New Therapeutic Challenges in Pediatric Gastroenterology: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Celiac Disease
3.1. Enzyme Therapies
3.2. Immunotherapy
3.3. Zonulin Inhibitors
3.4. Microbiota Modulation
Considerations on Limitations, Barriers to Clinical Implementation, and Potential Risks of Microbiota Modulation
3.5. Nanotechnology
Considerations on Limitations, Barriers to Clinical Implementation, and Potential Risks of Nanotechnology
3.6. Monoclonal Antibodies
3.7. Transglutaminase 2 Inhibitor
4. Eosinophilic Esophagitis
4.1. Dupilumab
4.2. Cendakimab and Dectrekumab
4.3. Mepolizumab, Reslizumab, and Benralizumab
4.4. Drugs Acting on the Thymic Stromal Lymphopoietin
5. Inflammatory Bowel Disease
5.1. New Biologics
5.1.1. Vedolizumab
5.1.2. Ustekinumab
5.1.3. Risankizumab
5.1.4. Considerations on Current Evidence Gaps and Challenges
5.2. Small Molecules
6. Autoimmune Hepatitis
7. Personalized Therapy in Complex Gastrointestinal Diseases
7.1. Precision Medicine
7.2. Risk Stratification
7.3. Personalized Treatment Algorithms
7.4. Therapeutic Drug Monitoring
7.5. Nutritional and Lifestyle Interventions
7.6. Shared Decision-Making
8. The Proteomic Approach in Pediatric Gastroenterology
8.1. Disease Mechanisms
8.2. Biomarker Discovery
8.3. Personalized Medicine
8.4. Drug Development
8.5. Microbiome Studies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIH | Autoimmune hepatitis |
CeD | Celiac disease |
EoE | Eosinophilic esophagitis |
IBD | Inflammatory bowel disease |
ESPGHAN | European Society of Pediatric Gastroenterology, Hepatology and Nutrition |
GFD | Gluten-free diet |
PEP | Propylendopeptidase |
EP | Endoprotease |
TG | Transglutaminase |
JAK | Janus kinase |
QoL | Quality of life |
PEG | Polyethylene glycol |
OIT | Oral immunotherapy |
SLIT | Sublingual immunotherapy |
GSRS | Gastrointestinal Symptom Rating Scale |
FMT | Fecal microbiota transplantation |
NAFLD | Non-alcoholic fatty liver disease |
IL | Interleukin |
TSLP | Thymic stromal lymphopoietin |
CD | Crohn’s disease |
UC | Ulcerative colitis |
TDM | Therapeutic drug monitoring |
VEO-IBD | Very early onset inflammatory bowel disease |
HLA | Human leukocyte antigen |
TPMT | Thiopurine S-methyltransferase |
NUDT15 | Nudix hydrolase 15 |
References
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.E.; Morrison-Rees, S.; Thapar, N.; Benninga, M.A.; Borrelli, O.; Broekaert, I.; Dolinsek, J.; Martin-de-Carpi, J.; Mas, E.; Miele, E.; et al. Systematic review and meta-analysis: The incidence and prevalence of paediatric coeliac disease across Europe. Aliment. Pharmacol. Ther. 2021, 54, 109–128. [Google Scholar] [CrossRef]
- Passanisi, S.; Dipasquale, V.; Romano, C. Vaccinations and immune response in celiac disease. Vaccines 2020, 8, 278. [Google Scholar] [CrossRef] [PubMed]
- Mearin, M.L.; Agardh, D.; Antunes, H.; Al-Toma, A.; Auricchio, R.; Castillejo, G.; Catassi, C.; Ciacci, C.; Discepolo, V.; Dolinsek, J.; et al. ESPGHAN position paper on management and follow-up of children and adolescents with celiac disease. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 369–386. [Google Scholar] [CrossRef]
- Luque, V.; Crespo-Escobar, P.; Hård af Segerstad, E.M.; Koltai, T.; Norsa, L.; Roman, E.; Vreugdenhil, A.; Fueyo-Díaz, R.; Ribes-Koninckx, C. Gluten-free diet for pediatric patients with coeliac disease: A position paper from the ESPGHAN gastroenterology committee, special interest group in coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 973–995. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.V. New developments in celiac disease treatment. Int. J. Mol. Sci. 2023, 24, 945. [Google Scholar] [CrossRef]
- Wei, G.; Helmerhorst, E.J.; Darwish, G.; Blumenkranz, G.; Schuppan, D. Gluten degrading enzymes for treatment of celiac disease. Nutrients 2020, 12, 2095. [Google Scholar] [CrossRef] [PubMed]
