Evaluating the Intensity of Bitter–Astringent Interactive Perception in Green Tea Based on the Weber–Fechner Law
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Green Tea Collection and Sample Preparation
2.3. Bitter and Astringent Compounds Analysis of Green Tea
2.4. Matrix Composition Analysis of Green Tea
2.5. Sensory Panel
2.6. Composition Determination of Simulation Solution
2.7. BAIPI Quantification Curves Establishment
2.8. Initial BAIPI Values Calibration
2.9. Direct Assessment for BAIPI Values
3. Results
3.1. Bitter–Astringent Simulation Solution of Green Tea
3.1.1. Bitter Compounds Analysis of Green Tea
3.1.2. Astringent Compounds Analysis of Green Tea
3.1.3. Composition of Bitter–Astringent Simulation Solution
3.2. BAIPI Quantification Curves in Green Tea
3.2.1. X-Intercept of Curves
3.2.2. Slope of Curves
3.3. Initial BAIPI Values Calibration of Quantification Curves
3.4. Verification of BAIPI Quantification Curves in Green Tea
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.Q.; Fu, Y.Q.; Chen, J.X.; Wang, F.; Feng, Z.H.; Yin, J.F.; Zeng, L.; Xu, Y.Q. Effects of baking treatment on the sensory quality and physicochemical properties of green tea with different processing methods. Food Chem. 2022, 380, 132217. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-H.; Ye, Y.; Yin, J.-F.; Jin, J.; Liang, Y.-R.; Liu, R.-Y.; Tang, P.; Xu, Y.-Q. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci. Technol. 2022, 123, 130–143. [Google Scholar] [CrossRef]
- Lu, L.; Wang, L.; Liu, R.Y.; Zhang, Y.B.; Zheng, X.Q.; Lu, J.L.; Wang, X.C.; Ye, J.H. An efficient artificial intelligence algorithm for predicting the sensory quality of green and black teas based on the key chemical indices. Food Chem. 2024, 441, 138341. [Google Scholar] [CrossRef]
- Romeo-Arroyo, E.; Mora, M.; Noguera-Artiaga, L.; Vazquez-Araujo, L. Tea pairings: Impact of aromatic congruence on acceptance and sweetness perception. Curr. Res. Food Sci. 2023, 6, 100432. [Google Scholar] [CrossRef]
- Chong, P.H.; Chen, J.; Yin, D.; Qin, L. Tea compound-saliva interactions and their correlations with sweet aftertaste. Npj Sci. Food 2022, 6, 13. [Google Scholar] [CrossRef]
- Nolden, A.A.; Feeney, E.L. Genetic Differences in Taste Receptors: Implications for the Food Industry. Annu. Rev. Food Sci. Technol. 2020, 11, 183–204. [Google Scholar] [CrossRef]
- Yin, J.F.; Zhang, Y.N.; Du, Q.Z.; Chen, J.X.; Yuan, H.B.; Xu, Y.Q. Effect of Ca2+ concentration on the tastes from the main chemicals in green tea infusions. Food Res. Int. 2014, 62, 941–946. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Yin, J.F.; Chen, J.X.; Wang, F.; Du, Q.Z.; Jiang, Y.W.; Xu, Y.Q. Improving the sweet aftertaste of green tea infusion with tannase. Food Chem. 2016, 192, 470–476. [Google Scholar] [CrossRef]
- Chong, P.H.; Chen, J.; Yin, D.; Upadhyay, R.; Mo, L.; Han, L. “Oral” tribology study on saliva-tea compound mixtures: Correlation between sweet aftertaste (Huigan) perception and friction coefficient. Food Res. Int. 2019, 125, 108642. [Google Scholar] [CrossRef]
- Jiang, Y.; Gong, N.N.; Matsunami, H. Astringency: A More Stringent Definition. Chem. Senses 2014, 39, 467–469. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, J.; Chen, S.; Xu, Y.; Nie, Y.; Tang, K. Impact of tannins on intraoral aroma release and retronasal perception, including detection thresholds and temporal perception by taste, in model wines. Food Chem. 2022, 375, 131890. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Liang, J.H.; Zhang, J.Y.; Chen, W.; Hu, D.; Xia, H.L.; Ma, C.Y.; Qiao, X.Y. Improvement of the sensory characteristics of Dancong tea using a dry-heating post-treatment approach. LWT—Food Sci. Technol. 2023, 185, 115118. [Google Scholar] [CrossRef]
