Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance
Abstract
:1. Introduction
2. Phthalocyanine- and Porphyrin-Based Sensors for the Detection of Gases and Volatile Organic Vapors
2.1. SPR Sensors
2.2. MOSPR Sensors
2.3. TIRE Sensors
3. Phthalocyanine- and Porphyrin-Based SPR Sensors for the Detection of Analytes in Solutions
4. Hybrid Materials of Phthalocyanines and Porphyrins with Carbon Nanotubes and Other Porous Media
5. Phthalocyanine and Porphyrin-Based MOFs
6. Current Issues and Future Scope
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, D.; Manjunatha, R.; Sampath, S.; Ray, A.K. Phthalocyanines as Sensitive Materials for Chemical Sensors. In Materials for Chemical Sensing; Paixão, T.R.L.C., Reddy, S.M., Eds.; Springer: Cham, Switzerland, 2017; pp. 165–226. [Google Scholar]
- De, S.; Devic, T.; Fateeva, A. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Trans. 2021, 50, 1166–1188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wasson, M.C.; Shayan, M.; Berdichevsky, E.K.; Ricardo-Noordberg, J.; Singh, Z.; Papazyan, E.K.; Castro, A.J.; Marino, P.; Ajoyan, Z.; et al. A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coord. Chem. Rev. 2021, 429, 213615. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wang, T.-X.; Ding, X.; Lei, S.; Han, B.-H. Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. Coord. Chem. Rev. 2021, 439, 213875. [Google Scholar] [CrossRef]
- Basova, T.V.; Ray, A.K. Review—Hybrid Materials Based on Phthalocyanines and Metal Nanoparticles for Chemiresistive and Electrochemical Sensors: A Mini-Review. ECS J. Solid State Sci. Technol. 2020, 9, 061001. [Google Scholar] [CrossRef]
- Magna, G.; Mandoj, F.; Stefanelli, M.; Pomarico, G.; Monti, D.; Di Natale, C.; Paolesse, R.; Nardis, S. Recent Advances in Chemical Sensors Using Porphyrin-Carbon Nanostructure Hybrid Materials. Nanomaterials 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, Z.Z.; Kılınç, N.; Atilla, D.; Gürek, A.G.; Ahsen, V. Recent studies chemical sensors based on phthalocyanines. J. Porphyr. Phthalocyanines 2009, 13, 1179–1187. [Google Scholar] [CrossRef]
- Bouvet, M.; Gaudillat, P.; Suisse, J.-M. Phthalocyanine-based hybrid materials for chemosensing. J. Porphyr. Phthalocyanines 2013, 17, 913–919. [Google Scholar] [CrossRef]
- Demir, E.; Silah, H.; Uslu, B. Phthalocyanine Modified Electrodes in Electrochemical Analysis. Crit. Rev. Anal. Chem. 2022, 52, 425–461. [Google Scholar] [CrossRef] [PubMed]
- Klyamer, D.; Bonegardt, D.; Basova, T. Fluoro-Substituted Metal Phthalocyanines for Active Layers of Chemical Sensors. Chemosensors 2021, 9, 133. [Google Scholar] [CrossRef]
- Kumar, A.; Meunier-Prest, R.; Bouvet, M. Organic Heterojunction Devices Based on Phthalocyanines: A New Approach to Gas Chemosensing. Sensors 2020, 20, 4700. [Google Scholar] [CrossRef]
- Klyamer, D.; Shutilov, R.; Basova, T. Recent Advances in Phthalocyanine and Porphyrin-Based Materials as Active Layers for Nitric Oxide Chemical Sensors. Sensors 2022, 22, 895. [Google Scholar] [CrossRef]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef] [PubMed]
- Celiesiute, R.; Ramanaviciene, A.; Gicevicius, M.; Ramanavicius, A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit. Rev. Anal. Chem. 2018, 49, 195–208. [Google Scholar] [CrossRef]
- Gounden, D.; Nombona, N.; van Zyl, W.E. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev. 2020, 420, 213359. [Google Scholar] [CrossRef]
- Francis, S.; Joy, F.; Jayaraj, H.; Sunny, N.; Rajith, L. Recent advances in porphyrin-based optical sensing. J. Iran. Chem. Soc. 2024, 21, 13–70. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Q.; Shen, J.; Li, H.; Zhang, Y.; Chen, W.; Yu, S.; Li, X.; Chen, Y. Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord. Chem. Rev. 2023, 482, 215078. [Google Scholar] [CrossRef]