- Gass, J.; Bethune, M.T.; Siegel, M.; Spencer, A.; Khosla, C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 2007, 133, 472–480. [Google Scholar] [CrossRef]
- Tye-Din, J.A.; Anderson, R.P.; Ffrench, R.A.; Brown, G.J.; Hodsman, P.; Siegel, M.; Botwick, W.; Shreeniwas, R. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin. Immunol. 2010, 134, 289–295. [Google Scholar] [CrossRef]
- Lähdeaho, M.L.; Kaukinen, K.; Laurila, K.; Vuotikka, P.; Koivurova, O.P.; Kärjä-Lahdensuu, T.; Marcantonio, A.; Adelman, D.C.; Mäki, M. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology 2014, 146, 1649–1658. [Google Scholar] [CrossRef]
- Murray, J.A.; Kelly, C.P.; Green, P.H.; Marcantonio, A.; Wu, T.T.; Mäki, M.; Adelman, D.C.; Ansari, S.; Ayub, K.; Basile, A.; et al. No difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology 2017, 152, 787–798.e2. [Google Scholar] [CrossRef] [PubMed]
- Syage, J.A.; Green, P.H.; Khosla, C.; Adelman, D.C.; Sealey-Voyksner, J.A.; Murray, J.A. Latiglutenase treatment for celiac disease: Symptom and quality of life improvement for seropositive patients on a gluten-free diet. GastroHep 2019, 1, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.; Siegel, J.B.; Tinberg, C.; Camarca, A.; Gianfrani, C.; Paski, S.; Guan, R.; Montelione, G.; Baker, D.; Pultz, I.S. Engineering of Kuma030: A gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J. Am. Chem. Soc. 2015, 137, 13106–13113. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P.; Murray, J.A.; Leffler, D.A.; Getts, D.R.; Bledsoe, A.C.; Smithson, G.; First, M.R.; Morris, A.; Boyne, M.; Elhofy, A.; et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: A randomized, double-blind, placebo-controlled study. Gastroenterology 2021, 161, 66–80.e8. [Google Scholar] [CrossRef] [PubMed]
- Daveson, A.J.M.; Ee, H.C.; Andrews, J.M.; King, T.; Goldstein, K.E.; Dzuris, J.L.; MacDougall, J.A.; Williams, L.J.; Treohan, A.; Cooreman, M.P.; et al. Epitope-specific immunotherapy targeting CD4-positive T cells in celiac disease: Safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in a randomized, double-blind, placebo-controlled phase 1 study. EBioMedicine 2017, 26, 78–90. [Google Scholar] [PubMed]
- Goel, G.; King, T.; Daveson, A.J.; Andrews, J.M.; Krishnarajah, J.; Krause, R.; Brown, G.J.; Fogel, R.; Barish, C.F.; Epstein, R.; et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: Two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol. Hepatol. 2017, 2, 479–493. [Google Scholar] [CrossRef]
- Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Venutolo, G.; Terracciano, C.; Carri, M.D.; Di Micco, S.; Landolfi, A.; Fasano, A. The therapeutic use of the zonulin inhibitor AT-1001 (larazotide) for a variety of acute and chronic inflammatory diseases. Curr. Med. Chem. 2021, 28, 5788–5807. [Google Scholar] [CrossRef]
- Kelly, C.P.; Green, P.H.; Murray, J.A.; Dimarino, A.; Colatrella, A.; Leffler, D.A.; Alexander, T.; Arsenescu, R.; Leon, F.; Jiang, J.G.; et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: A randomised placebo-controlled study. Aliment. Pharmacol. Ther. 2013, 37, 252–262. [Google Scholar] [CrossRef]
- Solid organ transplantation from HBV positive donors. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 188. [CrossRef]
- Leffler, D.A.; Kelly, C.P.; Green, P.H.; Fedorak, R.N.; DiMarino, A.; Perrow, W.; Rasmussen, H.; Wang, C.; Bercik, P.; Bachir, N.M.; et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: A randomized controlled trial. Gastroenterology 2015, 148, 1311–1319.e6. [Google Scholar] [CrossRef] [PubMed]
- Hrncir, T. Gut Microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef]
- Mozafarybazargany, M.; Khonsari, M.; Sokoty, L.; Ejtahed, H.S.; Qorbani, M. The effects of probiotics on gastrointestinal symptoms and microbiota in patients with celiac disease: A systematic review and meta-analysis on clinical trials. Clin. Exp. Med. 2023, 23, 2773–2788. [Google Scholar] [CrossRef] [PubMed]
