Spatial Disparities in Access to Healthcare Professionals in Sichuan: Evidence from County-Level Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Setting and Data Resources
2.3. Time-Series Analysis
2.4. Spatial Clustering Analysis
2.4.1. Spatial Autocorrelation Analysis
2.4.2. Space–Time Scan Analysis
2.5. Software Tools
3. Results
3.1. Descriptive Analysis
3.2. Temporal Trends
3.3. Spatial Changing Patterns
3.3.1. Global Spatial Autocorrelation
3.3.2. Local Spatial Autocorrelation
3.4. Spatial Changing Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Health Professions Network Nursing and Midwifery Office Department of Human Resources for Health Human Resources for Health Framework for Action on Interprofessional Education & Collaborative Practice; World Health Organization Press: Geneva, Switzerland, 2010. [Google Scholar]
- Campbell, J.; Buchan, J.; Cometto, G.; David, B.; Dussault, G.; Fogstad, H.; Fronteira, I.; Lozano, R.; Nyonator, F.; Pablos-Mendez, A. Human resources for health and universal health coverage: Fostering equity and effective coverage\rRessources humaines pour la sante et la couverture sanitaire universelle: Promouvoir l’equite et une couverture efficace. Bull. World Health Organ. 2013, 91, 853–863. [Google Scholar] [CrossRef] [PubMed]
- WHO. Reassessing the Relationship between Human Resources for Health, Intervention Coverage and Health Outcomes; WHO: Genova, Switherland, 2006. [Google Scholar]
- Cylus, J.; Richardson, E.; Findley, L.; Longley, M.; O’Neill, C.; Steel, D. United Kingdom: Health System Review. Health Syst. Transit. 2015, 17, 126. [Google Scholar]
- Crettenden, I.F.; McCarty, M.V.; Fenech, B.J.; Heywood, T.; Taitz, M.C.; Tudman, S. How evidence-based workforce planning in Australia is informing policy development in the retention and distribution of the health workforce. Hum. Resour. Health 2014, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Vives, A.; Vanroelen, C.; Amable, M.; Ferrer, M.; Moncada, S.; Llorens, C.; Muntaner, C.; Benavides, F.; Benach, J. Employment precariousness in Spain: Prevalence, social distribution, and population-attributable risk percent of poor mental health. Int. J. Health Serv. 2011, 41, 625–646. [Google Scholar] [CrossRef] [PubMed]
- Tangcharoensathien, V.; Limwattananon, S.; Suphanchaimat, R.; Patcharanarumol, W.; Sawaengdee, K.; Putthasri, W. Health workforce contributions to health system development: A platform for universal health coverage. Bull. World Health Organ. 2013, 91, 874–880. [Google Scholar] [CrossRef]
- Van Rensburg, H.C.J. South Africa’s protracted struggle for equal distribution and equitable Access—Still not there. Hum. Resour. Health 2014, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.; Dal Poz, M.R.; Carvalho, C.L. Monitoring inequalities in the health workforce: The case study of brazil 1991–2005. PLoS ONE 2012, 7, e33399. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, I. Health workforce in India: Assessment of availability, production and distribution. WHO S. E. Asia J. Public Health 2013, 2, 106. [Google Scholar] [CrossRef] [Green Version]
- Kurniati, A.; Rosskam, E.; Afzal, M.M.; Suryowinoto, T.B.; Mukti, A.G. Strengthening Indonesia’s health workforce through partnerships. Public Health 2015, 129, 1138–1149. [Google Scholar] [CrossRef]
- Tandi, T.E.; Cho, Y.; Akam, A.J.C.; Afoh, C.O.; Ryu, S.H.; Choi, M.S.; Kim, K.; Choi, J.W. Cameroon public health sector: Shortage and inequalities in geographic distribution of health personnel. Int. J. Equity Health 2015, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, S.; Fan, V.Y.; Zhang, J.; Zhang, L.; Ke, Y.; Dong, Z.; Chen, L.C. China’s human resources for health: Quantity, quality, and distribution. Lancet 2008, 372, 1774–1781. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Twum, P.; Li, S. National equity of health resource allocation in China: Data from 2009 to 2013. Int. J. Equity Health 2016, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Liu, P.; Zheng, Y.; Zhou, W.; Zou, J.; Wang, X.; Wang, L.; Guo, T.; Ma, X.; He, Y. Equity of health resource distribution in China during 2009–15: An analysis of cross-sectional nationwide data. Lancet 2017, 390, S6. [Google Scholar] [CrossRef]