- Simpson, T.R.E.; Cook, M.J.; Petty, M.C.; Thorpe, S.C.; Russell, D.A. Surface plasmon resonance of self-assembled phthalocyanine monolayers: Possibilities for optical gas sensing. Analyst 1996, 121, 1501–1505. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Shinbo, K.; Lertvachirapaiboon, C.; Ohdaira, Y.; Baba, A.; Kato, K. In-situ and simultaneous evaluation of optical absorption and deposition for phthalocyanine layer-by-layer thin films using an optical waveguide sensor utilizing surface plasmon resonance. Jpn. J. Appl. Phys. 2020, 59, 116501. [Google Scholar] [CrossRef]
- Manera, M.G.; Ferreiro-Vila, E.; Cebollada, A.; García-Martín, J.M.; García-Martín, A.; Giancane, G.; Valli, L.; Rella, R. Ethane-Bridged Zn Porphyrins Dimers in Langmuir−Schäfer Thin Films: Spectroscopic, Morphologic, and Magneto-Optical Surface Plasmon Resonance Characterization. J. Phys. Chem. C 2012, 116, 10734–10742. [Google Scholar] [CrossRef]
- Al Rubaye, A.; Nabok, A.; Catanante, G.; Marty, J.-L.; Takacs, E.; Szekacs, A. Detection of ochratoxin A in aptamer assay using total internal reflection ellipsometry. Sens. Actuators B Chem. 2018, 263, 248–251. [Google Scholar] [CrossRef]
- Pant, U.; Mohapatra, S.; Moirangthem, R.S. Total internal reflection ellipsometry based SPR sensor for studying biomolecular interaction. Mater. Today Proc. 2020, 28, 254–257. [Google Scholar] [CrossRef]
- Arwin, H. TIRE and SPR-Enhanced SE for Adsorption Processes. In Ellipsometry of Functional Organic Surfaces and Films; Hinrichs, K., Eichhorn, K.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 249–264. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Zhang, Y.; Fang, H.; Min, C.; Zhu, S.; Yuan, X.C. Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability. Sens. Actuators B Chem. 2015, 209, 313–322. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturfors A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Shinbo, K.; Mizusawa, K.; Takahashi, H.; Ohdaira, Y.; Baba, A.; Kato, K.; Kaneko, F.; Miyadera, N. Vapor Sensing Using Waveguide-Based Multiple Surface Plasmon Resonance Sensors. Jpn. J. Appl. Phys. 2011, 50, 01BC15. [Google Scholar] [CrossRef]
- Shinbo, K.; Ishikawa, H.; Baba, A.; Ohdaira, Y.; Kato, K.; Kaneko, F. Fabrication of a Quartz-Crystal-Microbalance/Surface-Plasmon-Resonance Hybrid Sensor and Its Use for Detection of Polymer Thin-Film Deposition and Evaluation of Moisture Sorption Phenomena. Appl. Phys. Express. 2012, 5, 036603. [Google Scholar] [CrossRef]
- Pockrand, I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 1978, 72, 577–588. [Google Scholar] [CrossRef]
- Xie, Y.; Sengupta, M.; Habte, A.; Andreas, A. The “Fresnel Equations” for diffuse radiation on inclined photovoltaic surfaces (FEDIS). Renew. Sustain. Energy Rev. 2022, 161, 112362. [Google Scholar] [CrossRef]
- Evyapan, M.; Dunbar, A.D.F. Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Appl. Surf. Sci. 2016, 362, 191–201. [Google Scholar] [CrossRef]
- Kazak, A.V.; Marchenkova, M.A.; Khorkov, K.S.; Kochuev, D.A.; Rogachev, A.V.; Kholodkov, I.V.; Usol’tseva, N.V.; Savelyev, M.S.; Tolbin, A.Y. Ultrathin Langmuir–Schaefer films of slipped-cofacial J-type phthalocyanine dimer: Supramolecular organization, UV/Vis/NIR study and nonlinear absorbance of femtosecond laser radiation. Appl. Surf. Sci. 2021, 545, 148993. [Google Scholar] [CrossRef]
- Mansur, H.S.; de Sales, N.F.; Mansur, A.A.P. Preparation and characterization of 5,10,15,20-tetraphenylporphyrin Langmuir films for gas chemsensor applications. Surf. Interface Anal. 2011, 43, 1423–1429. [Google Scholar] [CrossRef]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef] [PubMed]
- Klyamer, D.D.; Basova, T.V. Effect of the structural features of metal phthalocyanine films on their electrophysical properties. J. Struct. Chem. 2022, 63, 997–1018. [Google Scholar] [CrossRef]
- Basova, T.V.; Mikhaleva, N.S.; Hassan, A.K.; Kiselev, V.G. Thin Films of Fluorinated 3d-Metal Phthalocyanines as Chemical Sensors of Ammonia: An Optical Spectroscopy Study. Sens. Actuators B Chem. 2016, 227, 634–642. [Google Scholar] [CrossRef]