- De Toffoli, A.; Spinelli, S.; Monteleone, E.; Arena, E.; Di Monaco, R.; Endrizzi, I.; Toschi, T.G.; Laureati, M.; Napolitano, F.; Torri, L.; et al. Influences of Psychological Traits and PROP Taster Status on Familiarity with and Choice of Phenol-Rich Foods and Beverages. Nutrients 2019, 11, 1329. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.Z.; Tian, S.Y.; Qin, Y.M.; Han, J.Z. A new sensory sweetness definition and sweetness conversion method of five natural sugars, based on the Weber-Fechner Law. Food Chem. 2019, 281, 78–84. [Google Scholar] [CrossRef]
- Hayashi, N.; Ujihara, T.; Chen, R.; Irie, K.; Ikezaki, H. Objective evaluation methods for the bitter and astringent taste intensities of black and oolong teas by a taste sensor. Food Res. Int. 2013, 53, 816–821. [Google Scholar] [CrossRef]
- Ye, Q.Q.; Chen, G.S.; Pan, W.; Cao, Q.Q.; Zeng, L.; Yin, J.F.; Xu, Y.Q. A predictive model for astringency based on in vitro interactions between salivary proteins and (−)-Epigallocatechin gallate. Food Chem. 2021, 340, 127845. [Google Scholar] [CrossRef]
- Hayashi, N.; Chen, R.; Hiraoka, M.; Ujihara, T.; Ikezaki, H. β-Cyclodextrin/Surface Plasmon Resonance Detection System for Sensing Bitter-Astringent Taste Intensity of Green Tea Catechins. J. Agric. Food Chem. 2010, 58, 8351–8356. [Google Scholar] [CrossRef]
- Li, S.; Du, D.; Wang, J.; Wei, Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit. Rev. Food Sci. Nutr. 2022, 64, 3764–3793. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Li, L.; Chen, W.; Zhao, Q.; Su, G.; Zhao, M. Application of electronic tongue in umami detection and soy sauce refining process. Food Chem. X 2023, 18, 100652. [Google Scholar] [CrossRef]
- Portugal, R.D.; Svaiter, B.F. Weber-Fechner Law and the Optimality of the Logarithmic Scale. Minds Mach. 2011, 21, 73–81. [Google Scholar] [CrossRef]
- Mao, Y.; Tian, S.; Qin, Y.; Cheng, S. An optimized organic acid human sensory sourness analysis method. J. Sci. Food Agric. 2021, 101, 5880–5887. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.Z.; Tian, S.Y.; Qin, Y.M.; Chen, S.W. Sensory sweetness and sourness interactive response of sucrose-citric acid mixture based on synergy and antagonism. Npj Sci. Food 2022, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wan, S.; Pan, S.; Luan, P.; Cen, X.; Sun, G.; Feng, Y.; Zhu, M. A quantitative equation for umami evaluation of food and condiments based on the Weber-Fechner law. Food Qual. Prefer. 2025, 123, 105347. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Kishi, M.; Sadachi, H.; Nakamura, J.; Tonoike, M. Functional magnetic resonance imaging investigation of brain regions associated with astringency. Neurosci. Res. 2017, 122, 9–16. [Google Scholar] [CrossRef]
- Huang, Y.L.; Vivian, R.M.; Goh, A.; Quan, S.; Sakumoto, S.; Yun, H.; Huey, K.; Sun, J.C.; Lassabliere, B.; Yu, B. Effect of three milling processes (cyclone-, bead- and stone-millings) on the quality of matcha: Physical properties, taste and aroma. Food Chem. 2022, 372, 131202. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, L.H.; Liao, C.X.; Chen, L.; Wang, J.; Zeng, L. Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology. Food Chem. 2018, 269, 24–34. [Google Scholar] [CrossRef]
