Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD
Abstract
:1. Introduction
2. Toxic Exposures Created by Wildfires
3. Mechanisms of Lung Injury from Wildfire Smoke Exposure
4. Epidemiological Evidence for the Effects of Wildfire Smoke on Airways Disease
5. Other Adverse Health Effects of Wildfire Smoke Exposure
6. Vulnerable Populations
7. Strategies for Risk Reduction and Mitigation
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.B.; Henderson, S.B.; Lambert, A.A.; Cromar, K.R.; Hall, J.A.; Cascio, W.E.; Smith, P.G.; Marsh, B.J.; Coefield, S.; Balmes, J.R.; et al. Respiratory Impacts of Wildland Fire Smoke: Future Challenges and Policy Opportunities. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, 921–930. [Google Scholar] [CrossRef]
- D’Evelyn, S.M.; Jung, J.; Alvarado, E.; Baumgartner, J.; Caligiuri, P.; Hagmann, R.K.; Henderson, S.B.; Hessburg, P.F.; Hopkins, S.; Kasner, E.J.; et al. Wildfire, Smoke Exposure, Human Health, and Environmental Justice Need to be Integrated into Forest Restoration and Management. Curr. Environ. Health Rep. 2022, 9, 366–385. [Google Scholar] [CrossRef] [PubMed]
- Akdis, C.A.; Nadeau, K.C. Human and planetary health on fire. Nat. Rev. Immunol. 2022, 22, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Latest Analysis of Deforestation Trends. World Resources Institute. Available online: https://research.wri.org/gfr/latest-analysis-deforestation-trends (accessed on 3 December 2023).
- Number of Wildfires to Rise by 50% by 2100, and Governments Are Not Prepared. UNEP. 23 February 2023. Available online: https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared (accessed on 3 December 2023).
- Reid, C.E.; Maestas, M.M. Wildfire smoke exposure under climate change: Impact on respiratory health of affected communities. Curr. Opin. Pulm. Med. 2019, 25, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ. 2018, 610–611, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; Defries, R.S.; Kinney, P.; Bowman, D.M.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Kaplan, J.O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 2013, 77, 767–780. [Google Scholar] [CrossRef]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Dominici, F.; Yue, X.; Ebisu, K.; Anderson, G.B.; Khan, R.F.A.; Bravo, M.A.; Bell, M.L. Particulate Air Pollution from Wildfires in the Western US under Climate Change. Clim. Chang. 2016, 138, 655–666. [Google Scholar] [CrossRef]
- Reid, C.E.; Jerrett, M.; Tager, I.B.; Petersen, M.L.; Mann, J.K.; Balmes, J.R. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environ. Res. 2016, 150, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef]
- Holder, A.L.; Ahmed, A.; Vukovich, J.M.; Rao, V. Hazardous air pollutant emissions estimates from wildfires in the wildland urban interface. PNAS Nexus 2023, 2, pgad186. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; Wigder, N.; Downey, N.; Pfister, G.; Boynard, A.; Reid, S.B. Impact of wildfires on ozone exceptional events in the Western u.s. Environ. Sci. Technol. 2013, 47, 11065–11072. [Google Scholar] [CrossRef] [PubMed]
- Hazardous Air Pollutants, US EPA. Available online: https://www.epa.gov/haps (accessed on 9 December 2023).