- Spadavecchia, J.; Ciccarella, G.; Rella, R. Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application. Sens. Actuators B Chem. 2005, 106, 212–220. [Google Scholar] [CrossRef]
- Lucarini, V.; Saarinen, J.J.; Peiponen, K.-E.; Vartiainen, E.M. Kramers–Kronigrelations in Optical Materials Research; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2010; Volume 110, p. 110. [Google Scholar]
- Opilski, Z.; Pustelny, T.; Ignac-Nowicka, J. Spectral studies of nickel-phthalocyanines. Photon. Lett. Pol. 2019, 11, 53–55. [Google Scholar] [CrossRef]
- El-Basaty, A.B.; El-Brolossy, T.A.; Abdalla, S.; Negm, S.; Abdella, R.A.; Talaat, H. Surface plasmon sensor for NO2 gas. Surf. Interface Anal. 2008, 40, 1623–1626. [Google Scholar] [CrossRef]
- El-Bosaty, A.B.; El-Brolossy, T.A.; Abdalla, S.; Negm, S.; Abdella, R.A.; Talaat, H. Surface plasmon-cobalt phthalocyanine sensor for NO2 gas. Egypt. J. Solids 2006, 29, 121–129. [Google Scholar]
- Evyapan, M.; Kadem, B.; Basova, T.V.; Yushina, I.V.; Hassan, A.K. Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sensors Actuators B Chem. 2016, 236, 605–613. [Google Scholar] [CrossRef]
- Basova, T.; Tsargorodskaya, A.; Nabok, A.; Hassan, A.K.; Gürek, A.G.; Gümüş, G.; Ahsen, V. Investigation of gas-sensing properties of copper phthalocyanine films. Mater. Sci. Eng. C 2009, 29, 814–818. [Google Scholar] [CrossRef]
- Çapan, I.; Ilhan, B. Gas sensing properties of mixed stearic acid/phthalocyanine LB thin films investigated using QCM and SPR. J. Optoelectron. Adv. Mater. 2015, 17, 456–461. [Google Scholar]
- Acikbas, Y.; Erdogan, M.; Capan, R.; Ozkaya, C.; Baygu, Y.; Kabay, N.; Gok, Y. Preparation of Zinc (II) phthalocyanine-based LB thin film: Experimental characterization, the determination of some optical properties and the investigation of the optical sensing ability. Optik 2021, 245, 167661. [Google Scholar] [CrossRef]
- Çapan, I.; Çapan, R.; Acikbas, Y.; Baygu, Y.; Kabay, N.; Gök, Y. Chloroform sensing properties of Langmuir-Blodgett thin films of Zn(II)phthalocyanine containing 26-membered tetraoxadithia macrocycle groups. Optik 2023, 294, 171429. [Google Scholar] [CrossRef]
- Acikbas, Y.; Erdogan, M.; Çapan, R.; Erdogan, C.O.; Baygu, Y.; Kabay, N.; Gök, Y.; Kucukyildiz, G. Preparation and characterization of the phthalocyanine–zinc(II) complex-based nanothin films: Optical and gas-sensing properties. Appl. Nanosci. 2023, 13, 4527–4540. [Google Scholar] [CrossRef]
- Basova, T.; Kol’tsov, E.; Ray, A.K.; Hassan, A.K.; Gürek, A.G.; Ahsen, V. Liquid crystalline phthalocyanine spun films for organic vapour sensing. Sens. Actuators B Chem. 2006, 113, 127–134. [Google Scholar] [CrossRef]
- Duran, E.N.; Çapan, I. Macrocycle ring and peripheral group sizes-dependent vapor sensing property of copper phthalocyanine thin films. Surf. Rev. Lett. 2020, 11, 2050006. [Google Scholar] [CrossRef]
- Evyapan, M.; Hassan, A.K.; Dunbar, A.D.F. Understanding the Gas Adsorption Kinetics of Langmuir-Schaefer Porphyrin Films Using Two Comparative Sensing Systems. Sens. Actuators B Chem. 2018, 254, 669–680. [Google Scholar] [CrossRef]
- Çapan, İ.; Özkaya, C. Characterization of Octaethyl Porphyrin Thin Films with Application to Determination of Volatile Organic Compounds. Anal. Lett. 2016, 49, 423–432. [Google Scholar] [CrossRef]
- Çapan, İ.; Erdoğan, M.; Güner, B.; İlhan, B.; Stanciu, S.G.; Hristu, R.; Stanciu, G.A. Gas Sensing Properties of Porphyrin Thin Films Influenced by Their Surface Morphologies. Sens. Lett. 2014, 12, 1218–1227. [Google Scholar] [CrossRef]
- Çapan, R. Porphyrin Langmuir-Blodgett Thin Film for Organic Vapor Detection, J. Phys. Sci. Appl. 2019, 9, 15–24. [Google Scholar] [CrossRef]