- Khorzoghi, M.S.; Rostami-Nejad, M.; Yadegar, A.; Dabiri, H.; Hadadi, A.; Rodrigo, L. Impact of probiotics on gut microbiota composition and clinical symptoms of coeliac disease patients following gluten-free diet. Contemp. Clin. Trials Commun. 2023, 35, 101201. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kozak, U.; Drabińska, N.; Jarocka-Cyrta, E. The effect of oligofructose-enriched inulin supplementation on gut microbiota, nutritional status and gastrointestinal symptoms in paediatric coeliac disease patients on a gluten-free diet: Study protocol for a pilot randomized controlled trial. Nutr. J. 2017, 16, 47. [Google Scholar] [CrossRef] [PubMed]
- Demiroren, K. Can a synbiotic supplementation contribute to decreasing anti-tissue transglutaminase levels in children with potential celiac disease? Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 397–404. [Google Scholar] [CrossRef]
- Wortelboer, K.; Nieuwdorp, M.; Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine 2019, 44, 716–729. [Google Scholar] [CrossRef]
- Chibbar, R.; Nostedt, J.; Mihalicz, D.; Deschenes, J.; McLean, R.; Dieleman, L.A. Refractory celiac disease type II: A case report and literature review. Front. Med. 2020, 7, 564875. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Bezbaruah, R.; Chavda, V.P.; Nongrang, L.; Alom, S.; Deka, K.; Kalita, T.; Ali, F.; Bhattacharjee, B.; Vora, L. Nanoparticle-based delivery systems for vaccines. Vaccines 2022, 10, 1946. [Google Scholar] [CrossRef]
- Mention, J.J.; Ahmed, M.B.; Bègue, B.; Barbe, U.; Verkarre, V.; Asnafi, V.; Colombel, J.F.; Cugnenc, P.H.; Ruemmele, F.M.; Mcintyre, E.; et al. Interleukin 15: A key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 2003, 125, 730–745. [Google Scholar] [CrossRef] [PubMed]
- Lähdeaho, M.L.; Scheinin, M.; Vuotikka, P.; Taavela, J.; Popp, A.; Laukkarinen, J.; Koffert, J.; Koivurova, O.P.; Pesu, M.; Kivelä, L.; et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: A phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol. Hepatol. 2019, 4, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Mäki, M.; Lundin, K.E.A.; Isola, J.; Friesing-Sosnik, T.; Taavela, J.; Popp, A.; Koskenpato, J.; Langhorst, J.; Hovde, Ø.; et al. A randomized trial of a transglutaminase 2 inhibitor for celiac disease. N. Engl. J. Med. 2021, 385, 35–45. [Google Scholar] [CrossRef]
- Hahn, J.W.; Lee, K.; Shin, J.I.; Cho, S.H.; Turner, S.; Shin, J.U.; Yeniova, A.Ö.; Koyanagi, A.; Jacob, L.; Smith, L.; et al. Global incidence and prevalence of eosinophilic esophagitis, 1976-2022: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 3270–3284.e77. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, J.P.; Gordon, M.; Sinopoulou, V.; Dellon, E.S.; Gupta, S.K.; Reed, C.C.; Gutiérrez-Junquera, C.; Venkatesh, R.D.; Erwin, E.A.; Egiz, A.; et al. Medical treatment of eosinophilic esophagitis. Cochrane Database Syst. Rev. 2023, 7, CD004065. [Google Scholar] [PubMed]
- Ridolo, E.; Barone, A.; Ottoni, M.; Peveri, S.; Montagni, M.; Nicoletta, F. The new therapeutic frontiers in the treatment of eosinophilic esophagitis: Biological drugs. Int. J. Mol. Sci. 2024, 25, 1702. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Spergel, J.M. Biologics in eosinophilic gastrointestinal diseases. Ann. Allergy Asthma Immunol. 2023, 130, 21–27. [Google Scholar] [CrossRef]
- Harb, H.; Chatila, T.A. Mechanisms of dupilumab. Clin. Exp. Allergy 2020, 50, 5–14. [Google Scholar] [CrossRef]
- Inserro, A. FDA Approves Dupilumab as First Therapy for Eosinophilic Esophagitis. The American Journal of Managed Care®. 20 May 2022. Available online: https://www.ajmc.com/view/fda-approves-dupilumab-as-first-therapy-for-eosinophilic-esophagitis (accessed on 25 January 2024).