- Zhu, B.; Hsieh, C.W.; Zhang, Y. Incorporating spatial statistics into examining equity in health workforce distribution: An empirical analysis in the Chinese context. Int. J. Environ. Res. Public Health 2018, 15, 1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Pan, J. Assessing the disparity in spatial access to hospital care in ethnic minority region in Sichuan Province, China. BMC Health Serv. Res. 2016, 16, 399. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, E.; Batenburg, R.; Groenewegen, P.P.; Larsen, C. Bringing a European perspective to the health human resources debate: A scoping study. Health Policy N. Y. 2013, 110, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fu, H. China’s health care system reform: Progress and prospects. Int. J. Health Plan. Manag. 2017, 32, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Altman, I. Changes in physician-population ratios among the states. Public Health Rep. 1961, 76, 1051–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, A.; Shetty, S. The Correlation of Physician to Population Ratio and Life Expectancy in Asian Countries. J. Med. Sci. Clin. Res. 2014, 2, 699–706. [Google Scholar]
- Professional Regulation Commission, National Health Commission. Chinese; Peking Union Medical College Press: Beijing, China, 2017. [Google Scholar]
- Krzywinski, M.; Altman, N. Visualizing samples with box plots. Nat. Methods 2014, 11, 119–120. [Google Scholar] [CrossRef]
- McGill, R.; Tukey, J.W.; Larsen, W.A. Variations of box plots. Am. Stat. 1978, 32, 12–16. [Google Scholar]
- Fischer, M.M.; Griffith, D.A. Modelling Spatial Autocorrelation in Spatial Interaction Data. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.A.; Fischer, M.M.; LeSage, J. The spatial autocorrelation problem in spatial interaction modelling: A comparison of two common solutions. Lett. Spat. Resour. Sci. 2017, 10, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Wrigley, N.; Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications. Geogr. J. 1982. [Google Scholar] [CrossRef]
- Cliff, A.; Ord, K. Testing for Spatial Autocorrelation Among Regression Residuals. Geogr. Anal. 1972, 4, 267–284. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–12. [Google Scholar] [CrossRef]
- Kulldorff, M.; Rand, K.; Gherman, G.; Williams, G.; DeFrancesco, D. SaTScan. V 2.1: Software for the Spatial and Space-Time Scan Statistics; SaTScan; National Cancer Institute: Bethesda, MD, USA, 1998.
- Kulldorff, M. Prospective time periodic geographical disease surveillance using a scan statistic. J. R. Stat. Soc. Ser. A Stat. Soc. 2001, 164, 61–72. [Google Scholar] [CrossRef]
- Kulldorff, M.; Heffernan, R.; Hartman, J.; Assunção, R.; Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005, 2, e59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulldorff, M.; Athas, W.F.; Feuer, E.J.; Miller, B.A.; Key, C.R. Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am. J. Public Health 1998, 88, 1377–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations World Bank. World Development Indicators (WDI) Data Catalog. Available online: https://datacatalog.worldbank.org/dataset/world-development-indicators (accessed on 15 August 2021).
- WHO. The World Health Report 2013: Research for Universal Health Coverage; World Health Organization Press: Geneva, Switzerland, 2013. [Google Scholar]
- Junye, T.; Jing, L.; Meihua, H.; Huijuan, L.; Yanming, D. Research progress on allocation and usage of nursing human resource in hospital. Chin. Nurs. Manag. 2014, 14, 1300–1304. [Google Scholar]
- World Health Organisation. Density of Physicians (Total Number per 1000 Population). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/physicians-density-(per-1000-population) (accessed on 15 August 2021).