- O’Dell, K.; Hornbrook, R.S.; Permar, W.; Levin, E.J.T.; Garofalo, L.A.; Apel, E.C.; Blake, N.J.; Jarnot, A.; Pothier, M.A.; Farmer, D.K.; et al. Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environ. Sci. Technol. 2020, 54, 11838–11847. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, U.; Hellén, H.; Anttila, P.; Ferm, M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci. Total Environ. 2010, 408, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.T.T.; Hinwood, A.L.; Callan, A.C.; Zosky, G.; Stock, W.D. In vitro assessment of the toxicity of bushfire emissions: A review. Sci. Total Environ. 2017, 603–604, 268–278. [Google Scholar] [CrossRef]
- Kinney, P.L. Climate change, air quality, and human health. Am. J. Prev. Med. 2008, 35, 459–467. [Google Scholar] [CrossRef]
- Aghapour, M.; Ubags, N.D.; Bruder, D.; Hiemstra, P.S.; Sidhaye, V.; Rezaee, F.; Heijink, I.H. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur. Respir. Rev. 2022, 31, 210112. [Google Scholar] [CrossRef]
- Verma, V.; Polidori, A.; Schauer, J.J.; Shafer, M.M.; Cassee, F.R.; Sioutas, C. Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 southern California wildfires. Environ. Sci. Technol. 2009, 43, 954–960. [Google Scholar] [CrossRef]
- Wegesser, T.C.; Franzi, L.M.; Mitloehner, F.M.; Eiguren-Fernandez, A.; Last, J.A. Lung antioxidant and cytokine responses to coarse and fine particulate matter from the great California wildfires of 2008. Inhal. Toxicol. 2010, 22, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Heaney, A.; Stowell, J.D.; Liu, J.C.; Basu, R.; Marlier, M.; Kinney, P. Impacts of Fine Particulate Matter From Wildfire Smoke on Respiratory and Cardiovascular Health in California. Geohealth 2022, 6, e2021GH000578. [Google Scholar] [CrossRef] [PubMed]
- Malig, B.J.; Fairley, D.; Pearson, D.; Wu, X.; Ebisu, K.; Basu, R. Examining fine particulate matter and cause-specific morbidity during the 2017 North San Francisco Bay wildfires. Sci. Total Environ. 2021, 787, 147507. [Google Scholar] [CrossRef] [PubMed]
- Landis, M.S.; Edgerton, E.S.; White, E.M.; Wentworth, G.R.; Sullivan, A.P.; Dillner, A.M. The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2018, 618, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Rappold, A.G.; Reyes, J.; Pouliot, G.; Cascio, W.E.; Diaz-Sanchez, D. Community Vulnerability to Health Impacts of Wildland Fire Smoke Exposure. Environ. Sci. Technol. 2017, 51, 6674–6682. [Google Scholar] [CrossRef]
- Higham, A.; Quinn, A.M.; Cançado, J.E.D.; Singh, D. The pathology of small airways disease in COPD: Historical aspects and future directions. Respir. Res. 2019, 20, 49. [Google Scholar] [CrossRef]
- Burgel, P.R. The role of small airways in obstructive airway diseases. Eur. Respir. Rev. 2011, 20, 23–33. [Google Scholar] [CrossRef]
- Chen, H.; Samet, J.M.; Bromberg, P.A.; Tong, H. Cardiovascular health impacts of wildfire smoke exposure. Part. Fibre Toxicol. 2021, 18, 2. [Google Scholar] [CrossRef]
- Ben-Zaken Cohen, S.; Paré, P.D.; Man, S.F.; Sin, D.D. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: Examining sex differences in cigarette smoke metabolism. Am. J. Respir. Crit. Care Med. 2007, 176, 113–120. [Google Scholar] [CrossRef]
- Salvi, S.S.; Brashier, B.B.; Londhe, J.; Pyasi, K.; Vincent, V.; Kajale, S.S.; Tambe, S.; Mandani, K.; Nair, A.; Mak, S.M.; et al. Phenotypic comparison between smoking and non-smoking chronic obstructive pulmonary disease. Respir. Res. 2020, 21, 50. [Google Scholar] [CrossRef]