- Dupixent (Dupilumab) FDA Approved as First and Only Treatment Indicated for Children Aged 1 Year and Older with Eosinophilic Esophagitis (EoE). News Release. Regeneron. Available online: https://investor.regeneron.com/news-releases/news-release-details/dupixentr-dupilumab-fda-approved-first-and-only-treatment (accessed on 25 January 2024).
- Chehade, M.; Dellon, E.S.; Spergel, J.M.; Collins, M.H.; Rothenberg, M.E.; Pesek, R.D.; Hirano, I.; Liu, R.; Laws, E.; Mortensen, E.; et al. Dupilumab for eosinophilic esophagitis in patients 1 to 11 years of age. N. Engl. J. Med. 2024, 390, 2239–2251. [Google Scholar] [CrossRef]
- Kamat, S.; Yaworsky, A.; Guillemin, I.; Krohe, M.; Litcher-Kelly, L.; McLafferty, M.; Lamoureux, R.E.; Lowe, C.; Chehade, M.; Spergel, J.M.; et al. Novel questionnaires for assessing signs and symptoms of eosinophilic esophagitis in children. J. Allergy Clin. Immunol. Pract. 2022, 10, 1856–1863.e3. [Google Scholar] [CrossRef]
- Hirano, I.; Collins, M.H.; Assouline-Dayan, Y.; Evans, L.; Gupta, S.; Schoepfer, A.M.; Straumann, A.; Safroneeva, E.; Grimm, M.; Smith, H.; et al. RPC4046, a monoclonal antibody against IL13, reduces histologic and endoscopic activity in patients with eosinophilic esophagitis. Gastroenterology 2019, 156, 592–603.e10. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Collins, M.H.; Rothenberg, M.E.; Assouline-Dayan, Y.; Evans, L.; Gupta, S.; Schoepfer, A.; Straumann, A.; Safroneeva, E.; Rodriguez, C.; et al. Long-term efficacy and tolerability of RPC4046 in an open-label extension trial of patients with eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 2021, 19, 473–483.e17. [Google Scholar] [CrossRef]
- Rothenberg, M.E.; Wen, T.; Greenberg, A.; Alpan, O.; Enav, B.; Hirano, I.; Nadeau, K.; Kaiser, S.; Peters, T.; Perez, A.; et al. Intravenous anti-IL-13 mAb QAX576 for the treatment of eosinophilic esophagitis. J. Allergy Clin. Immunol. 2015, 135, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.L.M.; Shoda, T.; Caldwell, J.M.; Wen, T.; Aceves, S.S.; Collins, M.H.; Dellon, E.S.; Falk, J.M.; Leung, J.; Martin, L.J.; et al. Esophageal type 2 cytokine expression heterogeneity in eosinophilic esophagitis in a multisite cohort. J. Allergy Clin. Immunol. 2020, 145, 1629–1640.e4. [Google Scholar] [CrossRef] [PubMed]
- Straumann, A.; Conus, S.; Grzonka, P.; Kita, H.; Kephart, G.; Bussmann, C.; Beglinger, C.; Smith, D.A.; Patel, J.; Byrne, M.; et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: A randomised, placebo-controlled, double-blind trial. Gut 2010, 59, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Assa’ad, A.H.; Gupta, S.K.; Collins, M.H.; Thomson, M.; Heath, A.T.; Smith, D.A.; Perschy, T.L.; Jurgensen, C.H.; Ortega, H.G.; Aceves, S.S. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 2011, 141, 1593–1604. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M.; Rothenberg, M.E.; Collins, M.H.; Furuta, G.T.; Markowitz, J.E.; Fuchs, G., III; O’Gorman, M.A.; Abonia, J.P.; Young, J.; Henkel, T.; et al. Reslizumab in children and adolescents with eosinophilic esophagitis: Results of a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2012, 129, 456–463.e3. [Google Scholar] [CrossRef]
- Rochman, Y.; Kotliar, M.; Ben-Baruch Morgenstern, N.; Barski, A.; Wen, T.; Rothenberg, M.E. TSLP shapes the pathogenic responses of memory CD4+ T cells in eosinophilic esophagitis. Sci. Signal. 2023, 16, eadg6360. [Google Scholar] [CrossRef]
- Hoy, S.M. Tezepelumab: First approval. Drugs 2022, 82, 461–468. [Google Scholar] [CrossRef]
