Analysis of Grip Strength Thresholds for Stroke Management and Prevention in South Korean Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Participants
2.2. Research Variables
2.2.1. Stroke Prevalence
2.2.2. Grip Strength
2.2.3. Covariates
2.3. Data Analysis
2.4. Ethics Statement
3. Results
3.1. ROC Curve Analysis of Grip Strength for Stroke Management
3.2. Participant Characteristics
3.3. Difference in Stroke Prevalence by Grip Strength Level
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1RM | One repetition maximum |
GS | Grip strength |
AGS | Absolute grip strength |
RGS | Relative grip strength |
ROC | Receiver operating characteristics |
AUC | Area under the curve |
OR | Odd ratio |
CI | Confidence interval |
CPSS | Cincinnati Pre-hospital Stroke Scale |
References
- Barthels, D.; Das, H. Current advances in ischemic stroke research and therapies. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165260. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.B.H.; Tannous, J.; Vahidy, F.S. A contemporary review of epidemiology, risk factors, etiology, and outcomes of premature stroke. Curr. Atheroscler. Rep. 2022, 24, 939–948. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Health Insurance Review and Assessment Service. National Disease Statistics of Public Interest. Available online: https://www.hira.or.kr/bbsDummy.do?brdBltNo=10980&brdScnBltNo=4&pageIndex=1&pageIndex2=1&pgmid=HIRAA020041000100 (accessed on 19 November 2024).
- Korea Disease Control and Prevention Agency. Trends in Myocardial Infarction and Stroke Incidence and Fatality Rates; p. v. Available online: https://www.kdca.go.kr/board/board.es?act=view&bid=0015&list_no=726797&mid=a20501010000&utm (accessed on 21 November 2024).
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Oh, T.Y. A study on strengthening exercise for stroke patients through comparison of literature between domestic and foreign. J. Korean Soc. Integr. Med. 2019, 7, 113–124. [Google Scholar]
- Choi, A.-Y.; Lim, J.-H.; Kim, B.-G. Effects of muscle strength exercise on muscle mass and muscle strength in patients with stroke: A systematic review and meta-analysis. J. Exerc. Rehabil. 2024, 20, 146–157. [Google Scholar] [CrossRef]
- McNeil, C.J.; Rice, C.L. Fatigability is increased with age during velocity-dependent contractions of the dorsiflexors. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 624–629. [Google Scholar] [CrossRef]
- Reuben, D.B.; Magasi, S.; McCreath, H.E.; Bohannon, R.W.; Wang, Y.-C.; Bubela, D.J.; Rymer, W.Z.; Beaumont, J.; Rine, R.M.; Lai, J.-S.; et al. Motor assessment using the NIH Toolbox. Neurology 2013, 80 (Suppl. S3), S65–S75. [Google Scholar] [CrossRef]
- Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; MacKay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J.; et al. Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 2532–2553. [Google Scholar] [CrossRef]
- Wist, S.; Clivaz, J.; Sattelmayer, M. Muscle strengthening for hemiparesis after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2016, 59, 114–124. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Grip strength: An indispensable biomarker for older adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xue, Y.; Wang, S.; Zhang, Y.; Geng, Q. Association between hand grip strength and stroke in China: A prospective cohort study. Aging 2021, 13, 8204–8213. [Google Scholar] [CrossRef]
- Massy-Westropp, N.; Rankin, W.; Ahern, M.; Krishnan, J.; Hearn, T.C. Measuring grip strength in normal adults: Reference ranges and a comparison of electronic and hydraulic instruments. J Hand Surg Am. 2004, 29, 514–519. [Google Scholar] [CrossRef]
- Sunderland, A.; Tinson, D.; Bradley, L.; Hewer, R.L. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J. Neurol. Neurosurg. Psychiatry 1989, 52, 1267–1272. [Google Scholar] [CrossRef]
