Muscle Activation Differences Between CKCUEST and Modified CKCUEST: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- -
- A good state of health;
- -
- An asymptomatic state in the region of the shoulder complex (both right and left);
- -
- Age of 18 years or more.
- -
- Shoulder pathology (rotator cuff-related shoulder pain, frozen shoulder, severe shoulder osteoarthritis, cervical radiculopathy, shoulder instability, upper limb neuropathy or acromio-clavicular joint pathology);
- -
- Sensory and/or motor deficits;
- -
- Age of over 65 years;
- -
- Shoulder surgery less than 6 months ago;
- -
- Previous steroid injections in the last 3 months;
- -
- Diagnoses related to the cervical spine or upper limbs;
- -
- Pregnancy;
- -
- Comorbidities such as arthritis, rheumatoid arthritis and/or fibromyalgia;
- -
- Systemic diseases such as diabetes mellitus and/or thyroid diseases;
- -
- Dementia or severe psychiatric illness and any other illness that could interfere with their understanding of and/or participation in the study;
- -
- Refusal to sign informed consent.
2.2. Measuring Instruments
2.2.1. Edinburgh Handedness Inventory (EHI)
2.2.2. International Physical Activity Questionnaire
2.2.3. Electromyography
2.3. Procedure
- Anterior Deltoid: Patient is seated, both of their feet are supported, elbow is at 90° flexion and shoulder is in neutral position. Resistance is applied proximal to the elbow in the posterior direction (resisting shoulder flexion);
- Infraspinatus: Patient is in seated position, both of their feet are supported, the elbow is at 90° of flexion and the shoulder is in neutral position. Resistance is applied proximal to the wrist in medial direction (resisting external rotation);
- Upper trapezius: Patient is seated, both feet are supported, the elbow is extended and the shoulder is at 90° abduction. Resistance is applied proximal to the elbow in the caudal direction (resisting abduction).
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a | ambidextrous |
BMI | body mass index |
CI | confidence interval |
CKCUEST | Closed Kinetic Chain Upper Extremity Stability Test |
CSEULS | Centro Superior de Estudios Universitarios de la Salle |
EHI | Edinburgh Handedness Inventory |
EMG | electromyography |
ICC | intraclass correlation coefficient |
IPAQ | International Physical Activity Questionnaire |
KJOC | Kerlan-Jobe Orthopaedic Clinic Shoulder and Elbow Score |
L | left-handed |
LQ | laterality quotient |
METs | metabolic equivalents |
MVIC | maximum voluntary isometric contraction |
R | right-handed |
SMBT | Seated Medicine Ball Throw |
SPSS | Statistical Package of Social Sciences |
ULRT | Upper Limb Rotation Test |
YBT-QT | Y-Balance Test Upper Quarter |
References
- Luime, J.J.; Koes, B.W.; Hendriksen, I.J.M.; Burdorf, A.; Verhagen, A.P.; Miedema, H.S.; Verhaar, J.A.N. Prevalence and Incidence of Shoulder Pain in the General Population; a Systematic Review. Scand. J. Rheumatol. 2004, 33, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hinsley, H.; Ganderton, C.; Arden, N.K.; Carr, A.J. Prevalence of Rotator Cuff Tendon Tears and Symptoms in a Chingford General Population Cohort, and the Resultant Impact on UK Health Services: A Cross-Sectional Observational Study. BMJ Open 2022, 12, e059175. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S. Rotator Cuff Tendinopathy. Br. J. Sports Med. 2009, 43, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, H.; Yamamoto, N.; Abe, H.; Fukuda, M.; Seki, N.; Kikuchi, K.; Kijima, H.; Itoi, E. Prevalence of Symptomatic and Asymptomatic Rotator Cuff Tears in the General Population: From Mass-Screening in One Village. J. Orthop. 2013, 10, 8–12. [Google Scholar] [CrossRef]