- Song, F.; Rathwell, T.; Clayden, D. Doctors in China from 1949 to 1988. Health Policy Plan. 1991, 6, 64–70. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, X.; Ding, Y.; Wang, D.; Lu, Z.; Yu, M. Inequality trends of health workforce in different stages of medical system reform (1985–2011) in China. Hum. Resour. Health 2015, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Xu, X.; Trigo, V.; Ramalho, N.J.C. Doctor-patient relationships (DPR) in China. J. Health Organ. Manag. 2017, 31, 110–124. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. Protecting Chinese doctors. Lancet 2020, 395, 90. [Google Scholar] [CrossRef]
- Yin, C.; He, Q.; Liu, Y.; Chen, W.; Gao, Y. Inequality of public health and its role in spatial accessibility to medical facilities in China. Appl. Geogr. 2018, 92, 50–62. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Duan, Z.; Pan, J. Spatial accessibility of primary health care in China: A case study in Sichuan Province. Soc. Sci. Med. 2018, 209, 14–24. [Google Scholar] [CrossRef]
Year | HT | LD | RN | |||
Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | |
2009 | 0.423706 *** | 0.000010 | 0.405813 *** | 0.000010 | 0.410237 *** | 0.000010 |
2010 | 0.416124 *** | 0.000010 | 0.406026 *** | 0.000010 | 0.407913 *** | 0.000010 |
2011 | 0.391384 *** | 0.000010 | 0.405055 *** | 0.000010 | 0.405743 *** | 0.000010 |
2012 | 0.391384 *** | 0.000010 | 0.397521 *** | 0.000010 | 0.379301 *** | 0.000010 |
2013 | 0.372937 *** | 0.000010 | 0.411781 *** | 0.000010 | 0.385633 *** | 0.000010 |
2014 | 0.358038 *** | 0.000010 | 0.398195 *** | 0.000010 | 0.360035 *** | 0.000010 |
2015 | 0.344185 *** | 0.000010 | 0.381742 *** | 0.000010 | 0.351074 *** | 0.000010 |
2016 | 0.345551 *** | 0.000010 | 0.402015 *** | 0.000010 | 0.346748 *** | 0.000010 |
2017 | 0.347294 *** | 0.000010 | 0.406406 *** | 0.000010 | 0.352470 *** | 0.000010 |
2018 | 0.294261 *** | 0.000010 | 0.352636 *** | 0.000010 | 0.293614 *** | 0.000010 |
2019 | 0.313754 *** | 0.000010 | 0.367173 *** | 0.000010 | 0.316865 *** | 0.000010 |
Year | PH | TE | IN | |||
Moran’s I | pValue | Moran’s I | pValue | Moran’s I | pValue | |
2009 | 0.522996 *** | 0.000010 | 0.344224 *** | 0.000010 | 0.647758 *** | 0.000010 |
2010 | 0.520049 *** | 0.000010 | 0.368554 *** | 0.000010 | 0.617869 *** | 0.000010 |
2011 | 0.532507 *** | 0.000010 | 0.362150 *** | 0.000010 | 0.612072 *** | 0.000010 |
2012 | 0.469997 *** | 0.000010 | 0.289329 *** | 0.000010 | 0.620311 *** | 0.000010 |
2013 | 0.517939 *** | 0.000010 | 0.282955 *** | 0.000010 | 0.544234 *** | 0.000010 |
2014 | 0.525362 *** | 0.000010 | 0.306172 *** | 0.000010 | 0.549515 *** | 0.000010 |
2015 | 0.473459 *** | 0.000010 | 0.311680 *** | 0.000010 | 0.587813 *** | 0.000010 |
2016 | 0.483436 *** | 0.000010 | 0.295715 *** | 0.000010 | 0.637788 *** | 0.000010 |
2017 | 0.487016 *** | 0.000010 | 0.319444 *** | 0.000010 | 0.675645 *** | 0.000010 |