- Manera, M.G.; Ferreiro-Vila, E.; García-Martín, J.M.; Cebollada, A.; García-Martín, A.; Giancane, G.; Valli, L.; Rella, R. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimmers. Sens. Actuators B Chem. 2013, 182, 232–238. [Google Scholar] [CrossRef]
- Manera, M.G.; Rella, R. Improved gas sensing performances in SPR sensors by transducers activation. Sens. Actuators B Chem. 2013, 179, 175–186. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, J.B.; García-Martín, A.; Armelles, G.; García-Martín, J.M.; Clavero, C.; Cebollada, A.; Lucaszew, R.A.; Skuza, J.R.; Kumah, D.P.; Clarke, R. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys. Rev. B. 2007, 76, 153402. [Google Scholar] [CrossRef]
- Manera, M.G.; Giancane, G.; Bettini, S.; Valli, L.; Borovkov, V.; Colombelli, A.; Lospinoso, D.; Rella, R. MagnetoPlasmonicWaves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications. Chemosensors 2021, 9, 272. [Google Scholar] [CrossRef]
- Colombelli, A.; Manera, M.G.; Borovkov, V.; Giancane, G.; Valli, L.; Rella, R. Enhanced sensing properties of cobalt bis-porphyrin derivative thin films by a magneto-plasmonic-opto-chemical sensor. Sens. Actuators B Chem. 2017, 246, 1039–1048. [Google Scholar] [CrossRef]
- Bettini, S.; Pagano, R.; Borovkov, V.; Giancane, G.; Valli, L. The role of the central metal ion of ethane-bridged bis-porphyrins in histidine sensing. J. Colloid Interface Sci. 2019, 533, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Arwin, H.; Poksinski, M.; Johansen, K. Total Internal Reflection Ellipsometry: Principles and Applications. Appl. Opt. 2004, 43, 3028–3036. Available online: https://opg.optica.org/ao/abstract.cfm?URI=ao-43-15-3028 (accessed on 3 March 2024). [CrossRef]
- Poksinski, M.; Arwin, H. Protein monolayers monitored by internal reflection ellipsometry. Thin Solid Films 2004, 455–456, 716–721. [Google Scholar] [CrossRef]
- Nabok, A.; Al-Rubayea, A.G.; Al-Jawdah, A.M.; Tsargorodska, A.; Marty, J.-L.; Catanante, G.; Szekacs, A.; Takacs, E. [INVITED] Novel optical biosensing technologies for detection of mycotoxins. Opt. Laser Technol. 2019, 109, 212–221. [Google Scholar] [CrossRef]
- Tietze, M.L.; Obst, M.; Arnauts, G.; Wauteraerts, N.; Rodríguez-Hermida, S.; Ameloot, R. Parts-per-Million Detection of Volatile Organic Compounds via Surface Plasmon Polaritons and Nanometer-Thick Metal–Organic Framework Films. ACS Appl. Nano Mater. 2022, 5, 5006–5016. [Google Scholar] [CrossRef]
- Basova, T.V.; Hassan, A.; Krasnov, P.O.; Gürol, I.; Ahsen, V. Trimethylamine Sorption into Thin Layers of Fluoroalkyloxy and Alkyloxy Substituted Phthalocyanines: Optical Detection and DFT Calculations. Sens. Actuators B Chem. 2015, 216, 204–211. [Google Scholar] [CrossRef]
- Yu, H.; Chong, Y.; Zhang, P.; Ma, J.; Li, D. A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta 2020, 219, 121324. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Han, B.; Siyu, E.; Sun, Y.; Li, X.; Cai, Y.; Zhang, Y. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem. J. 2020, 157, 105010. [Google Scholar] [CrossRef]
- Pagano, R.; Syrgiannis, Z.; Bettini, S.; Ingrosso, C.; Valli, L.; Giancane, G.; Prato, M. Localized and surface plasmons coupling for ultrasensitive dopamine detection by means of SPR-based perylene bisimide/Au nanostructures thin film. Adv. Mater. Interfaces 2021, 8, 2101023. [Google Scholar] [CrossRef]
- Türkmen, D.; Bakhshpour, M.; Gokturk, I.; Asir, S.; Yilmaz, F.; Denizli, A. Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles. New J. Chem. 2021, 45, 18296–18306. [Google Scholar] [CrossRef]
- Giancane, G.; Borovkov, V.; Inoue, Y.; Valli, L. Conformational switching inbis(zinc porphyrin) Langmuir-Schaefer film as an effective tool for selectively sensing aromatic amines. J. Colloid Interface Sci. 2012, 385, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Giancane, G.; Borovkov, V.; Inoue, Y.; Conoci, S.; Valli, L. Syn-anti conformation switching of a bis-porphyrin derivative at the air-water interface and in thesolid state as an effective tool for chemical sensing. Soft Matter 2013, 9, 2302–2307. [Google Scholar] [CrossRef]
