The Effects of Cervical Manipulation Compared with a Conventional Physiotherapy Program for Patients with Acute Whiplash Injury: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Interventions
2.2. Outcome Measures
2.3. Subjective Pain Intensity
2.4. Neck Specific Disability
2.5. Cervical Range of Motion (CROM)
2.6. Cervical Lordosis Cobb Angle
2.7. Hospital Anxiety and Depression Scale
2.8. Clinical Applications
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WLs | Whiplash injuries. |
SAT | Specific Adjustment Technique. |
MAN | Manipulation group. |
RHB | Rehabilitation group. |
WAD | Whiplash Associated Disorders. |
SPSS | Statistical Package for Social Sciences. |
VAS | Visual Analogue Scale. |
NDI | Neck Disability Index. |
CROM | Cervical Range of Motion. |
HADS | Hospital anxiety and depression scale. |
COBB | Cobb angle. |
COBB Rx | Cobb angle radiograph. |
T1 | Baseline. |
T2 | Second intervention. |
T3 | Third intervention. |
T4 | Fourth intervention. |
P-MT | Passive manual therapy. |
A-TEs | Active therapeutic exercises. |
OC-Es | Oculo-cervical exercises. |
C2 | Second cervical vertebra. |
C7 | Seventh cervical vertebra. |
Sess. | Session. |
SAT C2/C3 | Specific Adjustment Technique in the C2/C3 vertebral segment. |
SAT C5/C6 | Specific Adjustment Technique in the C5/C6 vertebral segment. |
SAT T1/T2 | Specific Adjustment Technique in the T1/T2 vertebral segment. |
References
- Tanaka, N.; Atesok, K.; Nakanishi, K.; Kamei, N.; Nakamae, T.; Kotaka, S.; Adachi, N. Pathology and Treatment of Traumatic Cervical Spine Syndrome: Whiplash Injury. Adv. Orthop. 2018, 2018, 4765050. [Google Scholar] [PubMed]
- Vattipally, V.N.; Weber-Levine, C.; Jiang, K.; Bhimreddy, M.; Kramer, P.; Davidar, A.D.; Hersh, A.M.; Winkle, M.; Byrne, J.P.; Azad, T.D.; et al. Motor vehicle collision characteristics and hospitalization outcomes associated with mild traumatic brain injury and concomitant whiplash injury. Neurosurg. Focus 2024, 57, E14. [Google Scholar]
- Wong, J.J.; Shearer, H.M.; Mior, S.; Jacobs, C.; Côté, P.; Randhawa, K.; Yu, H.; Southerst, D.; Varatharajan, S.; Sutton, D.; et al. Are manual therapies, passive physical modalities, or acupuncture effective for the management of patients with whiplash-associated disorders or neck pain and associated disorders? An update of the Bone and Joint Decade Task Force on Neck Pain and Its Associated Disorders by the OPTIMa collaboration. Spine J. 2016, 16, 1598–1630. [Google Scholar] [PubMed]
- Wiangkham, T.; Duda, J.; Haque, S.; Madi, M.; Rushton, A. The effectiveness of conservative management for acute whiplash associated disorder (WAD) II: A systematic review and meta-analysis of randomised controlled trials. PLoS ONE 2015, 10, e0133415. [Google Scholar] [PubMed]
- Sarkilahti, N.; Leino, S.; Takatalo, J.; Loyttyniemi, E.; Tenovuo, O. The symptom profile of people with whiplash-associated—A mixed method systematic review. J. Bodyw. Mov. Ther. 2024, 40, 706–725. [Google Scholar]