- Noah, T.L.; Worden, C.P.; Rebuli, M.E.; Jaspers, I. The Effects of Wildfire Smoke on Asthma and Allergy. Curr. Allergy Asthma Rep. 2023, 23, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ding, W.; Deng, X. PM2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front. Physiol. 2019, 10, 1404. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Xia, J.; Zhang, R.; Bai, Y.; Liu, S.; Dan, M.; Li, T.; Yan, T.; Chen, L.; Gong, S.; et al. Investigation of the impact of PM. Chemosphere 2019, 233, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, M.T.; Sajuthi, S.P.; Cho, S.H.; Everman, J.L.; Rios, C.L.; Goldfarbmuren, K.C.; Jackson, N.D.; Saef, B.; Cromie, M.; Eng, C.; et al. Genome-Wide Analysis Reveals Mucociliary Remodeling of the Nasal Airway Epithelium Induced by Urban PM. Am. J. Respir. Cell Mol. Biol. 2020, 63, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Josey, K.; Kamareddine, L.; Caine, M.C.; Liu, T.; Mickley, L.J.; Cooper, M.; Dominici, F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci. Adv. 2021, 7, eabi8789. [Google Scholar] [CrossRef] [PubMed]
- Zelikoff, J.T.; Chen, L.C.; Cohen, M.D.; Schlesinger, R.B. The toxicology of inhaled woodsmoke. J. Toxicol. Environ. Health B Crit. Rev. 2002, 5, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, Y.; Liu, L.; Wang, Q.; Zeng, J.; Chen, C. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci. Total Environ. 2020, 721, 137432. [Google Scholar] [CrossRef]
- Marri, P.R.; Stern, D.A.; Wright, A.L.; Billheimer, D.; Martinez, F.D. Asthma-associated differences in microbial composition of induced sputum. J. Allergy Clin. Immunol. 2013, 131, e341–e343. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Shamy, M.; Redal, M.A.; Khoder, M.; Awad, A.H.; Elserougy, S. Microorganisms associated particulate matter: A preliminary study. Sci. Total Environ. 2014, 479–480, 109–116. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Thompson, G.R. Wildfire smoke, a potential infectious agent. Science 2020, 370, 1408–1410. [Google Scholar] [CrossRef]
- Lockhart, S.R.; McCotter, O.Z.; Chiller, T.M. Emerging Fungal Infections in the Pacific Northwest: The Unrecognized Burden and Geographic Range of Cryptococcus gattii and Coccidioides immitis. Microbiol. Spectr. 2016, 4, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Nakayama Wong, L.S.; Aung, H.H.; Lamé, M.W.; Wegesser, T.C.; Wilson, D.W. Fine particulate matter from urban ambient and wildfire sources from California’s San Joaquin Valley initiate differential inflammatory, oxidative stress, and xenobiotic responses in human bronchial epithelial cells. Toxicol. In Vitro 2011, 25, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Franzi, L.M.; Bratt, J.M.; Williams, K.M.; Last, J.A. Why is particulate matter produced by wildfires toxic to lung macrophages? Toxicol. Appl. Pharmacol. 2011, 257, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.M.; Franzi, L.M.; Last, J.A. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung. Toxicol. Appl. Pharmacol. 2013, 266, 48–55. [Google Scholar] [CrossRef] [PubMed]
- van Eeden, S.F.; Tan, W.C.; Suwa, T.; Mukae, H.; Terashima, T.; Fujii, T.; Qui, D.; Vincent, R.; Hogg, J.C. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). Am. J. Respir. Crit. Care Med. 2001, 164, 826–830. [Google Scholar] [CrossRef]
- Mazzoli-Rocha, F.; Magalhães, C.B.; Malm, O.; Saldiva, P.H.; Zin, W.A.; Faffe, D.S. Comparative respiratory toxicity of particles produced by traffic and sugar cane burning. Environ. Res. 2008, 108, 35–41. [Google Scholar] [CrossRef]
- Tan, W.C.; Qiu, D.; Liam, B.L.; Ng, T.P.; Lee, S.H.; van Eeden, S.F.; D’Yachkova, Y.; Hogg, J.C. The human bone marrow response to acute air pollution caused by forest fires. Am. J. Respir. Crit. Care Med. 2000, 161, 1213–1217. [Google Scholar] [CrossRef]
- Peters, B.; Ballmann, C.; Quindry, T.; Zehner, E.G.; McCroskey, J.; Ferguson, M.; Ward, T.; Dumke, C.; Quindry, J.C. Experimental Woodsmoke Exposure During Exercise and Blood Oxidative Stress. J. Occup. Environ. Med. 2018, 60, 1073–1081. [Google Scholar] [CrossRef]