- Teunis, T.; Lubberts, B.; Reilly, B.T.; Ring, D. A Systematic Review and Pooled Analysis of the Prevalence of Rotator Cuff Disease with Increasing Age. J. Shoulder Elb. Surg. 2014, 23, 1913–1921. [Google Scholar] [CrossRef]
- McFarland, E.G.; Kim, T.K. Examination of the Shoulder: The Complete Guide. Phys. Ther. 2006, 86, 1713–1714. [Google Scholar]
- May, S.; Chance-Larsen, K.; Littlewood, C.; Lomas, D.; Saad, M. Reliability of Physical Examination Tests Used in the Assessment of Patients with Shoulder Problems: A Systematic Review. Physiotherapy 2010, 96, 179–190. [Google Scholar] [CrossRef]
- Hermans, J.; Luime, J.J.; Meuffels, D.E.; Reijman, M.; Simel, D.L.; Bierma-Zeinstra, S.M.A. Does This Patient with Shoulder Pain Have Rotator Cuff Disease?: The Rational Clinical Examination Systematic Review. JAMA 2013, 310, 837–847. [Google Scholar] [CrossRef]
- Hegedus, E.J.; Goode, A.P.; Cook, C.E.; Michener, L.; Myer, C.A.; Myer, D.M.; Wright, A.A. Which Physical Examination Tests Provide Clinicians with the Most Value When Examining the Shoulder? Update of a Systematic Review with Meta-Analysis of Individual Tests. Br. J. Sports Med. 2012, 46, 964–978. [Google Scholar] [CrossRef]
- Hegedus, E.J.; Goode, A.; Campbell, S.; Morin, A.; Tamaddoni, M.; Moorman, C.T.; Cook, C. Physical Examination Tests of the Shoulder: A Systematic Review with Meta-Analysis of Individual Tests. Br. J. Sports Med. 2008, 42, 80–92. [Google Scholar] [CrossRef]
- Salamh, P.; Lewis, J. It Is Time to Put Special Tests for Rotator Cuff-Related Shoulder Pain out to Pasture. J. Orthop. Sports Phys. Ther. 2020, 50, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, A.; Uhl, T. Reliability of Strength and Performance Testing Measures and Their Ability to Differentiate Persons with and Without Shoulder Symptoms. Int. J. Sports Phys. Ther. 2015, 10, 655. [Google Scholar] [PubMed]
- Goldbeck, T.G.; Davies, G.J. Test-Retest Reliability of the Closed Kinetic Chain Upper Extremity Stability Test: A Clinical Field Test. J. Sport Rehabil. 2000, 9, 35–45. [Google Scholar] [CrossRef]
- Decleve, P.; Attar, T.; Benameur, T.; Gaspar, V.; Van Cant, J.; Cools, A.M. The “Upper Limb Rotation Test”: Reliability and Validity Study of a New Upper Extremity Physical Performance Test. Phys. Ther. Sport 2020, 42, 118–123. [Google Scholar] [CrossRef]
- Kraeutler, M.J.; Ciccotti, M.G.; Dodson, C.C.; Frederick, R.W.; Cammarota, B.; Cohen, S.B. Kerlan-Jobe Orthopaedic Clinic Overhead Athlete Scores in Asymptomatic Professional Baseball Pitchers. J. Shoulder Elb. Surg. 2013, 22, 329–332. [Google Scholar] [CrossRef]
- Gorman, P.P.; Butler, R.J.; Plisky, P.J.; Kiesel, K.B. Upper Quarter Y Balance Test: Reliability and Performance Comparison between Genders in Active Adults. J. strength Cond. Res. 2012, 26, 3043–3048. [Google Scholar] [CrossRef]
- Harris, C.; Wattles, A.P.; Debeliso, M.; Sevene-Adams, P.G.; Berning, J.M.; Adams, K.J. The Seated Medicine Ball Throw as a Test of Upper Body Power in Older Adults. J. Strength Cond. Res. 2011, 25, 2344–2348. [Google Scholar] [CrossRef]
- Roush Pt, J.R.; Kitamura, J.; Waits, M.C. Reference Values for the Closed Kinetic Chain Upper Extremity Stability Test (CKCUEST) for Collegiate Baseball Players. N. Am. J. Sports Phys. Ther. 2007, 2, 159. [Google Scholar]