- Al-Khazali, H.M.; Ashina, H.; Iljazi, A.; Al-Sayegh, Z.; Lipton, R.B.; Ashina, M.; Ashina, S.; Schytz, H.W. Psychiatric Sequelae Following Whiplash Injury: A Systematic Review. Front. Psychiatry 2022, 13, 814079. [Google Scholar]
- Elkin, B.S.; Elliott, J.M.; Siegmund, G.P. Whiplash injury or concussion? A possible biomechanical explanation for concussion symptoms in some individuals following a rear-end collision. J. Orthop. Sports Phys. Ther. 2016, 46, 874–885. [Google Scholar]
- Anarte-Lazo, E.; Barbero, M.; Bernal-Utrera, C.; Rodríguez-Balnco, C.; Falla, D. The association between neuropathic pain features and central sensitization with acute headache associated to a whiplash injury. Musculoskelet. Sci. Pract. 2024, 74, 103212. [Google Scholar]
- Lee, H.L.; Jeon, D.G.; Park, J.H. Correlation between kinematic sagittal parameters of the cervical lordosis or head posture and disc degeneration in patients with posterior neck pain. Open Med. 2021, 16, 161–168. [Google Scholar]
- Harrison, D.E.; Harrison, D.D.; Betz, J.J.; Janik, T.J.; Holland, B.; Colloca, C.J.; Haas, J.W. Increasing the cervical lordosis with chiropractic biophysics seated combined extension-compression and transverse load cervical traction with cervical manipulation: Nonrandomized clinical control trial. J. Manip. Physiol. Ther. 2003, 26, 139–151. [Google Scholar]
- Shilton, M.; Branney, J.; de Vries, B.P.; Breen, A.C. Does cervical lordosis change after spinal manipulation for non-specific neck pain? A prospective cohort study. Chiropr. Man. Ther. 2015, 23, 33. [Google Scholar]
- Southerst, D.; Nordin, M.C.; Côté, P.; Shearer, H.M.; Varatharajan, S.; Yu, H.; Wong, J.J.; Sutton, D.A.; Randhawa, K.A.; van der Velde, G.M.; et al. Is exercise effective for the management of neck pain and associated disorders or whiplash-associated disorders? A systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. Spine J. 2016, 16, 1503–1523. [Google Scholar] [PubMed]
- Chrcanovic, B.; Larsson, J.; Malmström, E.; Westergren, H.; Häggman-Henrikson, B. Exercise therapy for whiplash-associated disorders: A systematic review and meta-analysis. Scand. J. Pain. 2021, 22, 232–261. [Google Scholar]
- Muñoz Lázcano, P.; Rojan Ortega, D.; Fernández López, I. Effects of a Guided Neck-Specific Exercise Therapy on Recovery After a Whiplash: A Systematic Review and Meta-analysis. Am. J. Phys. Med. Rehabil. 2024, 103, 971–978. [Google Scholar]
- Castaldo, M.; Catena, A.; Chiarotto, A.; Fernández de las Peñas, C.; Arendt-Nielsen, L. Do Subjects with Whiplash-Associated Disorders Respond Differently in the Short-Term to Manual Therapy and Exercise than Those with Mechanical Neck Pain? Pain Med. 2017, 18, 791–803. [Google Scholar] [PubMed]
- Colombi, A.; Vedani, S.; Vicecont, A.; Stapleton, C. The quality of reporting in randomized controlled trials investigating exercise for individuals with whiplash-associated disorders; a systematic review. Musculoskelet. Sci. Pract. 2024, 73, 103145. [Google Scholar]