- Main, L.C.; Wolkow, A.P.; Tait, J.L.; Della Gatta, P.; Raines, J.; Snow, R.; Aisbett, B. Firefighter’s Acute Inflammatory Response to Wildfire Suppression. J. Occup. Environ. Med. 2020, 62, 145–148. [Google Scholar] [CrossRef]
- Xu, R.; Li, S.; Wu, Y.; Yue, X.; Wong, E.M.; Southey, M.C.; Hopper, J.L.; Abramson, M.J.; Guo, Y. Wildfire-related PM2.5 and DNA methylation: An Australian twin and family study. Environ. Int. 2023, 171, 107704. [Google Scholar] [CrossRef]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A.; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, S.; Mollerup, S.; Gutzkow, K.B.; Rizzi, C.; Skuland, T.; Refsnes, M.; Colombo, A.; Øvrevik, J.; Mantecca, P.; Holme, J.A. Biological effects of combustion-derived particles from different biomass sources on human bronchial epithelial cells. Toxicol. In Vitro 2021, 75, 105190. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Xue, Y.; Li, S.; Wang, L.; Mei, J.; Ni, D.; Jiang, J.; Zhang, M.; Yi, S.; Zhang, R.; et al. PM2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells. Environ. Pollut. 2022, 296, 118718. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung adenocarcinoma promotion by air pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Doubleday, A.; Schulte, J.; Sheppard, L.; Kadlec, M.; Dhammapala, R.; Fox, J.; Busch Isaksen, T. Mortality associated with wildfire smoke exposure in Washington state, 2006–2017: A case-crossover study. Environ. Health 2020, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Stowell, J.D.; Geng, G.; Saikawa, E.; Chang, H.H.; Fu, J.; Yang, C.E.; Zhu, Q.; Liu, Y.; Strickland, M.J. Associations of wildfire smoke PM. Environ. Int. 2019, 133 Pt A, 105151. [Google Scholar] [CrossRef]
- Lipner, E.M.; O’Dell, K.; Brey, S.J.; Ford, B.; Pierce, J.R.; Fischer, E.V.; Crooks, J.L. The Associations between Clinical Respiratory Outcomes and Ambient Wildfire Smoke Exposure Among Pediatric Asthma Patients at National Jewish Health, 2012–2015. Geohealth 2019, 3, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.W.; Ford, B.; Lassman, W.; Pfister, G.; Vaidyanathan, A.; Fischer, E.; Volckens, J.; Pierce, J.R.; Magzamen, S. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. Geohealth 2017, 1, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.A.; Vargo, J.; Milet, M.; French, N.H.F.; Billmire, M.; Johnson, J.; Hoshiko, S. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med. 2018, 15, e1002601. [Google Scholar] [CrossRef]
- Alman, B.L.; Pfister, G.; Hao, H.; Stowell, J.; Hu, X.; Liu, Y.; Strickland, M.J. The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: A case crossover study. Environ Health 2016, 15, 64. [Google Scholar] [CrossRef]
- Magzamen, S.; Gan, R.W.; Liu, J.; O’Dell, K.; Ford, B.; Berg, K.; Bol, K.; Wilson, A.; Fischer, E.V.; Pierce, J.R. Differential Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke. Geohealth 2021, 5, e2020GH000330. [Google Scholar] [CrossRef] [PubMed]
- DeFlorio-Barker, S.; Crooks, J.; Reyes, J.; Rappold, A.G. Cardiopulmonary Effects of Fine Particulate Matter Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States 2008–2010. Environ. Health Perspect. 2019, 127, 37006. [Google Scholar] [CrossRef] [PubMed]