- Ye, Y.; Manne, S.; Treem, W.R.; Bennett, D. Prevalence of inflammatory bowel disease in pediatric and adult populations: Recent estimates from large national databases in the United States, 2007–2016. Inflamm. Bowel Dis. 2020, 26, 619–625. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, V.; Romano, C. Genes vs environment in inflammatory bowel disease: An update. Expert. Rev. Clin. Immunol. 2022, 18, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Dipasquale, V. Nutrition in pediatric gastroenterology. Nutrients 2021, 13, 1965. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, V.; Romano, C. Vaccination strategies in pediatric inflammatory bowel disease. Vaccine 2017, 35, 6070–6075. [Google Scholar] [CrossRef]
- Luzentales-Simpson, M.; Pang, Y.C.F.; Zhang, A.; Sousa, J.A.; Sly, L.M. Vedolizumab: Potential mechanisms of action for reducing pathological inflammation in inflammatory bowel diseases. Front. Cell Dev. Biol. 2021, 9, 612830. [Google Scholar] [CrossRef] [PubMed]
- Honap, S.; Netter, P.; Danese, S.; Peyrin-Biroulet, L. An update on the safety of long-term vedolizumab use in inflammatory bowel disease. Expert. Opin. Drug Saf. 2023, 22, 767–776. [Google Scholar] [CrossRef]
- Bokemeyer, B.; Plachta-Danielzik, S.; Sobotzki, C.; Mohl, W.; Hoffstadt, M.; Krause, T.; Atreya, R.; Von der Ohe, M.; Graefe, U.; Trentmann, L.; et al. P726 Effectiveness of vedolizumab therapy in a real-world setting in Germany: First results of the VEDOibd study comparing vedolizumab to the use of other biologics. J. Crohns Colitis 2020, 14, S584. [Google Scholar] [CrossRef]
- Fang, S.; Song, Y.; Zhang, C.; Wang, L. Efficacy and safety of vedolizumab for pediatrics with inflammatory bowel disease: A systematic review. BMC Pediatr. 2022, 22, 175. [Google Scholar] [CrossRef]
- Cucinotta, U.; Dipasquale, V.; Costa, S.; Pellegrino, S.; Ramistella, V.; Romano, C. Vedolizumab-associated pulmonary manifestations in children with ulcerative colitis. J. Clin. Pharm. Ther. 2022, 47, 254–256. [Google Scholar] [CrossRef]
- Rowland, P.; McNicol, M.; Kiel, A.; Maltz, R.M.; Donegan, A.; Dotson, J.L.; Michel, H.K.; Boyle, B. Proactive therapeutic drug monitoring and vedolizumab dose optimization in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 853–861. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, S.; Zhang, C.; Wang, L. Effectiveness and safety of ustekinumab for pediatric inflammatory bowel disease: A systematic review. Paediatr. Drugs 2023, 25, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Rebuck, R.; Wang, Y.; Zou, B.; Adedokun, O.J.; Gasink, C.; Sands, B.E.; Hanauer, S.B.; Targan, S.; Ghosh, S.; et al. Five-year efficacy and safety of ustekinumab treatment in Crohn’s disease: The IM-UNITI trial. Clin. Gastroenterol. Hepatol. 2022, 20, 578–590.e4. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Riaz, M.S.; Esharif, D.; Has, P.; Herzlinger, M.; Shapiro, J.; Subedi, S. Ustekinumab for anti-tumor necrosis factor refractory pediatric ulcerative colitis: A promising approach towards endoscopic healing. Intest. Res. 2024, 22, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.G.; Ferris, L.K.; Menter, A.; Wagner, F.; White, A.; Visvanathan, S.; Lalovic, B.; Aslanyan, S.; Wang, E.E.; Hall, D.; et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: Safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2015, 136, 116–124.e7. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as induction therapy for Crohn’s disease: Results from the phase 3 ADVANCE and MOTIVATE induction trials. Lancet 2022, 399, 2015–2030. [Google Scholar] [CrossRef]
- Ferrante, M.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as maintenance therapy for moderately to severely active Crohn’s disease: Results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet 2022, 399, 2031–2046. [Google Scholar] [CrossRef]
- Pbo, I. Risankizumab induction therapy in patients with moderately to severely active ulcerative colitis: Efficacy and safety in the randomized phase 3 INSPIRE Study. Gastroenterol. Hepatol. 2023, 19 (Suppl. 9), 9–10. [Google Scholar]