- García-González, J.; Romero-Del Rey, R.; Martinez-Martín, V.; Requena-Mullos, M.; Alarcón-Rodríguez, R. Comparison of Short-Term Effects of Different Spinal Manipulations in Patients with Chronic Non-Specific Neck Pain: A Randomized Controlled Trial. Healthcare 2024, 12, 1348. [Google Scholar] [CrossRef]
- Minnucci, S.; Innocenti, T.; Salvioli, S.; Giagio, S.; Yousif, M.S.; Riganelli, F.; Carletti, C.; Feller, D.; Brindisino, F.; Faletra, A.; et al. Benefits and Harms of Spinal Manipulative Therapy for Treating Recent and Persistent Nonspecific Neck Pain: A Systematic Review With Meta-analysis. J. Orthop. Sports Phys. Ther. 2023, 53, 510–528. [Google Scholar]
- Bussières, A.E.; Stewart, G.; Al-Zoubi, F.; Decina, P.; Descarreaux, M.; Hayden, J.; Hendrickson, B.; Hincapié, C.; Pagé, I.; Passmore, S.; et al. The Treatment of Neck Pain-Associated Disorders and Whiplash-Associated Disorders: A Clinical Practice Guideline. J. Manip. Physiol. Ther. 2016, 39, 523–564.e27. [Google Scholar]
- Wong, J.J.; Côté, P.; Shearer, H.M.; Carroll, L.J.; Yu, H.; Varatharajan, S.; Southerst, D.; van der Velde, G.; Jacobs, C.; Taylor-Vaisey, A. Clinical practice guidelines for the management of conditions related to traffic collisions: A systematic review by the OPTIMa Collaboration. Disabil. Rehabil. 2015, 37, 471–489. [Google Scholar]
- Willaert, W.; Leysen, L.; Lenoir, D.; Meeus, M.; Cagnie, B.; Nijs, J.; Sterling, M.; Coppieters, I. Combining Stress Management With Pain Neuroscience Education and Exercise Therapy in People With Whiplash-Associated Disorders: A Clinical Perspective. Phys. Ther. 2021, 101, pzab105. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Park, A.-L.; Hwang, M.-S.; Heo, I.; Park, S.-Y.; Cho, J.-H.; Kim, K.-W.; Lee, J.-H.; Ha, I.-H.; Park, K.-S.; et al. Comparative Effectiveness and Safety of Concomitant Treatment with Chuna Manual Therapy and Usual Care for Whiplash Injuries: A Multicenter Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 10678. [Google Scholar] [CrossRef] [PubMed]
- Rushton, A.; Rivett, D.; Carlesso, L.; Flynn, T.; Hing, W.; Kerry, R. International framework for examination of the cervical region for potential of cervical arterial dysfunction prior to orthopaedic manual therapy intervention. Man. Ther. 2014, 19, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Sterling, M.; Andersen, T.; Carroll, L.; Connelly, L.; Côté, P.; Curatolo, M.; Grant, G.; Jull, G.; Kasch, H.; Ravn, S.L.; et al. Recommendations for a core outcome measurement set for clinical trials in whiplash associated disorders. Pain 2023, 164, 2265–2272. [Google Scholar] [CrossRef]
- Andrade-Ortega, J.A.; Delgado Martinez, A.D.; Almecija Ruiz, R. Validation of a spanish version of the neck disability index. Med. Clin. 2008, 130, 85–89. [Google Scholar] [CrossRef]