- Yu, J.Y.; Liu, Y.; Zhang, S.R.; Luo, L.Y.; Zeng, L. Effect of brewing conditions on phytochemicals and sensory profiles of black tea infusions: A primary study on the effects of geraniol and β-ionone on taste perception of black tea infusions. Food Chem. 2021, 354, 129504. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Daniel Estevez-Lopez, R.; Garcia-Gomez, B.; Lourdes Vazquez-Oderiz, M.; Munoz Ferreiro, N.; Angeles Romero-Rodriguez, M. Influence of bread shape on the sensory characteristics of Galician breads: Development of lexicon, efficacy control of the trained panel and establishment of a sensory profile. LWT—Food Sci. Technol. 2021, 135, 110024. [Google Scholar]
- ISO 8586; Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 5495; Sensory Analysis. Methodology. Paired Comparison Test. International Organization for Standardization: Geneva, Switzerland, 2005.
- Kim, H.O.; Li-Chan, E.C.Y. Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem. 2006, 54, 10102–10111. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.L.; Ren, H.B.; Duan, J.H.; Zhang, H.S.; Wen, C.H.; Bai, X.S.; Gao, F.; Wang, Y.T. Molecular recognition and threshold prediction model of bitterness in natural compounds. Sci. Technol. Food Ind. 2022, 43, 24–32. [Google Scholar]
- Shitandi, A.A.; Muigai Ngure, F.; Mahungu, S.M. Chapter 16—Tea Processing and its Impact on Catechins, Theaflavin and Thearubigin Formation. In Tea in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 193–205. [Google Scholar]
- Narukawa, M.; Kimata, H.; Noga, C.; Watanabe, T. Taste characterisation of green tea catechins. Int. J. Food Sci. Technol. 2010, 45, 1579–1585. [Google Scholar] [CrossRef]
- Rong, W.; Zhou, W.; Wen, R.A.H. Kinetic study of the thermal stability of tea catechins in aqueous systems using a microwave reactor. J. Agric. Food Chem. 2006, 54, 5924–5932. [Google Scholar]
- Ananingsih, V.K.; Sharma, A.; Zhou, W. Green tea catechins during food processing and storage: A review on stability and detection. Food Res. Int. 2013, 50, 469–479. [Google Scholar] [CrossRef]
- Norwich, K.H.; Wong, W. Unification of psychophysical phenomena: The complete form of Fechner’s law. Percept. Psychophys. 1997, 59, 929–940. [Google Scholar] [CrossRef]
- Ishizu, T.; Tsutsumi, H.; Sato, T. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins. Chem. Pharm. Bull. 2016, 64, 676–686. [Google Scholar] [CrossRef]
- Zhou, Z.; Ou, M.; Shen, W.; Jin, W.; Yang, G.; Huang, W.; Guo, C. Caffeine weakens the astringency of epigallocatechin gallate by inhibiting its interaction with salivary proteins. Food Chem. 2024, 460, 140753. [Google Scholar] [CrossRef]
- Li, C.X.; Ren, Y.N.; Yao, J.; Wang, Y.L.; Gao, X.L.; Li, H.; Guo, X.F.; Liu, R.X.; Li, X.L. Study on quantitative method of specific bitterness of bitter compounds based on traditional human taste panel method. Chin. Tradit. Herb. Drugs 2023, 54, 2758–2764. [Google Scholar]
- Li, X.L.; Gui, X.J.; Liu, R.X.; Gao, X.J.; Meng, X.L.; Chen, P.J.; Kang, B.Y.; Zhang, L.; Shi, J.H. Bitterness intensity prediction of bitter compounds of traditional Chinese medicine based on an electronic tongue. Chin. J. New Drugs 2016, 25, 1307–1314. [Google Scholar]
- Zhu, Y.W.; Zhou, X.R.; Chen, Y.P.; Liu, Z.Y.; Jiang, S.; Chen, G.L.; Liu, Y. Exploring the relationships between perceived umami intensity, umami components and electronic tongue responses in food matrices. Food Chem. 2022, 368, 130849. [Google Scholar] [CrossRef] [PubMed]
Name | Code | Cultivated Variety | Picking time | Fixation Ways | Manufacturer |
---|---|---|---|---|---|