- Jefremow, A.; Neurath, M.F. Novel small molecules in IBD: Current state and future perspectives. Cells 2023, 12, 1730. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Vermeire, S.; Peyrin-Biroulet, L.; Dubinsky, M.C.; Panes, J.; Yarur, A.; Ritter, T.; Baert, F.; Schreiber, S.; Sloan, S.; et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): Two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet 2023, 401, 1159–1171. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Dubinsky, M.C.; Sands, B.E.; Panés, J.; Schreiber, S.; Reinisch, W.; Feagan, B.G.; Danese, S.; Yarur, A.J.; D’Haens, G.R.; et al. Efficacy and safety of etrasimod in patients with moderately to severely active isolated proctitis: Results from the phase 3 ELEVATE UC clinical programme. J. Crohns Colitis 2024, 18, 1270–1282. [Google Scholar] [CrossRef]
- Friedberg, S.; Choi, D.; Hunold, T.; Choi, N.K.; Garcia, N.M.; Picker, E.A.; Cohen, N.A.; Cohen, R.D.; Dalal, S.R.; Pekow, J.; et al. Upadacitinib is effective and safe in both ulcerative colitis and Crohn’s disease: Prospective real-world experience. Clin. Gastroenterol. Hepatol. 2023, 21, 1913–1923.e2. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.W.; Yang, H.R.; Moon, J.S.; Chang, J.Y.; Lee, K.; Kim, G.A.; Rahmati, M.; Koyanagi, A.; Smith, L.; Kim, M.S.; et al. Global incidence and prevalence of autoimmune hepatitis, 1970–2022: A systematic review and meta-analysis. EClinicalMedicine 2023, 65, 102280. [Google Scholar] [CrossRef] [PubMed]
- Saul, S.A.; Taylor, S.A.; Mohammad, S. Treatment of refractory pediatric autoimmune hepatitis with rituximab. JPGN Rep. 2021, 2, e069. [Google Scholar] [CrossRef] [PubMed]
- Than, N.N.; Hodson, J.; Schmidt-Martin, D.; Taubert, R.; Wawman, R.E.; Botter, M.; Gautam, N.; Bock, K.; Jones, R.; Appanna, G.D.; et al. Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: Results from the International Autoimmune Hepatitis Group. JHEP Rep. 2019, 1, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Snijders, R.J.; Stoelinga, A.E.; Gevers, T.J.; Pape, S.; Biewenga, M.; Tushuizen, M.E.; Verdonk, R.C.; de Jonge, H.J.; Vrolijk, J.M.; Bakker, S.F.; et al. An open-label randomised-controlled trial of azathioprine vs. mycophenolate mofetil for the induction of remission in treatment-naive autoimmune hepatitis. J. Hepatol. 2024, 80, 576–585. [Google Scholar] [CrossRef]
- Chikhoune, L.; Poggi, C.; Moreau, J.; Dubucquoi, S.; Hachulla, E.; Collet, A.; Launay, D. JAK inhibitors (JAKi): Mechanisms of action and perspectives in systemic and autoimmune diseases. Rev. Med. Interne 2025, 46, 89–106. [Google Scholar] [CrossRef]
- De Maria Marchiano, R.; Di Sante, G.; Piro, G.; Carbone, C.; Tortora, G.; Boldrini, L.; Pietragalla, A.; Daniele, G.; Tredicine, M.; Cesario, A.; et al. Translational research in the era of precision medicine: Where we are and where we will go. J. Pers. Med. 2021, 11, 216. [Google Scholar] [CrossRef]
- Cucinotta, U.; Arrigo, S.; Dipasquale, V.; Gramaglia, S.M.C.; Laganà, F.; Romano, C.; Gandullia, P. Clinical course of very early-onset inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 590–595. [Google Scholar] [CrossRef]
- Mudde, A.C.A.; Booth, C.; Marsh, R.A. Evolution of our understanding of XIAP deficiency. Front. Pediatr. 2021, 9, 660520. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, K.; Li, X.; Zhao, R.; You, J.; Cheng, X.; Wang, Z.; Wang, Y.; Wu, B.; Wang, H.; et al. Mutations in interleukin-10 receptor and clinical phenotypes in patients with very early onset inflammatory bowel disease: A Chinese VEO-IBD collaboration group survey. Inflamm. Bowel Dis. 2017, 23, 578–590. [Google Scholar] [CrossRef]