- Forrest, K.Y.Z.; Williams, A.M.; Leeds, M.J.; Robare, J.F.; Bechard, T.J. Patterns and correlates of grip strength in older Americans. Curr. Aging Sci. 2018, 11, 63–70. [Google Scholar] [CrossRef]
- Savino, E.; Sioulis, F.; Guerra, G.; Cavalieri, M.; Zuliani, G.; Guralnik, J.M.; Volpato, S. Potential prognostic value of handgrip strength in older hospitalized patients. J. Frailty Aging 2012, 1, 32–38. [Google Scholar] [CrossRef]
- McAniff, C.M.; Bohannon, R.W. Validity of grip strength dynamometry in acute rehabilitation. J. Phys. Ther. Sci. 2002, 14, 41–46. [Google Scholar] [CrossRef]
- Shang, X.; Meng, X.; Xiao, X.; Xie, Z.; Yuan, X. Grip training improves handgrip strength, cognition, and brain white matter in minor acute ischemic stroke patients. Clin. Neurol. Neurosurg. 2021, 209, 106886. [Google Scholar] [CrossRef]
- Milne, J.S.; Maule, M.M. A longitudinal study of handgrip and dementia in older people. Age Ageing 1984, 13, 42–48. [Google Scholar] [CrossRef]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, W.; Liu, T.; Zhang, D. Association of grip strength with risk of all-cause mortality, cardiovascular diseases, and cancer in community-dwelling populations: A meta-analysis of prospective cohort studies. J. Am. Med. Dir. Assoc. 2017, 18, 551.e17–551.e35. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.R.; Ortega, F.B.; Lee, D.-C.; Martínez-Vizcaíno, V. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113.e5. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, L.-Y. Grip strength in older adults: Test-retest reliability and cutoff for subjective weakness of using the hands in heavy tasks. Arch. Phys. Med. Rehabil. 2010, 91, 1747–1751. [Google Scholar] [CrossRef]
- Lindberg, P.G.; Roche, N.; Robertson, J.; Roby-Brami, A.; Bussel, B.; Maier, M.A. Affected and unaffected quantitative aspects of grip force control in hemiparetic patients after stroke. Brain Res. 2012, 1452, 96–107. [Google Scholar] [CrossRef]
- Park, I.B.; Baik, S.H. Epidemiologic characteristics of diabetes mellitus in Korea: Current status of diabetic patients using Korean health insurance database. Korean Diabetes J. 2009, 33, 357–362. [Google Scholar] [CrossRef]
- The Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 11 November 2024).
- Alloubani, A.; Saleh, A.; Abdelhafiz, I. Hypertension and diabetes mellitus as a predictive risk factors for stroke. Diabetes Metab. Syndr. 2018, 12, 577–584. [Google Scholar] [CrossRef]
- Kroshian, G.; Joseph, J.; Kinlay, S.; Peralta, A.O.; Hoffmeister, P.S.; Singh, J.P.; Yuyun, M.F. Atrial fibrillation and risk of adverse outcomes in heart failure with reduced, mildly reduced, and preserved ejection fraction: A systematic review and meta-analysis. J. Cardiovasc. Electrophysiol. 2024, 35, 715–726. [Google Scholar] [CrossRef]
- Biggerstaff, B.J. Comparing diagnostic tests: A simple graphic using likelihood ratios. Stat. Med. 2000, 19, 649–663. [Google Scholar] [CrossRef]
- Baik, I. Optimal cutoff points of waist circumference for the criteria of abdominal obesity: Comparison with the criteria of the International Diabetes Federation. Circ. J. 2009, 73, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, M.; Chi, V.T.Q.; Wang, J.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Bao, X.; Gu, Y.; et al. Handgrip strength is inversely associated with metabolic syndrome and its separate components in middle aged and older adults: A large-scale population-based study. Metabolism 2019, 93, 61–67. [Google Scholar] [CrossRef]
- World Health Organization. Stroke, Cerebrovascular Accident. Available online: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 20 January 2025).