West Lake Long Jing Spring | WLS | Longjing 43 | March 2023 | Stir-frying | Hangzhou Zhijiang Tea Co. Ltd. (Zhejiang, China) |
Long Jing Spring | LJS | Longjing 43 | March 2023 | Stir-frying | Hangzhou LvYi Tea Industry Co. Ltd. (Zhejiang, China) |
Long Jing Summer | LJM | Longjing 43 | June 2023 | Stir-frying | Hangzhou LvYi Tea Industry Co. Ltd. (Zhejiang, China) |
Yunwu Spring | FWS | Fuyun No.6 | March 2023 | Stir-frying | Fujian Runmutang Tea Manor Co. Ltd. (Fujian, China) |
Yuhua before Tomb Sweeping | YBTS | Longjing 43 | March 2023 | Stir-frying | Nanjing Chunrun Tea Industry Co. Ltd. (Jiangsu, China) |
Yuhua before Grain Rain | YBGR | Longjing 43 | April 2023 | Stir-frying | Nanjing Chunrun Tea Industry Co. Ltd. (Jiangsu, China) |
Laoshan tea Before Grain Rain | LTB | Local population | April 2023 | Stir-frying | Qingdao Lao-Tea Industry Co. Ltd. (Shandong, China) |
Laoshan tea After Grain Rain | LTA | Local population | May 2023 | Stir-frying | Qingdao Lao-Tea Industry Co. Ltd. (Shandong, China) |
Anji White tea High grade | AWH | White Leaf No.1 | March 2023 | Stir-frying | Anji Bai Tea Factory (Anhui, China) |
Anji White tea Low grade | AWL | White Leaf No.1 | March 2023 | Stir-frying | Anji Bai Tea Factory (Anhui, China) |
Biluochun Spring | BCS | Dongshan population | March 2023 | Stir-frying | Shandong YIBEIXIANG Tea Industry Co. Ltd. (Shandong, China) |
Biluochun High grade | BCH | Dongshan population | March 2023 | Stir-frying | Zhejiang Yifutang Tea Industry Co. Ltd. (Zhejiang, China) |
Biluochun Low grade | BCL | Dongshan population | March 2023 | Stir-frying | Zhejiang Yifutang Tea Industry Co. Ltd. (Zhejiang, China) |
Xinyang Maojian before Tomb Sweeping | XTS | Local population | March 2023 | Stir-frying | Farmhouse Tea (Henan, China) |
Xinyang Maojian before Grain Rain | XGR | Local population | April 2023 | Stir-frying | Farmhouse Tea (Henan, China) |
Guizhou Maojian Spring | GNS | Local Small Leaf | March 2023 | Stir-frying | Guizhou Lenton Agricultural Development Co. Ltd. (Guizhou, China) |
Guizhou Maofeng Spring | GMS | Fuding big white tea | March 2023 | Stir-frying | Guizhou Meitan Daye Xin Tea Co. Ltd. (Guizhou, China) |
Yunnan tea Spring | YTS | Yunnan Large Leaf | February 2023 | Baking | Yunnan Wanhongyang Tea Co. Ltd. (Yunnan, China) |
Huangshan Maofeng High grade | HMH | Huangshan Large Leaf | March 2023 | Baking | Xie Yuda Tea Co. Ltd. (Anhui, China) |
Huangshan Maofeng Low grade | HML | Huangshan Large Leaf | April 2023 | Baking | Xie Yuda Tea Co. Ltd. (Anhui, China) |
Taiping Houkui | THK | Huangshan Large Leaf | April 2023 | Baking | Huangshan Mingpingxing Tea Co. Ltd. (Anhui, China) |
Taiping Bujian | TBJ | Mountain Native | April 2023 | Baking | Huangshan Hukeng Tea Co., Ltd. (Anhui, China) |
Jingting Lvxue Tea | JLT | Southern Anhui Small Leaf | March 2023 | Baking | Anhui Jingting Lvxue Tea Co. Ltd. (Anhui, China) |
Liu ’an Guapian Spring | LGS | Longjing 43 | April 2023 | Baking | Jinzhai County Red Xin Tea Professional Cooperative (Anhui, China) |
Liu ’an Guapian Low grade | LGL | Dushan Small Leaf | April 2023 | Baking | Anhui Lu ’an Guapian Tea Industry Co. Ltd. (Anhui, China) |
Sichuan Maofeng | SMF | Huangshan Large Leaf | March 2023 | Baking | Sichuan Sanhua Tea Industry Co. Ltd. (Sichuan, China) |
Huangshan Maofeng Spring | HMS | Huangshan Large Leaf | March 2023 | Baking | Huangshan XIQINGFENG Agricultural Development Co. Ltd. (Anhui, China) |
Huangshan Maofeng Summer in Last year | HMML | Huangshan Large Leaf | June 2022 | Baking | Huangshan MUFAN Trading Co. Ltd. (Anhui, China) |