- Kovacs, F.M.; Bagó, J.; Royuela, A.; Seco, J.; Giménez, S.; Muriel, A.; Abraira, V.; Martín, J.L.; Peña, J.L.; Gestoso, M.; et al. Psychometric characteristics of the spanish version of instruments to measure neck pain disability. BMC Musculoskelet. Disord. 2008, 9, 42. [Google Scholar] [CrossRef]
- Audette, I.; Dumas, J.P.; Cote, J.N.; De Serres, S.J. Validity and between-day reliability of the cervical range of motion (CROM) device. J. Orthop. Sports Phys. Ther. 2010, 40, 318–323. [Google Scholar] [CrossRef]
- Williams, M.A.; Williamson, E.; Gates, S.; Cooke, M.W. Reproducibility of the cervical range of motion (CROM) device for individuals with sub-acute whiplash associated disorders. Eur. Spine J. 2012, 21, 872–878. [Google Scholar] [CrossRef]
- Lloyd, M.; Sugden, N.; Thomas, M.; McGrath, A.; Skilbeck, C. The structure of the Hospital Anxiety and Depression Scale: Theoretical and methodological considerations. Br. J. Psychol. 2023, 114, 457–475. [Google Scholar] [CrossRef]
- Teasell, R.W.; McClure, J.A.; Walton, D.; Pretty, J.; Salter, K.; Meyer, M.; Sequeira, K.; Death, B. A research synthesis of therapeutic interventions for whiplash-associated disorder (WAD): Part 3—Interventions for subacute WAD. Pain Res. Manag. 2010, 15, 305–312. [Google Scholar] [CrossRef]
- Alalawi, A.; Mazaheri, M.; Gallina, A.; Luque-Suarez, A.; Sterling, M.; Falla, D. Are Measures of Physical Function of the Neck Region Associated With Poor Prognosis Following a Whiplash Trauma? A Systematic Review. Clin. J. Pain 2021, 38, 208–221. [Google Scholar] [CrossRef]
- van der Velde, G.; Yu, H.; Paulden, M.; Cote, P.; Varatharajan, S.; Shearer, H.M.; Wong, J.J.; Randhawa, K.; Southerst, D.; Mior, S.; et al. Which interventions are cost-effective for the management of whiplash-associated and neck pain-associated disorders? A systematic review of the health economic literature by the Ontario protocol for traffic injury management (OPTIMa) collaboration. Spine J. 2016, 16, 1582–1597. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, A.P.; Scholten-Peeters, G.M.; van Wijngaarden, S.; de Bie, R.A.; Bierma-Zeinstra, A. Conservative treatments for whiplash. Cochrane Database Syst. Rev. 2007, CD003338. [Google Scholar] [CrossRef]
- De Rosario, H.; Vivas, M.J.; Sinovas, M.I.; Page, A. Relationship between neck motion and self-reported pain in patients with whiplash associated disorders during the acute phase. Musculoskelet. Sci. Pract. 2018, 38, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, L.; Peterson, G.; Kazemnejad, A.; Trygg, J.; Peolsson, A. Alterations in the mechanical response of deep dorsal neck muscles in individuals experiencing whiplash-associated disorders compared to healthy controls: An ultrasound study. Am. J. Phys. Med. Rehabil. 2018, 97, 75–82. [Google Scholar] [CrossRef]
- Peterson, G.; Nilsson, D.; Trygg, J.; Peolsson, A. Neck-specific exercise improves impaired interactions between ventral neck muscles in chronic whiplash: A randomized controlled ultrasound study. Sci. Rep. 2018, 8, 9649. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Yeo, H.G.; Kim, T.U.; Hyun, K.K.; Kim, J.Y. Radiologic assessment of forward head posture and its relation to myofascial pain syndrome. Ann. Rehabil. Med. 2014, 38, 821–826. [Google Scholar] [CrossRef]