- Richardson, E.; Lewis, J.S.; Gibson, J.; Morgan, C.; Halaki, M.; Ginn, K.; Yeowell, G. Role of the Kinetic Chain in Shoulder Rehabilitation: Does Incorporating the Trunk and Lower Limb into Shoulder Exercise Regimes Influence Shoulder Muscle Recruitment Patterns? Systematic Review of Electromyography Studies. BMJ Open Sport Exerc. Med. 2020, 6, 683. [Google Scholar] [CrossRef]
- Tarara, D.T.; Fogaca, L.K.; Taylor, J.B.; Hegedus, E.J. Clinician-Friendly Physical Performance Tests in Athletes Part 3: A Systematic Review of Measurement Properties and Correlations to Injury for Tests in the Upper Extremity. Br. J. Sports Med. 2016, 50, 545–551. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Cook, T.M.; Nawoczenski, D.A. Three-Dimensional Scapular Orientation and Muscle Activity at Selected Positions of Humeral Elevation. J. Orthop. Sports Phys. Ther. 1996, 24, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, R.; Pizzari, T. Electromyographic Activity of the Shoulder Muscles during Rehabilitation Exercises in Subjects with and without Subacromial Pain Syndrome: A Systematic Review. Shoulder Elb. 2017, 9, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Chester, R.; Smith, T.O.; Hooper, L.; Dixon, J. The Impact of Subacromial Impingement Syndrome on Muscle Activity Patterns of the Shoulder Complex: A Systematic Review of Electromyographic Studies. BMC Musculoskelet. Disord. 2010, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Park, C.B.; Kim, Y.; Lee, K.S.; Chae, S.; Park, H.S. Comparative Analysis of Muscle Synergy between Patients with Shoulder Impingement Syndrome and Healthy Controls: A Preliminary Study. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; Volume 2023. [Google Scholar] [CrossRef]
- Lewis, J. Rotator Cuff Related Shoulder Pain: Assessment, Management and Uncertainties. Man. Ther. 2015, 23, 57–68. [Google Scholar] [CrossRef]
- Tucci, H.T.; Martins, J.; Sposito, G.D.C.; Camarini, P.M.F.; De Oliveira, A.S. Closed Kinetic Chain Upper Extremity Stability Test (CKCUES Test): A Reliability Study in Persons with and without Shoulder Impingement Syndrome. BMC Musculoskelet. Disord. 2014, 15, 1. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef]
- Hertzog, M.A. Considerations in Determining Sample Size for Pilot Studies. Res. Nurs. Health 2008, 31, 180–191. [Google Scholar] [CrossRef]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Albayay, J.; Villarroel-Gruner, P.; Bascour-Sandoval, C.; Parma, V.; Gálvez-García, G. Psychometric Properties of the Spanish Version of the Edinburgh Handedness Inventory in a Sample of Chilean Undergraduates. Brain Cogn. 2019, 137, 103618. [Google Scholar] [CrossRef]
- Román Viñas, B.; Ribas Barba, L.; Ngo, J.; Serra Majem, L. [Validity of the International Physical Activity Questionnaire in the Catalan Population (Spain)]. Gac. Sanit. 2013, 27, 254–257. [Google Scholar] [CrossRef]
- Gauthier, A.P.; Lariviere, M.; Young, N. Psychometric Properties of the IPAQ: A Validation Study in a Sample of Northern Franco-Ontarians. J. Phys. Act. Health 2009, 6 (Suppl. S1), S54–S60. [Google Scholar] [CrossRef] [PubMed]
- Cools, A.M.; Van Tongel, A.; Berckmans, K.; Spanhove, V.; Plaetevoet, T.; Rosseel, J.; Soen, J.; Levy, O.; Maenhout, A. Electromyographic Analysis of Selected Shoulder Muscles during a Series of Exercises Commonly Used in Patients with Symptomatic Degenerative Rotator Cuff Tears. J. Shoulder Elb. Surg. 2020, 29, e361–e373. [Google Scholar] [CrossRef] [PubMed]