Hunan Yunwu | HYW | Small Leaf Population | April 2023 | Baking | Hunan Gulou Xuefeng Yunwu Tea Co. Ltd. (Hunan, China) |
Liangshan Mahu | LMH | Local population | March 2023 | Sunning | Leibo county Huang Lang Tea Factory (Sichuan, China) |
Sun-dried raw tea Spring | SRS | Yunnan Large Leaf | March 2023 | Sunning | Biyun Spring Tea Factory (Yunnan, China) |
Sun-dried raw tea Spring in Last year | SRSL | Yunnan Large Leaf | March 2022 | Sunning | Yunnan Cangyuan Wa Camellia Factory Co. Ltd. (Yunnan, China) |
Tuo Tea Spring | TTS | Yunnan Large Leaf | March 2023 | Sunning | Yunnan Xiaguantuo Tea (Group) Co. Ltd. (Yunnan, China) |
Dian Green Spring | DGS | Yunnan Large Leaf | March 2023 | Sunning | Lancang Jing Tea Factory (Yunnan, China) |
Yunnan Qingzhen Spring | YQS | Yunnan Large Leaf | March 2023 | Steaming | Yunnan Wanhongyang Tea Co. Ltd. (Yunnan, China) |
Enshi Gyokuro | EGK | Gyokuro | March 2023 | Steaming | Enshi Huazhishan Ecological Agriculture Co. Ltd. (Hubei, China) |
Enshi Gyokuro Spring | EGS | Gyokuro | March 2023 | Steaming | Enshi Chunzhihuo Tea Co. Ltd. (Hubei, China) |
Enshi Gyokuro Spring in Last year | EGSL | Gyokuro | April 2022 | Steaming | Jinhua Jade Tea Co. Ltd. (Zhejiang, China) |
Fried Green Tea | FGT | Uji | May 2023 | Steaming | ITO Hisako Shimen Co., Ltd. (Japan) |
Fukuoka Yamecha | FKY | Fukuoka | March 2023 | Steaming | Kamuyuan Co., Ltd. (Japan) |
Shizuoka Sencha Spring | SSS | Shizuoka | March 2023 | Steaming | Harada Tea Industry Ltd. (Japan) |
Shizuoka Kakegawa | SKK | Shizuoka | May 2023 | Steaming | Ryowa Garden Co., Ltd. (Japan) |
Kagoshima Chiran | KSC | Kagoshima | March 2023 | Steaming | Yamashiro Co., Ltd. (Japan) |
Compounds | Perceived Types and Thresholds (mg/L) | CAS | Purity | MW | Calibration Curves α | R2 β | Linear Range (mg/L) |
---|---|---|---|---|---|---|---|
Caffeine | Bitter, 97.1 | 58-08-02 | HPLC ≥ 98 | 194.19 | y = 23,234x + 1223.2 | 0.9995 | 13.38–462 |
Theobromine | Bitter, 144.1 | 83-67-0 | HPLC ≥ 98 | 180.16 | y = 57,560x − 11,190 | 0.9995 | 1.07–86.25 |
Theophylline | Bitter, not reported | 58-55-9 | HPLC ≥ 98 | 180.16 | y = 48,170x − 6702.7 | 0.9961 | 0.13–13.88 |
Gallic acid (GA) | Astringent, 49.3 | 149-91-7 | HPLC ≥ 98 | 170.12 | y = 28,540x + 25,118 | 0.9985 | 1.31–31.36 |
(–)-Gallocatechin (GC) | Astringent, 165.39 | 3371-27-5 | HPLC ≥ 98 | 306.27 | y = 177.04x + 881.17 | 0.9996 | 3.25–96.84 |
(–)-Epigallocatechin (EGC) | Astringent, 159.26 | 970-74-1 | HPLC ≥ 98 | 306.27 | y = 1435x − 77,330 | 0.9997 | 115.01–684.6 |
(+)-Catechin (C) | Astringent, 119.01; Bitter, 249.63 | 154-23-4 | HPLC ≥ 98 | 290.27 | y = 6346.7x − 20,348 | 0.9999 | 10.46–311.5 |
(–)-Epicatechin (EC) | Astringent, 284.83; Bitter, 284.83 | 490-46-0 | HPLC ≥ 98 | 306.27 | y = 6247.5x − 7629.6 | 0.9995 | 31.65–188.4 |
(–)-Epigallocatechin-3-gallate (EGCG) | Astringent, 87.09; Bitter, 174.18 | 989-51-5 | HPLC ≥ 98 | 458.37 | y = 12,043x − 679,287 | 0.9980 | 131.12–780.5 |
(–)-Gallocatechin gallate (GCG) | Astringent, 178.76; Bitter, 178.76 | 4233-96-9 | HPLC ≥ 98 | 458.37 | y = 11,012x − 81,486 | 0.9979 | 10.46–62.3 |
(–)-Epicatechin-3-gallate (ECG) | Astringent, 115.02; Bitter, 79.63 | 1257-08-5 | HPLC ≥ 98 | 442.37 | y = 15,400x − 117,766 | 0.9993 | 8.24–245.25 |
(–)-Catechin gallate (CG) | Astringent, 110.59; Bitter, 75.20 | 130405-40-2 | HPLC ≥ 98 | 442.37 | y = 16,715x − 26,469 | 0.9978 | 1.59–47.6 |