- Wolf, P.A. Stroke risk profiles. Stroke 2009, 40 (Suppl. S1), S73–S74. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Bohannon, R.W. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef]
- Rantanen, T.; Volpato, S.; Ferrucci, L.; Heikkinen, E.; Fried, L.P.; Guralnik, J.M. Handgrip strength and cause-specific and total mortality in older disabled women: Exploring the mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef]
- Silventoinen, K.; Magnusson, P.K.E.; Tynelius, P.; Batty, G.D.; Rasmussen, F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: A population-based cohort study of one million Swedish men. Int. J. Epidemiol. 2009, 38, 110–118. [Google Scholar] [CrossRef]
- Strand, B.H.; Cooper, R.; Bergland, A.; Jørgensen, L.; Schirmer, H.; Skirbekk, V.; Emaus, N. The association of grip strength from midlife onwards with all-cause and cause-specific mortality over 17 years of follow-up in the Tromsø Study. J. Epidemiol. Community Health 2016, 70, 1214–1221. [Google Scholar] [CrossRef]
- Yoon, E.S.; Park, S.H. Associations between relative handgrip strength and incidence of type 2 diabetes mellitus in middle-aged and older adults: Finding from the Korean genome and epidemiology study. Exerc. Sci. 2020, 29, 377–384. [Google Scholar] [CrossRef]
- Kim, G.H.; Song, B.K.; Kim, J.W.; Lefferts, E.C.; Brellenthin, A.G.; Lee, D.-C.; Kim, Y.-M.; Kim, M.K.; Choi, B.Y.; Kim, Y.S. Associations between relative grip strength and type 2 diabetes mellitus: The Yangpyeong cohort of the Korean genome and epidemiology study. PLoS ONE 2021, 16, e0256550. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, B.H. Relationship between grip strength and diagnosis of chronic diseases and mental health in people aged 60 years of older: Analysis of Korean national health and nutrition examination survey. Korean J. Sport 2024, 22, 339–362. [Google Scholar] [CrossRef]
- Lim, H.J.; Kim, E.J. Trends of Physical Activity Among Korean Adults Using Complex Samples Analysis: Based on the 2014 KNHANES. Korean J. Meas. Eval. Phys. Educ. Sport Sci. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Kittilsen, H.T.; Goleva-Fjellet, S.; Freberg, B.I.; Nicolaisen, I.; Støa, E.M.; Bratland-Sanda, S.; Helgerud, J.; Wang, E.; Sæbø, M.; Støren, Ø. Responses to maximal strength training in different age and gender groups. Front. Physiol. 2021, 12, 636972. [Google Scholar] [CrossRef]
- Ransom, K.V.; Traylor, M.K.; Batman, G.B.; Mulekar, M.S.; Hill, B.D.; Nelson, A.R.; Keller, J.L. Arterial stiffness mediates the association between age and processing speed at low levels of microvascular function in humans across the adult lifespan. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H346–H356. [Google Scholar] [CrossRef]
- Beyer, S.E.; Sanghvi, M.M.; Aung, N.; Hosking, A.; Cooper, J.A.; Paiva, J.M.; Lee, A.M.; Fung, K.; Lukaschuk, E.; Carapella, V.; et al. Prospective association between handgrip strength and cardiac structure and function in UK adults. PLoS ONE 2018, 13, e0193124. [Google Scholar] [CrossRef]
- Farrell, S.W.; Leonard, D.; Li, Q.; Barlow, C.E.; Shuval, K.; Berry, J.D.; Pavlovic, A.; DeFina, L.F. Association between baseline levels of muscular strength and risk of stroke in later life: The Cooper Center Longitudinal Study. J. Sport Health Sci. 2024, 13, 642–649. [Google Scholar] [CrossRef]