- Buccolieri, A.; Manno, D.; Serra, A.; Santino, A.; Hasan, M.; Borovkov, V.; Giancane, G. Highly sensitive conformational switching of ethane-bridged mono-zinc bis-porphyrin as an application tool for rapid monitoring of aqueous ammonia and acetone. Sens. Actuators B Chem. 2018, 257, 685–691. [Google Scholar] [CrossRef]
- Bettini, S.; Maglie, E.; Pagano, R.; Borovkov, V.; Inoue, Y.; Valli, L.; Giancane, G. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines. Beilstein J. Nanotechnol. 2015, 6, 2154–2160. [Google Scholar] [CrossRef]
- Chen, T.; Xin, J.; Chang, S.J.; Chen, C.-J.; Liu, J.-T. Surface Plasmon Resonance (SPR) Combined Technology: A Powerful Tool for Investigating Interface Phenomena. Adv. Mater. Interfaces 2023, 10, 2202202. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Sales, M.G.F.; Pereira, C. Electrochemistry combined-surface plasmon resonance biosensors: A review. TrAC Trends Anal. Chem. 2022, 157, 116766. [Google Scholar] [CrossRef]
- Munoz, R.A.A.; Toma, S.H.; Toma, H.E.; Araki, K.; Angnes, L. Investigation of interfacial processes at tetraruthenated zinc porphyrin films using electrochemical surface plasmon resonance and electrochemical quartz crystal microbalance. Electrochim. Acta 2009, 54, 2971–2976. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Z.; Zhang, Y.; Li, R.; Xiao, Q.; Liu, Y.; Li, Z. Binding of Cationic Porphyrin to Human Serum Albumin Studied Using Comprehensive Spectroscopic Methods. J. Pharm. Sci. 2009, 98, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Naue, J.A.; Toma, S.H.; Bonacin, J.A.; Araki, K.; Toma, H.E. Probing the binding of tetraplatinum(pyridyl)porphyrin complexes to DNA by means of surface plasmon resonance. J. Inorg. Biochem. 2009, 103, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Perenon, M.; Bonnet, H.; Lavergne, T.; Dejeu, J.; Defrancq, E. Surface plasmon resonance study of the interaction of N-methyl mesoporphyrin IX with G-quadruplex DNA. Phys. Chem. Chem. Phys. 2020, 22, 4158–4164. [Google Scholar] [CrossRef]
- Zangenehzadeh, S.; Agocs, E.; Jivani, H.; Könemund, L.; Neumann, L.; Hirschberg, F.; Herdan, S.; Biedendieck, R.; Jahn, D.; Roth, B.W.; et al. Bacteria detection in a Kretschmann geometry flow cell at a plasmon-enhanced interface with spectroscopic ellipsometer. Thin Solid Films 2023, 764, 139583. [Google Scholar] [CrossRef]
- Basova, T.V.; Polyakov, M.S. Hybrid materials based on carbon nanotubes and polyaromatic molecules: Methods of functionalization and sensor properties. Macroheterocycles. 2020, 30, 91–112. [Google Scholar] [CrossRef]
- Sisman, O.; Kilinc, N.; Akkus, U.O.; Sama, J.; Romano-Rodriguez, A.; Atilla, D.; Gürek, A.G.; Ahsen, V.; Berber, S.; Ozturk, Z. Hybrid liquid crystalline zinc phthalocyanine@Cu2O nanowires for NO2 sensor application. Sens. Actuators B Chem. 2021, 345, 130431. [Google Scholar] [CrossRef]
- Coppedè, N.; Villani, M.; Mosca, R.; Iannotta, S.; Zappettin, A.; Calestani, D. Low Temperature Sensing Properties of a Nano Hybrid Material Based on ZnO Nanotetrapods and Titanyl Phthalocyanine. Sensors 2013, 13, 3445–3453. [Google Scholar] [CrossRef]
- Sinha, M.; Verma, P.; Panda, S. Metal-phthalocyanine modified doped polyaniline for VOC sensing applications. Flex. Print. Electron. 2020, 5, 014014. [Google Scholar] [CrossRef]
- de Barros, M.R.; Winiarski, J.P.; de Matos Morawski, F.; Marim, R.G.; Chaves, E.S.; Blacha-Grzechnik, A.; Jost, C.L. A high-performance electrochemical sensor based on a mesoporous silica/titania material and cobalt(II) phthalocyanine for sensitive pentachlorophenol determination. Microchim. Acta 2022, 189, 269. [Google Scholar] [CrossRef] [PubMed]
- Ndebele, N.; Nyokong, T. The use of carbon-based nanomaterials conjugated to cobalt phthalocyanine complex in the electrochemical detection of nitrite. Diam. Relat. Mater. 2023, 132, 109672. [Google Scholar] [CrossRef]