- Sánchez-Quintero, M.J.; Rodríguez-Díaz, C.; Rodríguez-González, F.J.; Fernández-Castañer, A.; García-Fuentes, E.; López-Gómez, C. Role of mitochondria in inflammatory bowel diseases: A systematic review. Int. J. Mol. Sci. 2023, 24, 17124. [Google Scholar] [CrossRef] [PubMed]
- Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J.F. The Montreal classification of inflammatory bowel disease: Controversies, consensus, and implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef]
- Levine, A.; Griffiths, A.; Markowitz, J.; Wilson, D.C.; Turner, D.; Russell, R.K.; Fell, J.; Ruemmele, F.M.; Walters, T.; Sherlock, M.; et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm. Bowel Dis. 2011, 17, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Hyams, J.S.; Davis, S.; Mack, D.R.; Boyle, B.; Griffiths, A.M.; LeLeiko, N.S.; Sauer, C.G.; Keljo, D.J.; Markowitz, J.; Baker, S.S.; et al. Factors associated with early outcomes following standardised therapy in children with ulcerative colitis (PROTECT): A multicentre inception cohort study. Lancet Gastroenterol. Hepatol. 2017, 2, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.M.; Lee, J.C.; Bond, S.; Dowling, F.; Brezina, B.; Patel, K.V.; Ahmad, T.; Banim, P.J.; Berrill, J.W.; Cooney, R.; et al. A biomarker-stratified comparison of top-down versus accelerated step-up treatment strategies for patients with newly diagnosed Crohn’s disease (PROFILE): A multicentre, open-label randomised controlled trial. Lancet Gastroenterol. Hepatol. 2024, 9, 415–427. [Google Scholar] [CrossRef]
- Triantafillidis, J.K.; Zografos, C.G.; Konstadoulakis, M.M.; Papalois, A.E. Combination treatment of inflammatory bowel disease: Present status and future perspectives. World J. Gastroenterol. 2024, 30, 2068–2080. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, V.; Alibrandi, A.; Pellegrino, S.; Ramistella, V.; Romano, C. Factors that influence infliximab biosimilar trough levels in the pediatric inflammatory bowel disease population. Expert. Rev. Clin. Immunol. 2024, 20, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, U.; Romano, C.; Dipasquale, V. Diet and nutrition in pediatric inflammatory bowel diseases. Nutrients 2021, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Michel, H.K.; Noll, R.B.; Siripong, N.; Kim, S.C.; Lipstein, E.A. Shared decision making about starting anti-TNFs: A pediatric perspective. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 339–342. [Google Scholar] [CrossRef]
- Tyers, M.; Mann, M. From genomics to proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef]
- Fabian, O.; Bajer, L.; Drastich, P.; Harant, K.; Sticova, E.; Daskova, N.; Modos, I.; Tichanek, F.; Cahova, M. A current state of proteomics in adult and pediatric inflammatory bowel diseases: A systematic search and review. Int. J. Mol. Sci. 2023, 24, 9386. [Google Scholar] [CrossRef] [PubMed]
- Amiri-Dashatan, N.; Koushki, M.; Abbaszadeh, H.A.; Rostami-Nejad, M.; Rezaei-Tavirani, M. Proteomics applications in health: Biomarker and drug discovery and food industry. Iran. J. Pharm. Res. 2018, 17, 1523–1536. [Google Scholar] [PubMed]
- Van Den Bossche, T.; Arntzen, M.Ø.; Becher, D.; Benndorf, D.; Eijsink, V.G.; Henry, C.; Jagtap, P.D.; Jehmlich, N.; Juste, C.; Kunath, B.J.; et al. The Metaproteomics Initiative: A coordinated approach for propelling the functional characterization of microbiomes. Microbiome 2021, 9, 243. [Google Scholar] [CrossRef] [PubMed]
Vedolizumab | Ustekinumab | Risankizumab | |
---|---|---|---|
Mechanism of action | Targets 47 integrin (inhibiting leukocyte trafficking to the gastrointestinal tract). | Suppresses IL-12 and IL-23, cytokines involved in inflammation. | Targets p19 component of IL-23 cytokine implicated in the pathogenesis. |