2018 | 0.423995 *** | 0.000010 | 0.271670 *** | 0.000010 | 0.710535 *** | 0.000010 |
2019 | 0.423461 *** | 0.000010 | 0.277780 *** | 0.000010 | 0.763703 *** | 0.000010 |
Types | Cluster Type | Center | Areas | Coordinates | Radius (Km) | RR | Inside Time Trend | Outside Time Trend | p-Value |
---|---|---|---|---|---|---|---|---|---|
HT | Most likely cluster | Jinjiangqu (Chengdu) | 6 | 30.67 N, 104.08 E | 18.28 | 3.93 | 3.761% annual increase | 6.765% annual increase | 0.001 |
HT | Secondary cluster | Maerkangshi (Aba) | 1 | 31.90 N, 102.22 E | 0 | 1.33 | 28.864% annual increase | 6.685% annual increase | 0.001 |
HT | 2nd secondary cluster | Qianfengqu (Guangan) | 1 | 30.33 N, 106.49 E | 0 | 0.28 | 36.211% annual increase | 6.702% annual increase | 0.001 |
HT | 3rd secondary cluster | Baoxingxian (Yaan) | 11 | 30.37 N, 102.82 E | 72.76 | 1.01 | 9.669% annual increase | 6.593% annual increase | 0.001 |
HT | 4th secondary cluster | Naxiqu (Luzhou) | 4 | 28.77 N, 105.37 E | 29.56 | 1.22 | 10.145% annual increase | 6.610% annual increase | 0.001 |
HT | Please see other clusters in Figure 6 and Figure 7 | ||||||||
LD | Most likely cluster | Xichangshi (Liangshan) | 1 | 27.90 N, 102.27 E | 0 | 3.49 | 12.676% annual decrease | 4.273% annual increase | 0.001 |
LD | Secondary cluster | Anzhouqu (Mianyang) | 58 | 31.53 N, 104.57 E | 168.24 | 1.58 | 4.824% annual increase | 2.794% annual increase | 0.001 |
LD | 2nd secondary cluster | Qianfengqu (Guangan) | 1 | 30.33 N, 106.49 E | 0 | 0.27 | 31.115% annual increase | 3.888% annual increase | 0.001 |
LD | 3rd secondary cluster | Bazhouqu (Bazhong) | 6 | 31.85 N, 106.77 E | 62.56 | 0.80 | 1.408% annual increase | 4.011% annual increase | 0.001 |
LD | 4th secondary cluster | Gulinxian (Luzhou) | 8 | 28.05 N, 105.82 E | 105.29 | 0.79 | 5.909% annual increase | 3.797% annual increase | 0.001 |
RN | Most likely cluster | Jinjiangqu (Chengdu) | 4 | 30.67 N, 104.08 E | 18.28 | 4.70 | 5.672% annual increase | 11.244% annual increase | 0.001 |
RN | Secondary cluster | Linshuixian (Guangan) | 49 | 30.33 N, 106.93 E | 224.67 | 0.51 | 12.386% annual increase | 9.925% annual increase | 0.001 |
RN | 2nd secondary cluster | Xichangshi (Liangshan) | 1 | 27.90 N, 102.27 E | 0 | 2.51 | 4.936% annual increase | 10.759% annual increase | 0.001 |
RN | 3rd secondary cluster | Leiboxian (Liangshan) | 12 | 28.27 N, 103.57 E | 110.18 | 0.46 | 15.845% annual increase | 10.612% annual increase | 0.001 |
PH | Most likely cluster | Jinjiangqu (Chengdu) | 6 | 30.67 N, 104.08 E | 18.28 | 3.95 | 1.043% annual increase | 4.193% annual increase | 0.001 |
PH | Secondary cluster | Jiangyoushi (Mianyang) | 1 | 31.78 N, 104.75 E | 0 | 1.62 | 3.027% annual decrease | 4.194% annual increase | 0.001 |
PH | 2nd secondary cluster | Hongyuanxian (Aba) | 15 | 32.80 N, 102.55 E | 209.05 | 0.77 | 12.480% annual increase | 3.991% annual increase | 0.001 |