- Su, H.C.; Tran, T.-T.; Bosze, W.; Myung, N.V. Chemiresistive sensor arrays for detection of air pollutants based on carbon nanotubes functionalized with porphyrin and phthalocyanine derivatives. Sens. Actuators Rep. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Sharma, A.K.; Debnath, A.K.; Aswal, D.K.; Mahajan, A. Room temperature ppb level detection of chlorine using peripherally alkoxy substituted phthalocyanine/SWCNTs based chemiresistive sensors. Sens. Actuators B Chem. 2022, 350, 130870. [Google Scholar] [CrossRef]
- Banimuslem, H.; Hassan, A.; Basova, T.; Esenpınar, A.A.; Tuncel, S.; Durmuş, M.; Gürek, A.G.; Ahsen, V. Dye-modified carbon nanotubes for the optical detection of amines vapours. Sens. Actuators B Chem. 2015, 207, 224–234. [Google Scholar] [CrossRef]
- Banimuslem, H.; Hassan, A.; Basova, T.; Durmuş, M.; Tuncel, S.; Esenpınar, A.A.; Gürek, A.G.; Ahsen, V. Copper phthalocyanine functionalized single-walled carbon nanotubes: Thin films for optical detection. J. Nanosci. Nanotechnol. 2015, 15, 2157–2167. [Google Scholar] [CrossRef] [PubMed]
- Banimuslem, H.; Hassan, A.; Basova, T.; Yushina, I.; Durmuş, M.; Tuncel, S.; Esenpınar, A.A.; Gürek, A.G.; Ahsen, V. Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Film Deposition and Sensing Properties. Key Eng. Mater. 2014, 605, 461–464. [Google Scholar] [CrossRef]
- Hassan, A.; Banimuslem, H.; Basova, T.; Gülmez, A.D.; Durmus, M.; Gürek, A.G.; Ahsen, V. Surface interaction of copper phthalocyanine modified single walled carbon nanotubes with pesticides. Sens. Actuators B Chem. 2016, 224, 780–788. [Google Scholar] [CrossRef]
- Banimuslem, H.; Hassan, A.; Basova, T.; Gülmez, A.D.; Tuncel, S.; Durmuş, M.; Gürek, A.G.; Ahsen, V. Copper phthalocyanine/single walled carbon nanotubes hybrid thin films for pentachlorophenol detection. Sens. Actuators B Chem. 2014, 190, 990–998. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, H.; Xiang, Y.; Koh, K.; Hu, X.; Chen, H. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Microchim. Acta 2020, 187, 327. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.-Y.; Xu, W.; Lin, F.-W.; Wu, J.; Xu, Z.-K. Electrospun nanofibers of porphyrinated polyimide for the ultra-sensitive detection of trace TNT. Sens. Actuators B Chem. 2013, 184, 205–211. [Google Scholar] [CrossRef]
- Lv, Y.-Y.; Wu, J.; Wan, L.-S.; Xu, Z.-K. Novel Porphyrinated Polyimide Nanofibers by Electrospinning, J. Phys. Chem. C 2008, 112, 10609–10615. [Google Scholar] [CrossRef]
- Rella, R.; Rizzo, A.; Licciulli, A.; Siciliano, P.; Troisi, L.; Valli, L. Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanines hybrid system. Mater. Sci. Eng. C 2002, 22, 439–443. [Google Scholar] [CrossRef]
- Berrier, A.; Offermans, P.; Cools, R.; van Megen, B.; Knoben, W.; Vecchi, G.; Rivas, J.G.; Crego-Calama, M.; Brongersma, S.H. Enhancing the gas sensitivity of surface plasmon resonance with a nanoporous silica matrix. Sens. Actuators B Chem. 2011, 160, 181–188. [Google Scholar] [CrossRef]
- Olorunyomi, J.F.; Geh, S.T.; Caruso, R.A.; Doherty, C.M. Metal–organic frameworks for chemical sensing devices. Mater. Horiz. 2021, 8, 2387–2419. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tissot, A.; Serre, C. Recent progress on MOF-based optical sensors for VOC sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.; Kumar, A.R. Two-dimensional materials and their role in sensitivity enhancement of surface plasmon resonance based biosensor. Trends Anal. Chem. 2024, 171, 117497. [Google Scholar] [CrossRef]
- Kreno, L.E.; Hupp, J.T.; Van Duyne, R.P. Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing. Anal. Chem. 2010, 82, 8042–8046. [Google Scholar] [CrossRef]