- Haikerwal, A.; Akram, M.; Sim, M.R.; Meyer, M.; Abramson, M.J.; Dennekamp, M. Fine particulate matter (PM2.5) exposure during a prolonged wildfire period and emergency department visits for asthma. Respirology 2016, 21, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Rappold, A.G.; Cascio, W.E.; Kilaru, V.J.; Stone, S.L.; Neas, L.M.; Devlin, R.B.; Diaz-Sanchez, D. Cardio-respiratory outcomes associated with exposure to wildfire smoke are modified by measures of community health. Environ. Health 2012, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Considine, E.M.; Watson, G.L.; Telesca, D.; Pfister, G.G.; Jerrett, M. Associations between respiratory health and ozone and fine particulate matter during a wildfire event. Environ. Int. 2019, 129, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Doubleday, A.; Sheppard, L.; Austin, E.; Busch Isaksen, T. Wildfire smoke exposure and emergency department visits in Washington State. Environ. Res. Health 2023, 1, 025006. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.; Ospina, M.B.; Dennett, L.; Hicks, A. Assessing the Risk of Respiratory-Related Healthcare Visits Associated with Wildfire Smoke Exposure in Children 0-18 Years Old: A Systematic Review. Int. J. Environ. Res. Public. Health 2021, 18, 8799. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef]
- Mahsin, M.D.; Cabaj, J.; Saini, V. Respiratory and cardiovascular condition-related physician visits associated with wildfire smoke exposure in Calgary, Canada, in 2015: A population-based study. Int. J. Epidemiol 2022, 51, 166–178. [Google Scholar] [CrossRef]
- Beyene, T.; Harvey, E.S.; Van Buskirk, J.; McDonald, V.M.; Jensen, M.E.; Horvat, J.C.; Morgan, G.G.; Zosky, G.R.; Jegasothy, E.; Hanigan, I.; et al. ‘Breathing Fire’: Impact of Prolonged Bushfire Smoke Exposure in People with Severe Asthma. Int. J. Environ. Res. Public Health 2022, 19, 7419. [Google Scholar] [CrossRef]
- Cherry, N.; Barrie, J.R.; Beach, J.; Galarneau, J.M.; Mhonde, T.; Wong, E. Respiratory Outcomes of Firefighter Exposures in the Fort McMurray Fire: A Cohort Study From Alberta Canada. J. Occup. Environ. Med. 2021, 63, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Thilakaratne, R.; Hoshiko, S.; Rosenberg, A.; Hayashi, T.; Buckman, J.R.; Rappold, A.G. Wildfires and the Changing Landscape of Air Pollution-related Health Burden in California. Am. J. Respir. Crit. Care Med. 2023, 207, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, E.R.; Make, B.J.; Vedal, S.; Zhang, L.; Dutton, S.J.; Murphy, J.R.; Silkoff, P.E. Wildfire smoke and respiratory symptoms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2005, 115, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Blando, J.; Allen, M.; Galadima, H.; Tolson, T.; Akpinar-Elci, M.; Szklo-Coxe, M. Observations of Delayed Changes in Respiratory Function among Allergy Clinic Patients Exposed to Wildfire Smoke. Int. J. Environ. Res. Public Health 2022, 19, 1241. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Knowles, S.; Manley, J.; Radoias, V. Long-run health consequences of air pollution: Evidence from Indonesia’s forest fires of 1997. Econ. Hum. Biol. 2017, 26, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Cromar, K.; Gladson, L.; Gohlke, J.; Li, Y.; Tong, D.; Ewart, G. Adverse Health Impacts of Outdoor Air Pollution, Including from Wildland Fires, in the United States: “Health of the Air”, 2018–2020. Ann. Am. Thorac. Soc. 2024, 21, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Linde, L.R.; Readhead, A.; Barry, P.M.; Balmes, J.R.; Lewnard, J.A. Tuberculosis Diagnoses following Wildfire Smoke Exposure in California. Am. J. Respir. Crit. Care Med. 2023, 207, 336–345. [Google Scholar] [CrossRef]
- Li, J.; Cai, Y.S.; Kelly, F.J.; Wooster, M.J.; Han, Y.; Zheng, Y.; Guan, T.; Li, P.; Zhu, T.; Xue, T. Landscape fire smoke enhances the association between fine particulate matter exposure and acute respiratory infection among children under 5 years of age: Findings of a case-crossover study for 48 low- and middle-income countries. Environ. Int. 2023, 171, 107665. [Google Scholar] [CrossRef]
