ST + SD | 3.49 (0.56, 21.61) | 0.180 |
Variables (T1) | BMD (T2) | |
---|---|---|
OR (95% CI) | p | |
The number of recommendations met | ||
Zero | Ref | Ref |
One | 0.97 (0.38, 2.47) | 0.948 |
Two | 0.94 (0.36, 2.47) | 0.905 |
Three | 0.13 (0.02, 0.69) | 0.016 |
24-HMB combinations | ||
Meeting none | Ref | Ref |
Only PA | 0.22 (0.07, 0.71) | 0.011 |
Only ST | 2.32 (0.91, 5.91) | 0.079 |
Only SD | 1.00 (0.36, 2.73) | 0.993 |
PA + ST | 0.18 (0.04, 0.83) | 0.028 |
ST + SD | 1.92 (0.72, 5.11) | 0.192 |
PA + SD | 3.07 (0.97, 9.67) | 0.055 |
PA + ST + SD | 0.13 (0.03, 0.69) | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhang, L.; Hu, T.; Ma, J.; Li, X.; Zhang, X.; Kim, H. The Cross-Sectional and Longitudinal Associations Between Adherence to 24-Hour Movement Behavior Guidelines and Bone Health in Young Children. Healthcare 2024, 12, 2173. https://doi.org/10.3390/healthcare12212173
Li D, Zhang L, Hu T, Ma J, Li X, Zhang X, Kim H. The Cross-Sectional and Longitudinal Associations Between Adherence to 24-Hour Movement Behavior Guidelines and Bone Health in Young Children. Healthcare. 2024; 12(21):2173. https://doi.org/10.3390/healthcare12212173
Chicago/Turabian StyleLi, Dan, Lifang Zhang, Ting Hu, Jiameng Ma, Xianxiong Li, Xiang Zhang, and Hyunshik Kim. 2024. "The Cross-Sectional and Longitudinal Associations Between Adherence to 24-Hour Movement Behavior Guidelines and Bone Health in Young Children" Healthcare 12, no. 21: 2173. https://doi.org/10.3390/healthcare12212173
APA StyleLi, D., Zhang, L., Hu, T., Ma, J., Li, X., Zhang, X., & Kim, H. (2024). The Cross-Sectional and Longitudinal Associations Between Adherence to 24-Hour Movement Behavior Guidelines and Bone Health in Young Children. Healthcare, 12(21), 2173. https://doi.org/10.3390/healthcare12212173