Myricetin-3-o-rhamnoside (Myr-rha) | Astringent, 4.6 | 17912-87-7 | HPLC ≥ 98 | 464.38 | y = 8549.6x − 4314.5 | 0.9992 | 0.57–2.74 |
Quercetin-3-o-galactoside (Que-gal) | Astringent, 0.2 | 482-36-0 | HPLC ≥ 98 | 464.38 | y = 16,461x − 5756.4 | 0.9992 | 0.89–26.67 |
Quercetin-3-o-glucoside (Que-glu) | Astringent, 0.3 | 21637-25-2 | HPLC ≥ 98 | 464.38 | y = 18,239x − 1582.5 | 0.9976 | 0.06–10.39 |
Quercetin-3-o-rutinoside (Que-rut) | Astringent, 0.0007 | 153-18-4 | HPLC ≥ 98 | 610.52 | y = 13,286x − 5294.3 | 0.9995 | 0.91–27.25 |
Kaempferol-3-o-rutinoside (Kae-rut) | Astringent, 0.15 | 17650-84-9 | HPLC ≥ 98 | 594.52 | y = 7351.2x − 1655.8 | 0.9990 | 0.44–13.17 |
Kaempferol-3-o-β-D-glucoside (Kae-glu) | Astringent, 0.3 | 480-10-4 | HPLC ≥ 98 | 448.38 | y = 15,641x − 884.87 | 0.9990 | 0.13–3.21 |
Taste Indicators | Calibration Curves | x | y | R2 α | Linear Range (mg/L) |
---|---|---|---|---|---|
Total carbohydrate (TC) | y = 0.0006x − 0.0128 | The concentration of glucose (mg/L) | The absorbance difference of spectrum | 0.9973 | 10–500 |
Total free amino acid (TFAA) | y = 0.0593x + 0.0014 | The concentration of amino acid standard solution (mg/L) | The absorbance difference of spectrum | 0.9990 | 2–10 |
Oxalic acid | y = 13,017x − 104,627 | The concentration of oxalic acid (mg/L) | The peak area of chromatogram | 0.9953 | 14.09–208.7 |
Tartaric acid | y = 1383.3x − 16,178 | The concentration of tartaric acid (mg/L) | The peak area of chromatogram | 0.9948 | 10.96–121.77 |
Malic acid | y = 2370.2x − 4067.5 | The concentration of malic acid (mg/L) | The peak area of chromatogram | 0.9934 | 25.01–250.1 |
Citric acid | y = 1001x − 5925.8 | The concentration of citric acid (mg/L) | The peak area of chromatogram | 0.9999 | 46.31–385.95 |
Succinic acid | y = 564.49x + 9557.8 | The concentration of succinic acid (mg/L) | The peak area of chromatogram | 0.9946 | 11.52–214.25 |
Samples | Total Free Amino Acid (mg/L) | Total Carbohydrate (mg/L) | Oxalic Acid (mg/L) | Tartaric Acid (mg/L) | Malic Acid (mg/L) | Citric Acid (mg/L) | Succinic Acid (mg/L) | Total Organic Acids (mg/L) |
---|---|---|---|---|---|---|---|---|
LJS | 36.09 ± 0.78 | 74.01 ± 1.61 | 79.71 ± 7 | 51.24 ± 2.26 | 144.85 ± 4.03 | 141.96 ± 8.8 | 109.23 ± 6.14 | 526.99 ± 7.52 |
LJM | 36.32 ± 0.67 | 112.56 ± 3.21 | 91.55 ± 4.33 | 30.95 ± 2.52 | 90.89 ± 6.19 | 173.62 ± 7.9 | 112.87 ± 6.44 | 499.87 ± 11.4 |
BCS | 29.13 ± 0.78 | 102.93 ± 1.61 | 81.85 ± 1.5 | 21.56 ± 1.01 | 138.65 ± 10.51 | 183.98 ± 6.15 | 111.76 ± 4.44 | 537.8 ± 13.05 |
HMS | 37.22 ± 1.03 | 100.52 ± 2.41 | 99.01 ± 1.48 | 46.28 ± 4.81 | 152.32 ± 8.05 | 231 ± 3.7 | 132.53 ± 8.21 | 661.13 ± 9.07 |
HMML | 23.07 ± 1.4 | 62.77 ± 1.61 | 73.64 ± 2.24 | 22.17 ± 1.63 | 33.02 ± 6.94 | 128.97 ± 8.89 | 95.85 ± 3.25 | 353.64 ± 5.97 |
LGS | 23.07 ± 1.7 | 63.57 ± 2.41 | 105.6 ± 3.42 | 37.14 ± 2.62 | 76.53 ± 4.51 | 280.05 ± 3.6 | 82.33 ± 10.08 | 581.65 ± 12.1 |
SRS | 29.35 ± 1.7 | 85.26 ± 1.61 | 99.84 ± 6.73 | 29.3 ± 2.3 | 63.09 ± 0.38 | 142.77 ± 7.87 | 188.67 ± 6.92 | 523.68 ± 16.69 |
SRSL | 21.49 ± 0.67 | 49.92 ± 1.61 | 83.73 ± 1.24 | 50.4 ± 3.34 | 136.59 ± 2.84 | 123.53 ± 0.01 | 133.92 ± 8.01 | 528.17 ± 7.23 |
EGS | 26.43 ± 1.4 | 55.54 ± 4.02 | 78.46 ± 0.75 | 41.7 ± 3.37 | 122.07 ± 1.55 | 131.53 ± 0.25 | 89.97 ± 2.79 | 463.74 ± 1.13 |
EGSL | 8.74 ± 0.08 | 115.78 ± 3.21 | 158.02 ± 2.54 | 52.55 ± 7.53 | 81.14 ± 6.82 | 139.46 ± 3.42 | 92.15 ± 8.96 | 523.32 ± 24.08 |
SSS | 18.57 ± 1.4 | 90.88 ± 2.41 | 111.83 ± 5.08 | 37.21 ± 3.75 | 139.26 ± 6.52 | 126.8 ± 1.5 | 78.15 ± 9.18 | 493.25 ± 23.55 |