- Korsiak, J.; Pinault, L.; Christidis, T.; Burnett, R.T.; Abrahamowicz, M.; Weichenthal, S. Long-term exposure to wildfires and cancer incidence in Canada: A population-based observational cohort study. Lancet Planet. Health 2022, 6, e400–e409. [Google Scholar] [CrossRef]
- Tinling, M.A.; West, J.J.; Cascio, W.E.; Kilaru, V.; Rappold, A.G. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Environ. Health 2016, 15, 12. [Google Scholar] [CrossRef]
- Jacobson, L.S.V.; de Souza Hacon, S.; de Castro, H.A.; Ignotti, E.; Artaxo, P.; de Leon, A.C. Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: A panel study. Environ. Res. 2012, 117, 27–35. [Google Scholar] [CrossRef]
- Black, C.; Gerriets, J.E.; Fontaine, J.H.; Harper, R.W.; Kenyon, N.J.; Tablin, F.; Schelegle, E.S.; Miller, L.A. Early Life Wildfire Smoke Exposure Is Associated with Immune Dysregulation and Lung Function Decrements in Adolescence. Am. J. Respir. Cell Mol. Biol. 2017, 56, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Sin, D.D.; Doiron, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Celli, B.R.; Criner, G.J.; Halpin, D.; Han, M.K.; Martinez, F.J.; et al. Air pollution and COPD: GOLD 2023 committee report. Eur. Respir. J. 2023, 61, 2202469. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.; Brauer, M.; Dummer, T.; Atkar-Khattra, S.; Yee, J.; Melosky, B.; Ho, C.; McGuire, A.L.; Sun, S.; Grant, K.; et al. High-Ambient Air Pollution Exposure among Never Smokers versus Ever Smokers with Lung Cancer. J. Thorac. Oncol. 2021, 16, 1850–1858. [Google Scholar] [CrossRef]
- Navarro, K.M.; Kleinman, M.T.; Mackay, C.E.; Reinhardt, T.E.; Balmes, J.R.; Broyles, G.A.; Ottmar, R.D.; Naher, L.P.; Domitrovich, J.W. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality. Environ. Res. 2019, 173, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Chong, N.S.; Zhang, M.; Agnew, R.J.; Xu, C.; Li, Z.; Xu, X. Face-to-face with scorching wildfire: Potential toxicant exposure and the health risks of smoke for wildland firefighters at the wildland-urban interface. Lancet Reg. Health Am. 2023, 21, 100482. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Al-Kindi, S.G.; Brook, R.D. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef] [PubMed]
- Rappold, A.G.; Stone, S.L.; Cascio, W.E.; Neas, L.M.; Kilaru, V.J.; Carraway, M.S.; Szykman, J.J.; Ising, A.; Cleve, W.E.; Meredith, J.T.; et al. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Health Perspect. 2011, 119, 1415–1420. [Google Scholar] [CrossRef]
- Johnston, F.H.; Purdie, S.; Jalaludin, B.; Martin, K.L.; Henderson, S.B.; Morgan, G.G. Air pollution events from forest fires and emergency department attendances in Sydney, Australia 1996–2007: A case-crossover analysis. Environ. Health 2014, 13, 105. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Yu, Y.; Al-Hamdan, M.Z.; Marlier, M.E.; Wilkins, J.L.; Garcia-Gonzales, D.; Chen, X.; Jerrett, M. Short-Term total and wildfire fine particulate matter exposure and work loss in California. Environ. Int. 2023, 178, 108045. [Google Scholar] [CrossRef]
- Humphreys, A.; Walker, E.G.; Bratman, G.N.; Errett, N.A. What can we do when the smoke rolls in? An exploratory qualitative analysis of the impacts of rural wildfire smoke on mental health and wellbeing, and opportunities for adaptation. BMC Public Health 2022, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.C.; Künzli, N.; Avol, E.; Gilliland, F.D.; Gauderman, W.J.; McConnell, R.; Peters, J.M. Respiratory symptoms following wildfire smoke exposure: Airway size as a susceptibility factor. Epidemiology 2009, 20, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Sacks, J.D.; Stanek, L.W.; Luben, T.J.; Johns, D.O.; Buckley, B.J.; Brown, J.S.; Ross, M. Particulate matter-induced health effects: Who is susceptible? Environ. Health Perspect. 