Indications | Adult patients with moderate to severe CD and UC. | Adult patients with moderate to severe CD and UC. | Clinical trials in CD and UC patients, not yet licensed for IBD therapy. |
Clinical trial findings | - High clinical remission rates in pediatric CD (6–17 years) in the VEDOIBD trial. - Positive effects on steroid-free remission and mucosal healing in pediatric CD. - Effective in pediatric UC. | - High clinical remission rates in 12–17 years CD patients (IM-UNITI study). - Limited evidence for pediatric UC (retrospective chart analysis: 9/10 children with UC achieved steroid-free remission). | - Intravenous risankizumab was effective as induction therapy in CD (ADVANCE, MOTIVATE studies). - Subcutaneous risankizumab showed efficacy in sustaining remission in CD (FORTIFY study). - Significant improvement in clinical and endoscopic remission in UC (INSPIRE study). |
Pediatric use | Off-label in pediatric IBD. | Off-label in pediatric IBD. | Not yet licensed for pediatric use. |
Field | Application in IBD |
---|---|
Disease phenotype and severity | Exclusive enteral nutrition for children with mild-to-moderate Crohn’s disease limited to the ileum. |
Treatment response and monitoring | Optimization of biological treatment based on therapeutic drug monitoring (through levels and anti-drug antibodies). |
Pharmacogenomics | Determination of optimal thiopurine dosage through genetic testing for TPMT and NUDT15 variants. |
Nutritional interventions | Nutritional therapies for Crohn’s disease (i.e., exclusive enteral nutrition, Crohn’s disease exclusion diet). |
Lifestyle | Smoke as risk factor for disease relapse. |
Shared decision-making | Improving long-term treatment adherence by involving pediatric patients and their families in treatment decisions. |
Field | Strategy Applied | Goal |
---|---|---|
Disease mechanisms | Proteomic analyses of intestinal tissues and immune cells | Insights into the dysregulated signaling pathways and immune responses that drive disease pathogenesis. |
Profiling the expression levels of proteins involved in inflammation, immune regulation, barrier function, and tissue remodeling | To elucidate the molecular mechanisms underlying the development and progression of IBD. | |
Biomarker discovery | Proteomic analyses of serum, fecal, or mucosal samples | Discovery of differential expression of proteins associated with inflammation (i.e., cytokines, acute phase reactants), intestinal barrier integrity (i.e., tight junction proteins), and microbe-host interactions (i.e., antimicrobial peptides). |
Personalized medicine | Proteomic profiling of mucosal samples | Identification of subgroups of patients with different molecular phenotypes or treatment responses. |
Drug development | Identification of dysregulated proteins and signaling pathways associated with disease pathogenesis | Prioritize potential targets for drug interventions and optimize therapeutic strategies. |
Monitoring changes in protein expression profiles in response to treatment | Evaluation of drug efficacy and safety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipasquale, V.; Romano, C. New Therapeutic Challenges in Pediatric Gastroenterology: A Narrative Review. Healthcare 2025, 13, 923. https://doi.org/10.3390/healthcare13080923
Dipasquale V, Romano C. New Therapeutic Challenges in Pediatric Gastroenterology: A Narrative Review. Healthcare. 2025; 13(8):923. https://doi.org/10.3390/healthcare13080923
Chicago/Turabian StyleDipasquale, Valeria, and Claudio Romano. 2025. "New Therapeutic Challenges in Pediatric Gastroenterology: A Narrative Review" Healthcare 13, no. 8: 923. https://doi.org/10.3390/healthcare13080923
APA StyleDipasquale, V., & Romano, C. (2025). New Therapeutic Challenges in Pediatric Gastroenterology: A Narrative Review. Healthcare, 13(8), 923. https://doi.org/10.3390/healthcare13080923