- Grob, D.; Frauenfelder, H.; Mannion, A.F. The association between cervical spine curvature and neck pain. Eur. Spine J. 2007, 16, 669–678. [Google Scholar]
- Yip, C.H.; Chiu, T.T.; Poon, A.T. The relationship between head posture and severity and disability of patients with neck pain. Man. Ther. 2008, 13, 148–154. [Google Scholar]
- Fortner, M.O.; Oakley, P.A.; Harrison, D.E. Cervical extension traction as part of a multimodal rehabilitation program relieves whiplash-associated disorders in a patient having failed previous chiropractic treatment: A CBP® case report. J. Phys. Ther. Sci. 2018, 30, 266–270. [Google Scholar] [CrossRef]
- Norton, T.C.; Oakley, P.A.; Harrison, D.E. Re-establishing the cervical lordosis after whiplash: A Chiropractic Biophysics® spinal corrective care methods pre-auto injury and post-auto injury case report with follow-up. J. Phys. Ther. Sci. 2023, 35, 270–275. [Google Scholar] [PubMed]
- Daenen, L.; Nijs, J.; Raadsen, B.; Roussel, N.; Cras, P.; Dankaersts, W. Cervical motor dysfunction and its predictive value for long-term recovery in patients with acute whiplash-associated disorders: A systematic review. J. Rehabil. Med. 2013, 45, 113–122. [Google Scholar] [PubMed]
- Wenzel, H.G.; Haug, T.T.; Mykletun, A.; Dahl, A.A. A population study of anxiety and depression among persons who report whiplash traumas. J. Psychosom. Res. 2002, 53, 831–835. [Google Scholar] [PubMed]
- Stupar, M.; Côté, P.; Carroll, L.J.; Brison, R.J.; Boyle, E.; Shearer, H.M.; Cassidy, J.D. Multivariable prediction models for the recovery of and claim closure related to post-collision neck pain and associated disorders. Chiropr. Man. Ther. 2023, 31, 32. [Google Scholar]
- Van der Wees, P.J.; Jamtvedt, G.; Rebbeck, T.; de Bie, R.A.; Dekker, J.; Hendriks, E.J. Multifaceted strategies may increase implementation of physiotherapy clinical guidelines: A systematic review. Aust. J. Physiother. 2008, 54, 233–241. [Google Scholar]
- Boyle, E.; Cassidy, J.D.; Côte, P.; Carroll, L.J. The relationship between insurance claim closure and recovery after traffic injuries for individuals with whiplash associated disorders. Disabil. Rehabil. 2017, 39, 889–896. [Google Scholar]
Total | MAN | RHB | p | |
---|---|---|---|---|
Age | 32.3 ± 9.3 | 30.6 ± 8.3 | 34.0 ± 10.4 | 0.212 |
Gender | 0.315 | |||
Male | 66 (55.5) | 32 (53.6) | 34 (56.7) | |
Female | 53 (44.5) | 27 (46.4) | 26 (43.3) | |
Type of injury | 0.886 | |||
Extension | 8 (10.1) | 5 (11.9) | 3 (8.3) | |
Flexion | 70 (89.9) | 37 (88.1) | 33 (91.7) | |
Employment | 0.506 | |||
Yes | 70 (58.8) | 36 (61.0) | 33 (55.0) | |
No | 49 (41.2) | 23 (39.0) | 27 (45.0) | |
Days to start of treatment | 18.1 ± 8.4 | 17.5 ± 6.1 | 18.7 ± 10.7 | 0.334 |