Mean | 21.77 ± 5.36 | 96.65 ± 10.41 | 86.16 ± 28.16 | 39.58 ± 12.85 | 93.02 ± 40.41 | 154.41 ± 66.19 | 103.02 ± 34.92 | 475.5 ± 117.73 |
FWS | 26.14 ± 0.81 | 55.54 ± 0.8 | 113.46 ± 1.1 | 29.35 ± 2.05 | 117.39 ± 5.4 | 128.72 ± 9.02 | 72.98 ± 7.06 | 461.91 ± 2.96 |
WLS | 27.56 ± 0.34 | 89.27 ± 0.8 | 107.25 ± 11.83 | 28.16 ± 1.16 | 111.59 ± 6.53 | 129.41 ± 8.79 | 110.3 ± 5.41 | 486.71 ± 22.34 |
GMS | 15.93 ± 0.37 | 79.63 ± 2.41 | 73.15 ± 2.97 | 29.02 ± 3.75 | 86.86 ± 7.16 | 76.05 ± 7.06 | 76.04 ± 9.84 | 341.12 ± 16.92 |
GNS | 19.81 ± 0.94 | 70 ± 2.41 | 72.54 ± 4.85 | 35.55 ± 1.8 | 144.42 ± 5.72 | 61.87 ± 0.63 | 78.36 ± 7.11 | 392.75 ± 6.86 |
XTS | 15.26 ± 0.98 | 62.77 ± 3.21 | 84.31 ± 3.29 | 23.67 ± 1.2 | 116.49 ± 2.78 | 62.16 ± 1.42 | 82.69 ± 7.17 | 369.31 ± 8.93 |
XGR | 18.7 ± 0.64 | 67.59 ± 1.61 | 84.04 ± 1.04 | 28.32 ± 6.34 | 118.96 ± 3.05 | 139.71 ± 12.42 | 112.05 ± 1.52 | 483.08 ± 4.64 |
YBTS | 19.44 ± 0.37 | 78.03 ± 2.41 | 90.5 ± 6.36 | 36.04 ± 7.89 | 141.96 ± 9.12 | 202.4 ± 19.2 | 133.45 ± 3.06 | 604.36 ± 30.55 |
YBGR | 20.38 ± 0.57 | 147.9 ± 4.82 | 71.97 ± 10.34 | 41.93 ± 1.7 | 99.38 ± 1.86 | 145.52 ± 7.43 | 72.89 ± 1.77 | 431.69 ± 16.71 |
LTB | 15.6 ± 1.18 | 83.65 ± 1.61 | 81.96 ± 1.72 | 33.5 ± 5.22 | 46.58 ± 3.86 | 182.67 ± 7.06 | 17.04 ± 2.2 | 361.74 ± 2.41 |
LTA | 16 ± 0.51 | 169.59 ± 2.41 | 75.14 ± 1.96 | 42.49 ± 1.97 | 41.08 ± 0.6 | 130.24 ± 12.03 | 39.71 ± 2.55 | 328.67 ± 12.29 |
AWH | 37.56 ± 0.84 | 65.18 ± 2.41 | 86.54 ± 8.24 | 37.51 ± 5.05 | 147.54 ± 3.92 | 157.05 ± 6.37 | 162.08 ± 2.71 | 590.73 ± 8.08 |
AWL | 23.65 ± 0.27 | 53.93 ± 2.41 | 64.47 ± 2.88 | 31.39 ± 4.98 | 116.48 ± 6.12 | 147.86 ± 4.21 | 76.65 ± 2.98 | 436.85 ± 13.54 |
BCH | 25 ± 0.34 | 106.14 ± 3.21 | 34.41 ± 5.68 | 36.56 ± 1.48 | 118.05 ± 2.81 | 139.2 ± 7.98 | 77.16 ± 2.25 | 405.38 ± 9.48 |
BCL | 9.47 ± 1.04 | 71.6 ± 0.8 | 75.8 ± 3.13 | 39.44 ± 3.12 | 47.48 ± 2.69 | 78.74 ± 2.24 | 158.41 ± 6.41 | 399.87 ± 6.32 |
YTS | 15.23 ± 0.54 | 71.6 ± 2.41 | 53.51 ± 8.44 | 33.4 ± 5.13 | 37.64 ± 0.51 | 71.43 ± 2.28 | 109.98 ± 6.44 | 305.96 ± 7.68 |
HMH | 23.21 ± 0.57 | 57.95 ± 1.61 | 54.56 ± 1.28 | 30.11 ± 2.06 | 121.91 ± 4.54 | 122.76 ± 2.64 | 114.49 ± 9.43 | 443.83 ± 13.36 |
HML | 20.01 ± 0.34 | 70.8 ± 3.21 | 78.01 ± 7.06 | 33.21 ± 1.21 | 147.27 ± 8.35 | 89.4 ± 4.75 | 80.36 ± 0.81 | 428.25 ± 18.06 |
THK | 36.39 ± 0.74 | 110.15 ± 4.02 | 84.61 ± 2.34 | 49.74 ± 4.13 | 115.49 ± 3.34 | 64.49 ± 2.78 | 114.33 ± 6.05 | 428.66 ± 14.12 |
TBJ | 23.38 ± 0.4 | 159.95 ± 2.41 | 56.03 ± 1.76 | 30.33 ± 0.37 | 101.99 ± 4.93 | 86.66 ± 8.37 | 85.72 ± 5.03 | 360.72 ± 16 |
JLT | 11.28 ± 0.51 | 188.06 ± 1.61 | 62.7 ± 3.89 | 31.14 ± 3.63 | 140.66 ± 12.23 | 81.41 ± 3.14 | 97.15 ± 3.92 | 413.07 ± 15.26 |
LGL | 10 ± 0.37 | 155.13 ± 0.8 | 83.49 ± 4.7 | 64.21 ± 1.85 | 53.47 ± 4.25 | 170.47 ± 1.42 | 86.45 ± 6.96 | 458.1 ± 13.67 |
SMF | 22.07 ± 0.17 | 120.55 ± 2.63 | 66.57 ± 2.33 | 59.36 ± 3.39 | 69.81 ± 4.47 | 220.43 ± 2.05 | 124.03 ± 7.47 | 540.21 ± 5.59 |
HYW | 25.77 ± 0.3 | 147.89 ± 2.63 | 76 ± 6.4 | 63.5 ± 3.3 | 106.64 ± 4.61 | 279.3 ± 18.34 | 121.55 ± 8.87 | 646.99 ± 6 |
LMH | 24.8 ± 0.54 | 143.84 ± 3.82 | 81.39 ± 1.68 | 64.16 ± 3.5 | 128.92 ± 4.41 | 273.43 ± 18.26 | 169.46 ± 5.59 | 717.37 ± 31.93 |
TTS | 13.95 ± 0.4 | 133.21 ± 4.39 | 90.42 ± 3.31 | 44.26 ± 2.17 | 48.8 ± 6.56 | 224.12 ± 6.95 | 127.75 ± 7 | 535.35 ± 16.6 |
DGS | 9.47 ± 0.24 | 140.8 ± 3.16 | 75.81 ± 4.41 | 27.95 ± 1.56 | 31.91 ± 0.17 | 123.42 ± 0.26 | 21.75 ± 0.15 | 280.85 ± 2.79 |
YQS | 17.45 ± 0.47 | 167.14 ± 4.39 | 51.18 ± 0.69 | 24.49 ± 1.48 | 55.83 ± 5.72 | 83.4 ± 7.4 | 52.61 ± 5.44 | 267.5 ± 17.35 |