- Ekstrom, R.A.; Donatelli, R.A.; Carp, K.C. Electromyographic Analysis of Core Trunk, Hip, and Thigh Muscles during 9 Rehabilitation Exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Hibbs, A.E.; Thompson, K.G.; French, D.N.; Hodgson, D.; Spears, I.R. Peak and Average Rectified EMG Measures: Which Method of Data Reduction Should Be Used for Assessing Core Training Exercises? J. Electromyogr. Kinesiol. 2011, 21, 102–111. [Google Scholar] [CrossRef]
- Youdas, J.W.; Budach, B.D.; Ellerbusch, J.V.; Stucky, C.M.; Wait, K.R.; Hollman, J.H. Comparison of Muscle-Activation Patterns during the Conventional Push-up and Perfect PushupTM Exercises. J. Strength Cond. Res. 2010, 24, 3352–3362. [Google Scholar] [CrossRef]
- Castelein, B.; Cools, A.; Bostyn, E.; Delemarre, J.; Lemahieu, T.; Cagnie, B. Analysis of Scapular Muscle EMG Activity in Patients with Idiopathic Neck Pain: A Systematic Review. J. Electromyogr. Kinesiol. 2015, 25, 371–386. [Google Scholar] [CrossRef]
- Dickie, J.A.; Faulkner, J.A.; Barnes, M.J.; Lark, S.D. Electromyographic Analysis of Muscle Activation during Pull-up Variations. J. Electromyogr. Kinesiol. 2017, 32, 30–36. [Google Scholar] [CrossRef]
- Schilling, D.T.; Elazzazi, A.M. Shoulder Strength and Closed Kinetic Chain Upper Extremity Stability Test Performance in Division III Collegiate Baseball and Softball Players. Int. J. Sports Phys. Ther. 2021, 16, 844. [Google Scholar] [CrossRef] [PubMed]
- Felici, F. Neuromuscular Responses to Exercise Investigated through Surface EMG. J. Electromyogr. Kinesiol. 2006, 16, 578–585. [Google Scholar] [CrossRef]
- Ebben, W.P.; Wurm, B.; Vanderzanden, T.L.; Spadavecchia, M.L.; Durocher, J.J.; Bickham, C.T.; Petushek, E.J. Kinetic Analysis of Several Variations of Push-Ups. J. Strength Cond. Res. 2011, 25, 2891–2894. [Google Scholar] [CrossRef]
- Littlewood, C.; Bateman, M.; Connor, C.; Gibson, J.; Horsley, I.; Jaggi, A.; Jones, V.; Meakins, A.; Scott, M. Physiotherapists’ Recommendations for Examination and Treatment of Rotator Cuff Related Shoulder Pain: A Consensus Exercise. Physiother. Pract. Res. 2019, 40, 87–94. [Google Scholar] [CrossRef]
- Requejo-Salinas, N.; Lewis, J.; Michener, L.A.; La Touche, R.; Fernández-Matías, R.; Tercero-Lucas, J.; Camargo, P.R.; Bateman, M.; Struyf, F.; Roy, J.S.; et al. International Physical Therapists Consensus on Clinical Descriptors for Diagnosing Rotator Cuff Related Shoulder Pain: A Delphi Study. Braz. J. Phys. Ther. 2022, 26, 100395. [Google Scholar] [CrossRef] [PubMed]
- Manoso-Hernando, D.; Bailón-Cerezo, J.; Angulo-Díaz-Parreño, S.; Reina-Varona, Á.; Elizagaray-García, I.; Gil-Martínez, A. Shoulder Mobility and Strength Impairments in Patients with Rotator Cuff Related Shoulder Pain: A Systematic Review and Meta Analysis. PeerJ 2024, 12, e17604. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.K.; Schram, B.; Lewis, J.; Hing, W. “You Have (Rotator Cuff Related) Shoulder Pain, and to Treat It, I Recommend Exercise.” A Scoping Review of the Possible Mechanisms Underpinning Exercise Therapy. Musculoskelet. Sci. Pract. 2022, 62, 102646. [Google Scholar] [CrossRef]
- POWELL, J.K.; LEWIS, J.S. Rotator Cuff-Related Shoulder Pain: Is It Time to Reframe the Advice, “You Need to Strengthen Your Shoulder”? J. Orthop. Sports Phys. Ther. 2021, 51, 156–159. [Google Scholar] [CrossRef]
- Silva, E.R.; Maffulli, N.; Migliorini, F.; Santos, G.M.; de Menezes, F.S.; Okubo, R. Function, Strength, and Muscle Activation of the Shoulder Complex in Crossfit Practitioners with and without Pain: A Cross-Sectional Observational Study. J. Orthop. Surg. Res. 2022, 17, 24. [Google Scholar] [CrossRef]