Pain (VAS) | 6.5 ± 2.0 | 6.7 ± 2.0 | 6.6 ± 1.9 | 0.344 |
Disability (NDI) | 46.5 ± 16.9 | 45.5 ± 16.1 | 47.6 ± 17.8 | 0.250 |
Cervical mobility (CROM) (°) | ||||
Flexion | 31.6 ± 13.9 | 31.7 ± 15.8 | 31.5 ± 11.9 | 0.472 |
Extension | 41.6 ± 16.9 | 41.9 ± 17.9 | 41.3 ± 16.1 | 0.424 |
Right rotation | 43.8 ± 16.4 | 44.6 ± 17.4 | 43.0 ± 15.5 | 0.293 |
Left rotation | 42.5 ± 14.1 | 41.9 ± 15.1 | 43.2 ± 13.2 | 0.314 |
Right side bending | 27.9 ± 10.5 | 28.2 ± 11.9 | 27.7 ± 9.0 | 0.394 |
Left side bending | 30.8 ± 9.8 | 31.5 ± 10.2 | 30.1 ± 9.5 | 0.218 |
Anxiety (HADS) | 10.3 ± 4.4 | 10.1 ± 4.1 | 10.5 ± 4.8 | 0.312 |
Depression (HADS) | 7.2 ± 4.2 | 6.8 ± 3.6 | 7.6 ± 4.8 | 0.173 |
Lordosis (COOB) | 20.0 ± 12.6 | 18.1 ± 11.9 | 22.0 ± 13.1 | 0.101 |
Mean | Treatment | Time | Treatment × Time | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | T1 | T2 | T3 | T4 | F | p | F | p | F | p | |
Pain (VAS) | RHB | 6.55 | 5.46 | 3.85 | 2.43 | 0.15 | 0.701 | 50.09 | <0.005 | 0.73 | 0.774 |
MAN | 6.69 | 5.76 | 3.58 | 2.05 | |||||||
Disability (NDI) | RHB | 47.6 | 37.7 | 23.0 | 16.2 | 0.10 | 0.750 | 57.80 | <0.005 | 0.31 | 0.817 |
MAN | 45.5 | 37.4 | 24.4 | 13.1 | |||||||
Flexion (CROM) | RHB | 31.5 | 32.9 | 39.5 | 44 | 4.22 | 0.041 | 18.85 | <0.005 | 1.38 | 0.253 |
MAN | 31.7 | 39.1 | 46.5 | 48.9 | |||||||
Extension (CROM) | RHB | 41.3 | 48.6 | 52.1 | 60.5 | 0.03 | 0.851 | 22.43 | <0.005 | 0.45 | 0.721 |
MAN | 41.9 | 45.9 | 55.9 | 63.2 | |||||||
Right rotation (CROM) | RHB | 43.0 | 48.3 | 53.4 | 59.5 | 2.87 | 0.092 | 20.75 | <0.005 | 0.44 | 0.724 |
MAN | 44.6 | 52.2 | 58.7 | 60.4 | |||||||
Left rotation (CROM) | RHB | 43.2 | 48.9 | 58.2 | 61.1 | 0.27 | 0.604 | 32.69 | <0.005 | 0.32 | 0.811 |
MAN | 41.9 | 50.9 | 59.4 | 59.9 | |||||||
Right side bending (CROM) | RHB | 27.6 | 31.9 | 34.0 | 37.2 | 2.92 | 0.089 | 20.03 | <0.005 | 1.41 | 0.243 |
MAN | 28.2 | 33.4 | 39.8 | 40.4 | |||||||
Left side bending (CROM) | RHB | 30.1 | 34.4 | 35.6 | 39.5 | 5.31 | 0.022 | 22.19 | <0.005 | 2.28 | 0.083 |
MAN | 31.5 | 37.2 | 43.3 | 44.6 | |||||||
Lordosis (COOB) | RHB | 22.0 | NA | 25.2 | NA | 1.64 | 0.202 | 4.42 | 0.037 | 0.42 | 0.037 |
MAN | 18.1 | 24.3 | |||||||||
Anxiety (HADS) | RHB | 10.5 | NA | 7.4 | 7.0 | 0.11 | 0.736 | 21.02 | <0.005 | 1.10 | 0.337 |
MAN | 10.1 | 7.3 | 5.0 | ||||||||
Depression (HADS) | RHB | 7.6 | NA | 4.0 | 3.7 | 0.13 | 0.715 | 25.77 | <0.005 | 1.11 | 0.333 |
MAN | 6.8 | 4.3 | 2.3 |
MAN vs. RHB | T2 vs. T1 | T3 vs. T1 | T4 vs. T1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MD | p/d | 95% CI | MD | p/d | 95% CI | MD | p/d | 95% CI | MD | p/d | 95% CI | |
Pain (VAS) | 0.11 | 0.701/0.04 | −0.47; 0.70 | −1.00 | 0.001/0.31 | −1.58; −0.42 | −2.90 | <0.005/0.73 | −3.63; −2.18 | −4.38 | <0.005/0.99 | −5.19; −3.57 |
Disability (NDI) | 0.64 | 0.750/0.03 | −3.28; 4.55 | −8.95 | <0.005/0.34 | −13.63; −4.26 | −22.84 | <0.005/0.87 | −27.57; −18.11 | −32.1 | <0.005/1.06 | −37.56; −26.56 |