- Koh, C.S.L.; Sim, H.Y.F.; Leong, S.X.; Boong, S.K.; Chong, C.; Ling, X.Y. Plasmonic Nanoparticle-Metal-Organic Framework (NP-MOF) Nanohybrid Platforms for Emerging Plasmonic Applications. ACS Mater. Lett. 2021, 3, 557–573. [Google Scholar] [CrossRef]
- Vandezande, W.; Janssen, K.P.F.; Delport, F.; Ameloot, R.; De Vos, D.E.; Lammertyn, J.; Roeffaers, M.B.J. Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors. Anal. Chem. 2017, 89, 4480–4487. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Peng, X.; Weng, X.; He, J.; Liao, C.; Wang, Y.; Liu, L.; Zeng, S.; Song, J.; Qu, J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens. Bioelectron. 2023, 241, 115672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mao, Z.; Chen, Q.; Koh, K.; Hu, X.; Chen, H. Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer. Biosens. Bioelectron. 2022, 201, 113954. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tao, J.; Li, Y.; Feng, Y.; Ju, H.; Wang, Z.; Ding, L. Quantitative localized analysis reveals distinct exosomal protein-specific glycosignatures: Implications in cancer cell subtyping, exosome biogenesis, and function. J. Am. Chem. Soc. 2020, 142, 7404–7412. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-F.; Yao, G.-H.; Liang, R.-P.; Qiu, J.-D. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens. Bioelectron. 2013, 50, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niu, Z.; Xu, C.; Zhan, M.; Koh, K.; Niu, J.; Chen, H. 2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of Sulfamethazine via supramolecular probe. J. Hazard. Mater. 2023, 456, 131642. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Liu, R.; Gao, J.; Feng, J.; Xu, S.; Li, Z.; Jiang, S.; Du, X. 3D hybrid arrayed Ag/MOF multi-plasmon resonant cavity system for high-performance SPR sensing. Optics Laser Technol. 2023, 167, 109825. [Google Scholar] [CrossRef]
- Kutenina, A.P.; Zvyagina, A.I.; Raitman, O.A.; Enakieva, Y.Y.; Kalinina, M.A. Layer-by-Layer Assembly of SAM-Supported Porphyrin-Based Metal Organic Frameworks for Molecular Recognition. Colloid J. 2019, 81, 401–410. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Chen, S.; Radjenovic, P.; Bodappa, N.; Zhang, H.; Yang, Z.-L.; Tian, Z.-Q.; Li, J.-F. Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 5316–5322. [Google Scholar] [CrossRef]
- Mao, Z.; Zheng, W.; Hu, S.; Peng, X.; Luo, Y.; Lee, J.; Chen, H. Multifunctional DNA scaffold mediated gap plasmon resonance: Application to sensitive PD-L1 sensor. Biosens. Bioelectron. 2024, 247, 115938. [Google Scholar] [CrossRef]
- Hu, P.-P.; Liu, N.; Wu, K.-Y.; Zhai, L.-Y.; Xie, B.-P.; Sun, B.; Duan, W.-J.; Zhang, W.-H.; Chen, J.-X. Successive and Specific Detection of Hg2+ and I– by a DNA@MOF Biosensor: Experimental and Simulation Studies. Inorg. Chem. 2018, 57, 8382–8389. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, Y.; Jiang, M.; Jiang, S.; Gao, J.; Yang, W.; Liu, R. A reliable gold nanoparticle/Cu-TCPP 2D MOF/gold/D-shaped fiber sensor based on SPR and LSPR coupling for dopamine detection. Appl. Surf. Sci. 2024, 655, 159523. [Google Scholar] [CrossRef]
- Harbeck, M.; Erbahar, D.D.; Gürol, I.; Musluoglũ, E.; Ahsen, V.; Öztürk, Z.Z. Phthalocyanines as sensitive coatings for QCM sensors operating in liquids for the detection of organic compounds. Sens. Actuators B. Chem. 2010, 150, 346–354. [Google Scholar] [CrossRef]
- Baygu, Y.; Çapan, R.; Erdogan, M.; Ozkaya, C.; Acikbas, Y.; Kabay, N.; Gok, Y. Synthesis, characterization and chemical sensor properties of a novel Zn(II) phthalocyanine containing 15-membered dioxa-dithia macrocycle moiety. Synth. Met. 2021, 280, 116870. [Google Scholar] [CrossRef]
Analyte Vapor | S (ppm−1) × 10−7/LOD (ppm) | ||
---|---|---|---|
ClAlPc | FAlPc | FCrPc | |
Acetic acid | 1.30/46.2 | 1.21/49.6 | 1.05/57.1 |
Methanol | 1.01/59.4 | 0.99/60.4 | 0.85/70.5 |
Ethanol | 0.88/67.5 | 0.74/80.5 | 0.65/91.7 |
Butanol | 0.70/85.1 | 0.69/86.5 | 0.58/103.4 |
Methylamine | 0.67/89.6 | 0.66/90.4 | 0.47/126.8 |
Dimethylamine | 0.55/108.9 | 0.63/94.9 | 0.46/128.5 |