- Reeve, E.H.; Barnes, J.N.; Moir, M.E.; Walker, A.E. Impact of arterial stiffness on cerebrovascular function: A review of evidence from humans and preclinical models. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H689–H704. [Google Scholar] [CrossRef]
- Perna, R.; Temple, J. Rehabilitation outcomes: Ischemic versus hemorrhagic strokes. Behav. Neurol. 2015, 2015, 891651. [Google Scholar] [CrossRef]
- Feng, T.; Zhao, C.; Dong, J.; Xue, Z.; Cai, F.; Li, X.; Hu, Z.; Xue, X. The effect of unaffected side resistance training on upper limb function reconstruction and prevention of sarcopenia in stroke patients: A randomized controlled trial. Sci. Rep. 2024, 14, 25330. [Google Scholar] [CrossRef]
- Kothari, R.U.; Pancioli, A.; Liu, T.; Brott, T.; Broderick, J. Cincinnati prehospital stroke scale: Reproducibility and validity. Ann. Emerg. Med. 1999, 33, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, C.S.; Starkman, S.; Eckstein, M.; Weems, K.W.J.L.; Saver, J.L. Identifying stroke in the field. Prospective validation of the Los Angeles prehospital stroke screen (LAPSS). Stroke 2000, 31, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-H.; Byeon, J.-Y.; Min, J.-H.; Park, D.-H.; Cho, W.-H.; Jeon, J.Y. Relationship Between Handgrip Strength and the Prevalence of Diabetes Mellitus Among Korean Adults: Korean National Health and Nutrition Examination Survey, 2014–2018. Exerc. Sci. 2021, 30, 110–121. [Google Scholar] [CrossRef]
AUC | 95% CI | Cut off (kg) | Sensitivity | Specificity | PPV | NPV | Accuracy | ||
---|---|---|---|---|---|---|---|---|---|
Men | AGS | 0.637 | 0.591–0.684 | 28.55 *** | 0.759 | 0.469 | 0.12 | 0.95 | 0.74 |
RGS | 0.623 | 0.574–0.672 | 0.47 *** | 0.658 | 0.565 | 0.10 | 0.95 | 0.65 | |
Women | AGS | 0.608 | 0.557–0.659 | 17.25 *** | 0.704 | 0.493 | 0.08 | 0.96 | 0.69 |
RGS | 0.615 | 0.556–0.664 | 0.36 *** | 0.481 | 0.721 | 0.07 | 0.97 | 0.49 |
Men | Women | ||||
---|---|---|---|---|---|
Age (year) | 72.33 ± 0.128 | Age (year) | 73.38 ± 0.116 | ||
AGS (kg) | 33.071 ± 0.185 | AGS (kg) | 19.503 ± 0.134 | ||
RGS (kg) | 0.512 ± 0.003 | RGS (kg) | 0.350 ± 0.002 | ||
n | B | n | B | ||
AGS < 28.55 kg | 550 | 473,807 | AGS < 17.25 kg | 824 | 789,010 |
AGS ≥ 28.55 kg | 1589 | 1,446,953 | AGS ≥ 17.25 kg | 1873 | 1,686,428 |
RGS < 0.47 kg | 764 | 654,058 | RGS < 0.36 kg | 1425 | 1,316,331 |
RGS ≥ 0.47 kg | 1374 | 1,265,504 | RGS ≥ 0.36 kg | 1270 | 1,157,139 |
Variables | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
n | B | % | n | B | % | x2 | p | |
No stroke | 2076 | 1,863,169 | 42.0 | 2804 | 2,574,921 | 58.0 | 9.544 | 0.008 |
Stroke | 155 | 143,747 | 50.9 | 150 | 138,518 | 49.1 | ||
Household income: 1Q | 261 | 243,127 | 51.0 | 246 | 233,971 | 49.0 | 80.611 | 0.000 |
2Q | 374 | 348,722 | 48.7 | 386 | 366,786 | 51.3 | ||
3Q | 663 | 590,363 | 47.1 | 745 | 661,834 | 52.9 | ||
4Q | 915 | 801,723 | 36.1 | 1558 | 1,416,140 | 66.5 | ||
Married | 2212 | 19,920,213 | 42.5 | 2935 | 2,697,069 | 57.5 | 0.374 | 0.568 |
Not married | 19 | 14,903 | 47.7 | 19 | 16,369 | 52.3 | ||