Flexion (CROM) | 3.36 | 0.041/0.19 | 0.14; 6.59 | 4.30 | 0.025/0.21 | 0.55; 8.05 | 11.34 | <0.005/0.53 | 7.49; 15.20 | 14.95 | <0.005/0.58 | 10.24; 19.67 |
Extension (CROM) | 0.36 | 0.851/0.02 | −3.41; 4.13 | 5.61 | 0.013/0.23 | 1.18; 10.05 | 13.40 | <0.005/0.53 | 8.84; 17.95 | 20.30 | <0.005/0.67 | 14.78; 25.81 |
Right rotation (CROM) | 2.69 | 0.092/0.16 | −0.44; 5.81 | 6.46 | 0.002/0.29 | 2.42; 10.51 | 12.24 | <0.005/0.55 | 8.18; 16.29 | 16.27 | <0.005/0.66 | 11.78; 20.75 |
Left rotation (CROM) | −0.84 | 0.604/0.05 | −4.01; 2.34 | 7.26 | <0.005/0.34 | 3.43; 11.10 | 16.20 | <0.005/0.77 | 12.38; 20.02 | 18.02 | <0.005/0.73 | 13.51; 22.53 |
Right side bending (CROM) | 2.03 | 0.089/0.16 | −0.31; 4.38 | 4.71 | 0.001/0.31 | 1.93; 7.50 | 8.95 | <0.005/0.57 | 6.10; 11.80 | 11.20 | <0.005/0.61 | 7.83; 14.60 |
Left side bending (CROM) | 2.69 | 0.022/0.21 | 0.39; 4.99 | 4.93 | <0.005/0.33 | 2.20; 7.65 | 8.54 | <0.005/0.56 | 5.78; 11.30 | 11.67 | <0.005/0.66 | 8.45; 14.90 |
Lordosis (COOB) | −3.04 | 0.202/0.12 | −7.72; 1.65 | NA | Table 4 | NA | ||||||
Anxiety (HADS) | −0.21 | 0.736/0.03 | −1.43; 1.01 | NA | −2.92 | <0.005/0.42 | −4.18; −1.66 | −4.34 | <0.005/0.54 | −5.80; −2.88 | ||
Depression (HADS) | −0.20 | 0.715/0.03 | −1.26; 0.87 | NA | −2.98 | <0.005/0.48 | −4.12; −1.85 | −4.28 | <0.005/0.61 | −5.56; −3.00 |
Treatment | T3 vs. T1 | ||
---|---|---|---|
MD | p/d | 95% CI | |
RHB | 3.24 | 0.319/0.09 | −3.16; 9.65 |
MAN | 6.12 | 0.047/0.18 | 0.07; 12.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parera-Turull, J.; Garolera, M.; Navarro, J.-B.; Bech-Decareda, D.E.; Gual-Beltran, J.; Toledo-Marhuenda, J.-V.; Poveda-Pagan, E.-J. The Effects of Cervical Manipulation Compared with a Conventional Physiotherapy Program for Patients with Acute Whiplash Injury: A Randomized Controlled Trial. Healthcare 2025, 13, 710. https://doi.org/10.3390/healthcare13070710
Parera-Turull J, Garolera M, Navarro J-B, Bech-Decareda DE, Gual-Beltran J, Toledo-Marhuenda J-V, Poveda-Pagan E-J. The Effects of Cervical Manipulation Compared with a Conventional Physiotherapy Program for Patients with Acute Whiplash Injury: A Randomized Controlled Trial. Healthcare. 2025; 13(7):710. https://doi.org/10.3390/healthcare13070710
Chicago/Turabian StyleParera-Turull, Joan, Maite Garolera, Jose-Blas Navarro, Dolors Esteve Bech-Decareda, Josep Gual-Beltran, Jose-Vicente Toledo-Marhuenda, and Emilio-Jose Poveda-Pagan. 2025. "The Effects of Cervical Manipulation Compared with a Conventional Physiotherapy Program for Patients with Acute Whiplash Injury: A Randomized Controlled Trial" Healthcare 13, no. 7: 710. https://doi.org/10.3390/healthcare13070710
APA StyleParera-Turull, J., Garolera, M., Navarro, J.-B., Bech-Decareda, D. E., Gual-Beltran, J., Toledo-Marhuenda, J.-V., & Poveda-Pagan, E.-J. (2025). The Effects of Cervical Manipulation Compared with a Conventional Physiotherapy Program for Patients with Acute Whiplash Injury: A Randomized Controlled Trial. Healthcare, 13(7), 710. https://doi.org/10.3390/healthcare13070710