2011, 119, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Holstius, D.M.; Reid, C.E.; Jesdale, B.M.; Morello-Frosch, R. Birth weight following pregnancy during the 2003 Southern California wildfires. Environ. Health Perspect. 2012, 120, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Amjad, S.; Chojecki, D.; Osornio-Vargas, A.; Ospina, M.B. Wildfire exposure during pregnancy and the risk of adverse birth outcomes: A systematic review. Environ. Int. 2021, 156, 106644. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.; Keeler, C.; Staley, B.S.; Jardel, H.V.; Ward-Caviness, C.; Rebuli, M.E.; Xi, Y.; Rappazzo, K.; Hernandez, M.; Chelminski, A.N.; et al. Wildfire smoke exposure and early childhood respiratory health: A study of prescription claims data. Environ. Health 2023, 22, 48. [Google Scholar] [CrossRef]
- Moore, L.E.; Oliveira, A.; Zhang, R.; Behjat, L.; Hicks, A. Impacts of Wildfire Smoke and Air Pollution on a Pediatric Population with Asthma: A Population-Based Study. Int. J. Environ. Res. Public Health 2023, 20, 1937. [Google Scholar] [CrossRef]
- Künzli, N.; Avol, E.; Wu, J.; Gauderman, W.J.; Rappaport, E.; Millstein, J.; Bennion, J.; McConnell, R.; Gilliland, F.D.; Berhane, K.; et al. Health effects of the 2003 Southern California wildfires on children. Am. J. Respir. Crit. Care Med. 2006, 174, 1221–1228. [Google Scholar] [CrossRef]
- Koman, P.D.; Billmire, M.; Baker, K.R.; Carter, J.M.; Thelen, B.J.; French, N.H.F.; Bell, S.A. Using wildland fire smoke modeling data in gerontological health research (California, 2007–2018). Sci. Total Environ. 2022, 838 Pt 3, 156403. [Google Scholar] [CrossRef]
- Melton, C.C.; De Fries, C.M.; Smith, R.M.; Mason, L.R. Wildfires and Older Adults: A Scoping Review of Impacts, Risks, and Interventions. Int. J. Environ. Res. Public Health 2023, 20, 6252. [Google Scholar] [CrossRef]
- Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.C.; De Roos, A.J.; White, L.S.; Heilman, W.E.; Mockrin, M.H.; Gross-Davis, C.A.; Burstyn, I. Meta-Analysis of Heterogeneity in the Effects of Wildfire Smoke Exposure on Respiratory Health in North America. Int. J. Environ. Res. Public Health 2019, 16, 960. [Google Scholar] [CrossRef]
- Liu, J.C.; Wilson, A.; Mickley, L.J.; Ebisu, K.; Sulprizio, M.P.; Wang, Y.; Peng, R.D.; Yue, X.; Dominici, F.; Bell, M.L. Who Among the Elderly Is Most Vulnerable to Exposure to and Health Risks of Fine Particulate Matter From Wildfire Smoke? Am. J. Epidemiol. 2017, 186, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Vargo, J.; Lappe, B.; Mirabelli, M.C.; Conlon, K.C. Social Vulnerability in US Communities Affected by Wildfire Smoke, 2011 to 2021. Am. J. Public Health 2023, 113, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.F.; Coutinho, M.T. An Overview of Health Disparities in Asthma. Yale J. Biol. Med. 2021, 94, 497–507. [Google Scholar] [PubMed]
- Navarro, K. Working in Smoke: Wildfire Impacts on the Health of Firefighters and Outdoor Workers and Mitigation Strategies. Clin. Chest Med. 2020, 41, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Groot, E.; Caturay, A.; Khan, Y.; Copes, R. A systematic review of the health impacts of occupational exposure to wildland fires. Int. J. Occup. Med. Environ. Health 2019, 32, 121–140. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Wildfires and Indoor Air Quality (IAQ). Available online: https://www.epa.gov/indoor-air-quality-iaq/wildfires-and-indoor-air-quality-iaq (accessed on 3 December 2023).
- Centers for Disease Control and Prevention. Wildfire Smoke: A Guide for Public Health Officials: Revised 2019. Available online: https://www.cdc.gov/air/wildfire-smoke/default.htm (accessed on 3 December 2023).