- Lust, K.R.; Sandrey, M.A.; Bulger, S.M.; Wilder, N. The Effects of 6-Week Training Programs on Throwing Accuracy, Proprioception, and Core Endurance in Baseball. J. Sport Rehabil. 2009, 18, 407–426. [Google Scholar] [CrossRef]
Men (n = 10) | Women (n = 10) | p-Value | |
---|---|---|---|
EHD (r, l, a) | 18.6 ± 8.6 a | 13.5 ± 11.0 c | 0.462 d |
Age (years) | 26.6 ± 4.8 a | 24.2 ± 6.0 c | 0.250 d |
Weight (kg) | 74.5 ± 9.9 a | 57.6 ± 6.8 a | 0.000 b |
Height (cm) | 179.9 ± 7.1 a | 165.4 ± 6.0 a | 0.000 b |
BMI (kg/m2) | 22.9 ± 1.7 a | 21.0 ± 2.1 a | 0.049 b |
IPAQ (METs/min/week) | 3532.0 ± 1,291,606 a | 4160.8 ± 1637.0 a | 0.353 b |
Activation % CKCUEST (N = 20) | Activation % Modified CKCUEST (N = 20) | p-Value | |
---|---|---|---|
Right hemibody | |||
| 39.3 ± 15.0 a (32.3−46.4) | 15.7 ± 20.2 b (15.9−24.3) | 0.000 † |
| 61.9 ± 24.4 a (52.4−71.5) | 24.7 ± 15.7 a (17.3−32.1) | 0.000 * |
| 11.1 ± 15.6 b (10.8−25.6) | 6.3 ± 7.1 b (5.6−11.9) | 0.000 † |
Left hemibody | |||
| 38.5 ± 16.6 a (30.7−46.3) | 15.3 ± 8.3 b (11.3−25.8) | 0.000 † |
| 62.8 ± 21.5 a (52.7−72.9) | 28.8 ± 19.6 a (19.6−38.0) | 0.000 * |
| 15.3 ± 22.7 b (14.6−37.5) | 10.6 ± 16.8 b (7.5−24.9) | 0.000 † |
Activation Percentage in CKCUEST | Right-Handed (%) (n = 10) | Ambidextrous (%) (n = 10) | Left-Handed (%) (n = 0) | p-Value |
---|---|---|---|---|
Right hemibody | ||||
| 30.6 ± 16.5 a (26.8−50.4) | 40.0 ± 14.2 a (29.8−50.2) | - | 0.844 * |
| 65.5 ± 17.9 a (52.7−78.3) | 50.4 ± 23.0 a (41.9−74.9) | - | 0.453 * |
| 15.6 ± 28.2 b (10.2−36.7) | 9.2 ± 6.9 b (5.1−20.8) | - | 0.082 † |
Left hemibody | ||||
| 35.8 ± 18.2 b (27.−54.4) | 35.9 ± 14.8 a (25.3−46.6) | - | 0.623 † |
| 59.4 ± 36.7 b (52.9−81.1) | 58.7 ± 23.5 a (41.9−75.5) | - | 0.364 † |
| 3.6 ± 27.5 a (14.9−54.2) | 15.6 ± 9.6 a (8.7−22.5) | - | 0.054 * |
M | MVIC Women (µV) (n = 10) | MVIC Men (µV) (n = 10) | p-Value |
---|---|---|---|
Right hemibody | |||
| 295.8 ± 110.4 b (205.9−497.7) | 281.9 ± 324.8 b (146.2−760.6) | 0.940 † |
| 457.6 ± 183.4 a (326.5−588.8) | 444.1 ± 213.8 a (291.1−597.1) | 0.881 * |
| 426.4 ± 194.3 a (287.3−565.4) | 520.8 ± 280.9 a (319.8−721.7) | 0.394 * |
Left hemibody | |||
| 291.4 ± 110.3 a (212.5−370.3) | 379.3 ± 190.3 b (178.5−750.0) | 0.257 † |
| 412.1 ± 136.5 a (314.4−509.8) | 470.0 ± 268.3 a (278.1−661.9) | 0.553 * |
| 389.9 ± 188.9 a (254.8−525.0) | 359.2 ± 169.9 b (214.7−517.2) | 0.406 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Torre, S.E.; Lozano-Melero, M.Á.; Gómez-Jiménez, M.; Manoso-Hernando, D. Muscle Activation Differences Between CKCUEST and Modified CKCUEST: A Pilot Study. Healthcare 2025, 13, 922. https://doi.org/10.3390/healthcare13080922
Gutiérrez-Torre SE, Lozano-Melero MÁ, Gómez-Jiménez M, Manoso-Hernando D. Muscle Activation Differences Between CKCUEST and Modified CKCUEST: A Pilot Study. Healthcare. 2025; 13(8):922. https://doi.org/10.3390/healthcare13080922
Chicago/Turabian StyleGutiérrez-Torre, Samuel Eloy, Miguel Ángel Lozano-Melero, Maria Gómez-Jiménez, and Daniel Manoso-Hernando. 2025. "Muscle Activation Differences Between CKCUEST and Modified CKCUEST: A Pilot Study" Healthcare 13, no. 8: 922. https://doi.org/10.3390/healthcare13080922
APA StyleGutiérrez-Torre, S. E., Lozano-Melero, M. Á., Gómez-Jiménez, M., & Manoso-Hernando, D. (2025). Muscle Activation Differences Between CKCUEST and Modified CKCUEST: A Pilot Study. Healthcare, 13(8), 922. https://doi.org/10.3390/healthcare13080922