Trimethylamine | 0.41/145.6 | 0.54/110.7 | 0.35/170.5 |
H2Pc3c/SA | ZnPc3c/SA | CuPc3c/SA | |
---|---|---|---|
Benzene | 223 | 259 | 57 |
Toluene | 111 | 75 | 32 |
Methanol | 178 | 96 | 33 |
Ethanol | 93 | 175 | 26 |
CHCl3 | 384 | 210 | 103 |
CCl4 | 135 | 92 | 47 |
CH2Cl2 | 762 | 269 | 221 |
4 Layers | 6 Layers | 8 Layers | 10 Layers | |||||
---|---|---|---|---|---|---|---|---|
Thickness of LS films (Å) | 66 | 151 | 238 | 314 | ||||
Analyte vapors | Acetic acid | Methyl- amine | Acetic acid | Methyl- amine | Acetic acid | Methyl- amine | Acetic acid | Methyl-amine |
Swelling time (s) | 147 | 388 | 214 | 480 | 285 | 483 | 334 | 654 |
SPR shift after exposure (ΔƟ°) | 0.35 | 0.15 | 0.95 | 0.30 | 1.00 | 0.55 | 1.95 | 0.70 |
Thickness change after exposure (Å) | ~15 | ~7 | ~39 | ~12 | ~41 | ~18 | ~81 | ~24 |
S (ppm−1) × 10−7 | 1.50 | 0.55 | 3.18 | 1.50 | 5.52 | 2.76 | 9.82 | 4.38 |
LOD (ppm) | 40.08 | 108.00 | 18.86 | 40.00 | 10.87 | 21.77 | 6.11 | 13.71 |
Technique | Analyte | Sensitivity (ppm−1) | LOD (ppm) | tresp (min) | trec (min) |
---|---|---|---|---|---|
SPR | n-butylamine | 2.32 × 10−6 | 14,200 | 10 | 8 |
di-butylamine | 4.32 × 10−5 | 760 | 3 | 6 | |
MOSPR | n-butylamine | 5.23 × 10−6 | 5100 | 12 | 9.7 |
di-butylamine | 4.31 × 10−4 | 60 | 3 | 7.5 |
Sample | Layer Thickness (nm) | Matrix | NO2 (ppb) | Optical Method | ΔR (%) |
---|---|---|---|---|---|
(1) Por1 layer | 10 | None | 6000 | ATR | 1.5 |
(2) Por1 in NPS | 65 | NPS | 700 | ATR | 17 |
(2) Por1 in NPS | 65 | NPS | 700 | Refl | 8 |
(2) Por1 in NPS | 65 | NPS | 350 | ATR | 3 |
(3) Por1 in EC | 130 | NPS | 350 | ATR | 14 |
(4) Por1 in EC | 65 | EC | 700 | Refl | 2 |
Sensors for Gaseous Analytes | |||||||
---|---|---|---|---|---|---|---|
Active Layer | Method | Analyte | Sensitivity, ppm−1 | LOD, ppm | Response/ Recovery Time, s | Ref. | |
CoPc, PVD film | SPR | NO2 | - | 0.07 | - | [41] | |
FCrPc, spun film | SPR | Acetic acid | 57.1 × 10−7 | 0.85 | [43] | ||
ZnPc5, LB film, 20 layers | SPR | Chloroform | 7.97 × 10−4 | 3.76 | 3/6 | [47] | |
Por2, LS film, 10 layers | SPR | Acetic acid | 9.82 × 10−7 | 6.11 | [51] | ||
Methylamine | 4.38 × 10−7 | 13.71 | |||||
ZnPP (Figure 10), LS film, 3 layers | SPR | Dibutylamine | 4.32 × 10−5 | 760 | 3/6 | [55] | |
MOSPR | 4.31 × 10−4 | 60 | 3/7.5 | ||||
ZnPc3j, spun film | TIRE | Trimethylamine | - | 20 | - | [65] | |
CuPc1k, spun film | TIRE | Methylamine | 1.55 × 10−4 | 8 | 158/- | [89] | |
CuPc1k-CNT, spun film | 3.25 × 10−4 | 3.6 | 66/- | ||||
Sensors for analytes in solutions | |||||||
Material | Method | Analyte | Investigated concentration range | Sensitivity | LOD | Ref. | |
CuPc1l | TIRE | Pentachlorophenol | 0.5–25 μg/L | 0.00396 (μg/L)−1 | 690 ng/L | [92] | |
pyridinium porphyrin mediated calix [4]arene- functionalized AuNP composites | SPR | B-type natriuretic peptide | 1–10,000 pg/mL | - | 0.3 pg/mL | [94] | |
2D MOF Cu-TCPP | SPR | Sulfamethazine | 0.278–27.83 ng/mL | - | 0.02 ng/mL | [109] | |
2D MOF Cu-TCPP modified with GOD on ARC/Ag | Optical fiber SPR | Glucose | 0.1–1.2 mg/mL | 9.99 nm (mg/mL)−1 | - | [110] | |
AuNP/2D MOF Cu-TCPP modified with DNA | Optical fiber SPR | Dopamine | 5 × 10−14–5 × 10−7 M | 0.371 nm (logM)−1 | 1.07 × 10−14 M | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basova, T. Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance. Chemosensors 2024, 12, 56. https://doi.org/10.3390/chemosensors12040056
Basova T. Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance. Chemosensors. 2024; 12(4):56. https://doi.org/10.3390/chemosensors12040056
Chicago/Turabian StyleBasova, Tamara. 2024. "Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance" Chemosensors 12, no. 4: 56. https://doi.org/10.3390/chemosensors12040056
APA StyleBasova, T. (2024). Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance. Chemosensors, 12(4), 56. https://doi.org/10.3390/chemosensors12040056