PH | 3rd secondary cluster | Jinyangxian (Liangshan) | 27 | 27.70 N, 103.25 E | 177.47 | 0.51 | 7.871% annual increase | 3.933% annual increase | 0.001 |
PH | 4th secondary cluster | Qianfengqu (Guangan) | 1 | 30.33 N, 106.49 E | 0 | 0.25 | 39.763% annual increase | 4.087% annual increase | 0.001 |
PH | Please see other clusters in Figure 6 and Figure 7 | ||||||||
TE | Most likely cluster | Wuhouqu (Chengdu) | 3 | 30.65 N, 104.05 E | 3.63 | 5.74 | 2.312% annual increase | 7.547% annual increase | 0.001 |
TE | Secondary cluster | Zhaojuexian (Liangshan) | 26 | 28.02 N, 102.85 E | 164.56 | 0.75 | 12.240% annual increase | 7.022% annual increase | 0.001 |
TE | 2nd secondary cluster | Ruoergaixian (Aba) | 15 | 33.58 N, 102.95 E | 247.50 | 1.08 | 16.565% annual increase | 7.169% annual increase | 0.001 |
TE | 3rd secondary cluster | Qianfengqu (Guangan) | 1 | 30.33 N, 106.49 E | 0 | 0.33 | 52.509% annual increase | 7.311% annual increase | 0.001 |
TE | 4th secondary cluster | Longchangshi (Neijiang) | 3 | 29.35 N, 105.28 E | 33.89 | 0.94 | 3.207% annual increase | 7.434% annual increase | 0.001 |
TE | Please see other clusters in Figure 6 and Figure 7 | ||||||||
IN | Most likely cluster | Wenjiangqu (Chengdu) | 16 | 30.70 N, 103.83 E | 44.48 | 1.86 | 1.481% annual decrease | 3.938% annual increase | 0.001 |
IN | Secondary cluster | Derongxian (Ganzi) | 52 | 28.72 N, 99.28 E | 418.08 | 1.36 | 7.558% annual increase | 2.350% annual increase | 0.001 |
IN | 2nd secondary cluster | Jiuzhaigouxian (Aba) | 7 | 33.27 N, 104.23 E | 162.44 | 1.66 | 10.695% annual increase | 2.856% annual increase | 0.001 |
IN | 3rd secondary cluster | Pingchangxian (Bazhong) | 1 | 31.57 N, 107.10 E | 0 | 0.72 | 7.915% annual decrease | 3.119% annual increase | 0.001 |
IN | 4th secondary cluster | Cuipingqu (Yibin) | 20 | 28.77 N, 104.62 E | 81.72 | 0.89 | 5.753% annual increase | 2.720% annual increase | 0.001 |
IN | Please see other clusters in Figure 6 and Figure 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Ning, W.; Xie, T.; Liu, J.; He, R.; Zhu, B.; Mao, Y. Spatial Disparities in Access to Healthcare Professionals in Sichuan: Evidence from County-Level Data. Healthcare 2021, 9, 1053. https://doi.org/10.3390/healthcare9081053
Zhang N, Ning W, Xie T, Liu J, He R, Zhu B, Mao Y. Spatial Disparities in Access to Healthcare Professionals in Sichuan: Evidence from County-Level Data. Healthcare. 2021; 9(8):1053. https://doi.org/10.3390/healthcare9081053
Chicago/Turabian StyleZhang, Ning, Wei Ning, Tao Xie, Jinlin Liu, Rongxin He, Bin Zhu, and Ying Mao. 2021. "Spatial Disparities in Access to Healthcare Professionals in Sichuan: Evidence from County-Level Data" Healthcare 9, no. 8: 1053. https://doi.org/10.3390/healthcare9081053
APA StyleZhang, N., Ning, W., Xie, T., Liu, J., He, R., Zhu, B., & Mao, Y. (2021). Spatial Disparities in Access to Healthcare Professionals in Sichuan: Evidence from County-Level Data. Healthcare, 9(8), 1053. https://doi.org/10.3390/healthcare9081053