Elementary school | 683 | 595,548 | 25.8 | 1872 | 1,709,850 | 76.4 | 654.672 | 0.000 |
Middle school | 451 | 402,845 | 51.7 | 425 | 375,786 | 48.3 | ||
High school | 546 | 479,857 | 61.6 | 316 | 299,020 | 38.4 | ||
College or higher | 406 | 383,932 | 71.7 | 153 | 151,233 | 28.3 | ||
No hypertension | 1034 | 934,806 | 44.9 | 1218 | 1,146,452 | 55.1 | 9.967 | 0.008 |
Hypertension | 1182 | 1,058,571 | 40.5 | 1717 | 1,552,700 | 59.5 | ||
No dyslipidemia | 1686 | 1,520,699 | 48.1 | 1764 | 1,638,152 | 51.9 | 139.587 | 0.000 |
Dyslipidemia | 529 | 472,019 | 30.8 | 1171 | 1,061,000 | 69.2 | ||
No diabetes | 1707 | 1,553,779 | 42.6 | 2290 | 2,095,785 | 57.4 | 0.026 | 0.897 |
Diabetes | 508 | 438,939 | 42.3 | 643 | 598,528 | 57.7 | ||
No alcohol consumption | 548 | 478,407 | 42.9 | 683 | 637,452 | 57.1 | 415.341 | 0.000 |
Once a week or less | 763 | 682,570 | 44.9 | 948 | 836,444 | 55.1 | ||
2–3 times a week | 337 | 412,395 | 77.3 | 91 | 91,798 | 22.7 | ||
4 times a week or more | 359 | 336,924 | 88.7 | 55 | 55,529 | 11.3 | ||
No smoking | 1787 | 1,596,397 | 38.3 | 2810 | 2,570,487 | 61.7 | 407.538 | 0.000 |
Smoking | 400 | 367,397 | 86.9 | 63 | 55,600 | 13.1 | ||
Normal weight | 1044 | 930,407 | 45.9 | 1189 | 1,094,519 | 54.1 | 4.759 | 0.168 |
Underweight | 70 | 64,815 | 46.7 | 72 | 73,994 | 53.3 | ||
Obese | 659 | 607,614 | 42.5 | 910 | 822,744 | 57.5 | ||
No strength training | 1484 | 1,311,133 | 36.4 | 2503 | 2,289,759 | 63.6 | 305.324 | 0.000 |
Strength training practice | 604 | 554,118 | 68.4 | 274 | 256,368 | 31.6 |
Sex | Model | OR | 95% CI | p | |
---|---|---|---|---|---|
Men | Unadjusted | AGS (kg) | 3.642 *** | 2.471–5.367 | 0.000 |
RGS (kg) | 2.624 *** | 1.770–3.889 | 0.000 | ||
Women | AGS (kg) | 1.831 ** | 1.202–2.790 | 0.005 | |
RGS (kg) | 2.336 *** | 1.478–3.693 | 0.000 | ||
Men | Model 1 | AGS (kg) | 3.431 *** | 2.168–5.428 | 0.000 |
RGS (kg) | 2.241 *** | 1.461–3.436 | 0.000 | ||
Women | AGS (kg) | 1.767 * | 1.139–2.740 | 0.011 | |
RGS (kg) | 2.497 *** | 1.523–4.092 | 0.000 | ||
Men | Model 2 | AGS (kg) | 3.600 *** | 2.121–6.112 | 0.000 |
RGS (kg) | 2.627 *** | 1.556–4.436 | 0.000 | ||
Women | AGS (kg) | 1.972 | 0.926–4.197 | 0.078 | |
RGS (kg) | 3.104 ** | 1.569–6.140 | 0.001 | ||
Men | Model 3 | AGS (kg) | 3.544 *** | 2.094–5.998 | 0.000 |
RGS (kg) | 2.585 *** | 1.529–4.369 | 0.000 | ||
Women | AGS (kg) | 1.899 | 0.890–4.055 | 0.097 | |
RGS (kg) | 3.026 ** | 1.541–5.943 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H. Analysis of Grip Strength Thresholds for Stroke Management and Prevention in South Korean Older Adults. Healthcare 2025, 13, 781. https://doi.org/10.3390/healthcare13070781
Lee JH. Analysis of Grip Strength Thresholds for Stroke Management and Prevention in South Korean Older Adults. Healthcare. 2025; 13(7):781. https://doi.org/10.3390/healthcare13070781
Chicago/Turabian StyleLee, Jong Hyeon. 2025. "Analysis of Grip Strength Thresholds for Stroke Management and Prevention in South Korean Older Adults" Healthcare 13, no. 7: 781. https://doi.org/10.3390/healthcare13070781
APA StyleLee, J. H. (2025). Analysis of Grip Strength Thresholds for Stroke Management and Prevention in South Korean Older Adults. Healthcare, 13(7), 781. https://doi.org/10.3390/healthcare13070781