- Carlsten, C.; Salvi, S.; Wong, G.W.K.; Chung, K.F. Personal strategies to minimise effects of air pollution on respiratory health: Advice for providers, patients and the public. Eur. Respir. J. 2020, 55, 1902056. [Google Scholar] [CrossRef]
- Liang, Y.; Sengupta, D.; Campmier, M.J.; Lunderberg, D.M.; Apte, J.S.; Goldstein, A.H. Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc. Natl. Acad. Sci. USA 2021, 118, e2106478118. [Google Scholar] [CrossRef]
- Seale, H.; Trent, M.; Marks, G.B.; Shah, S.; Chughtai, A.A.; MacIntyre, C.R. Exploring the use of masks for protection against the effects of wildfire smoke among people with preexisting respiratory conditions. BMC Public Health 2023, 23, 2330. [Google Scholar] [CrossRef]
- Kodros, J.K.; O’Dell, K.; Samet, J.M.; L’Orange, C.; Pierce, J.R.; Volckens, J. Quantifying the Health Benefits of Face Masks and Respirators to Mitigate Exposure to Severe Air Pollution. Geohealth 2021, 5, e2021GH000482. [Google Scholar] [CrossRef]
- Nguyen, P.D.M.; Martinussen, N.; Mallach, G.; Ebrahimi, G.; Jones, K.; Zimmerman, N.; Henderson, S.B. Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM2.5) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility. Int. J. Environ. Res. Public Health 2021, 18, 9811. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.M.; D’Evelyn, S.M.; Errett, N.A.; Bostrom, A.; Desautel, C.; Alvarado, E.; Ray, K.; Spector, J.T. “When people see me, they know me; they trust what I say”: Characterizing the role of trusted sources for smoke risk communication in the Okanogan River Airshed Emphasis Area. BMC Public Health 2022, 22, 2388. [Google Scholar] [CrossRef] [PubMed]
- Sugerman, D.E.; Keir, J.M.; Dee, D.L.; Lipman, H.; Waterman, S.H.; Ginsberg, M.; Fishbein, D.B. Emergency health risk communication during the 2007 San Diego wildfires: Comprehension, compliance, and recall. J. Health Commun. 2012, 17, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Fish, J.A.; Peters, M.D.J.; Ramsey, I.; Sharplin, G.; Corsini, N.; Eckert, M. Effectiveness of public health messaging and communication channels during smoke events: A rapid systematic review. J. Environ. Manag. 2017, 193, 247–256. [Google Scholar] [CrossRef]
- Burke, M.; Heft-Neal, S.; Li, J.; Driscoll, A.; Baylis, P.; Stigler, M.; Weill, J.A.; Burney, J.A.; Wen, J.; Childs, M.L.; et al. Exposures and behavioural responses to wildfire smoke. Nat. Hum. Behav. 2022, 6, 1351–1361. [Google Scholar] [CrossRef]
- Yao, J.; Brauer, M.; Henderson, S.B. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ. Health Perspect. 2013, 121, 1142–1147. [Google Scholar] [CrossRef]
- Schweizer, D.; Preisler, H.K.; Cisneros, R. Assessing relative differences in smoke exposure from prescribed, managed, and full suppression wildland fire. Air Qual. Atmos. Health 2019, 12, 87–95. [Google Scholar] [CrossRef]
Adverse Respiratory Health Effects | Reference Number |
---|---|
Asthma hospitalization | [13,59,61,62,63,64,65] |
Asthma emergency department visit | [13,25,26,59,61,62,66,67,68,69,70] |
Asthma symptoms | [71,72,73] |
Asthma incidence | [74] |
COPD hospitalization | [13,61,63,64] |
COPD emergency department visit | [13,26,75] |
COPD symptoms | [76] |
Long-term impact on lung function | [8,77,78] |
Respiratory infection | [44,72,79,80,81] |
Lung cancer incidence | [82] |
Respiratory mortality | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilgus, M.-L.; Merchant, M. Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare 2024, 12, 307. https://doi.org/10.3390/healthcare12030307
Wilgus M-L, Merchant M. Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare. 2024; 12(3):307. https://doi.org/10.3390/healthcare12030307
Chicago/Turabian StyleWilgus, May-Lin, and Maryum Merchant. 2024. "Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD" Healthcare 12, no. 3: 307. https://doi.org/10.3390/healthcare12030307
APA StyleWilgus, M.-L., & Merchant, M. (2024). Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare, 12(3), 307. https://doi.org/10.3390/healthcare12030307