EGK | 27.09 ± 0.74 | 107.89 ± 3.16 | 106.09 ± 6.12 | 51.36 ± 1.67 | 128.91 ± 5.75 | 263.86 ± 6.92 | 135.26 ± 5 | 685.48 ± 14.07 |
FGT | 22.5 ± 0.2 | 107.38 ± 0.88 | 128.14 ± 2.24 | 37.7 ± 2.7 | 96 ± 4.82 | 207.76 ± 6 | 56.94 ± 4.09 | 526.54 ± 6.36 |
FKY | 15.36 ± 0.54 | 107.38 ± 3.51 | 116.14 ± 2.68 | 29.84 ± 7.57 | 109.88 ± 10.75 | 71.64 ± 10.02 | 78.52 ± 7.27 | 406.03 ± 7.23 |
SKK | 8.66 ± 0.1 | 113.46 ± 2.32 | 69.2 ± 3.32 | 32.21 ± 4.72 | 34.17 ± 1.41 | 155.17 ± 7.41 | 67.46 ± 1.79 | 358.2 ± 10.92 |
KSC | 10.61 ± 0.57 | 83.58 ± 2.32 | 167.04 ± 6.07 | 32.74 ± 1.85 | 36.14 ± 3.16 | 207.52 ± 13.85 | 104.08 ± 9.28 | 547.52 ± 11.01 |
Mean | 19.62 ± 7.24 | 91.51 ± 36.86 | 81.76 ± 25.2 | 37.9 ± 11.78 | 94.37 ± 38.65 | 143.07 ± 64.51 | 94.3 ± 37.01 | 451.4 ± 112.31 |
Samples | The Ratio of Caffeine, EGCG, and Que-Rut | The Close Ratio of Caffeine, EGCG, and Que-Rut |
---|---|---|
SSS | 9:18:1 | 10:20:1 |
EGS | 45:83:1 | 45:85:1 |
45:80:1 | ||
LGS | 18:33:1 | 20:35:1 |
BCS | 44:78:1 | 45:80:1 |
45:75:1 | ||
HMML | 44:75:1 | 45:75:1 |
EGSL | 16:23:1 | 15:25:1 |
15:20:1 | ||
LJM | 38:53:1 | 40:55:1 |
LJS | 25:34:1 | 25:35:1 |
HMS | 34:42:1 | 30:40:1 |
35:45:1 | ||
35:40:1 | ||
SRSL | 12:13:1 | 10:10:1 |
15:15:1 | ||
SRS | 13:13:1 | 10:10:1 |
15:15:1 |
Groups | Ratio of Caffeine, EGCG, and Que-Rut | Concentration Range of Caffeine (mg/L) | Concentration Range of EGCG (mg/L) | Concentration Range of Que-Rut (mg/L) |
---|---|---|---|---|
1 | 10:20:1 | 150–240 | 300–480 | 15–24 |
2 | 10:10:1 | 230–240 | 230–240 | 15–24 |
3 | 15:25:1 | 150–310 | 250–517 | 15–21 |
4 | 15:20:1 | 172.5–310 | 230–414 | 11.5–21 |
5 | 15:15:1 | 230–310 | 230–310 | 15–21 |
6 | 20:35:1 | 150–310 | 262.5–542.5 | 7.5–15.5 |
7 | 25:35:1 | 164.25–310 | 230–434 | 6.57–12.4 |
8 | 30:40:1 | 172.5–310 | 230–413.33 | 5.75–10.33 |
9 | 35:45:1 | 178.89–310 | 230–398.57 | 5.11–8.86 |
10 | 35:40:1 | 201.25–310 | 230–354.29 | 5.75–8.86 |
11 | 40:55:1 | 167.27–310 | 230–426.25 | 4.18–7.75 |
12 | 45:85:1 | 153–296.47 | 289–560 | 3.4–6.82 |
13 | 45:80:1 | 153–310 | 272–551.11 | 3.4–6.89 |
14 | 45:75:1 | 153–310 | 255–516.67 | 3.4–6.89 |
Samples | Simulation Solution 1 | Simulation Solution 2 | Simulation Solution 3 | Simulation Solution 4 | Simulation Solution 5 | Simulation Solution 6 | Simulation Solution 7 |
---|---|---|---|---|---|---|---|
LJS | 85 | 80 | 75 | 35 | 15 | 55 | 35 |
LJM | 80 | 75 | 85 | 25 | 20 | 50 | 45 |
BCS | 80 | 70 | 75 | 20 | 20 | 35 | 25 |
HMS | 75 | 80 | 65 | 40 | 35 | 65 | 40 |
HMML | 90 | 75 | 85 | 75 | 60 | 75 | 65 |
LGS | 85 | 70 | 65 | 25 | 25 | 70 | 50 |
SRS | 95 | 80 | 75 | 35 | 65 | 70 | 55 |
SRSL | 75 | 80 | 70 | 70 | 55 | 75 | 45 |
EGS | 85 | 75 | 80 | 20 | 10 | 65 | 25 |
EGSL | 80 | 90 | 85 | 25 | 35 | 60 | 55 |
SSS | 75 | 65 | 75 | 45 | 25 | 55 | 60 |
Group | Code of Curve | mα | nβ | Equation | R2 γ | Adjust R2 | SEE δ | RSS ε |
---|---|---|---|---|---|---|---|---|
Group 1 | Fit curve 1 | 10:20:1 | 0.50 | y = 3.21 × ln(x − 142.4) − 5.47 | 0.9969 | 0.9960 | 0.1920 | 0.2580 |
Group 2 | Fit curve 2 | 10:10:1 | 1.00 | - | - | - | - | - |
Group 3 | Fit curve 3 | 15:25:1 | 0.60 | y = 4.20 × ln(x − 120.17) − 13.3 | 0.9993 | 0.9991 | 0.0833 | 0.0416 |
Group 4 | Fit curve 4 | 15:20:1 | 0.75 | y = 2.90 × ln(x − 155.98) − 6.95 | 0.9970 | 0.9958 | 0.1592 | 0.1268 |
Group 5 | Fit curve 5 | 15:15:1 | 1.00 | y = 4.20 × ln(x − 183.86) − 15.13 | 0.9981 | 0.9968 | 0.1062 | 0.0338 |
Group 6 | Fit curve 6 | 20:35:1 | 0.57 | y = 3.56 × ln(x − 121.79) − 10.87 | 0.9991 | 0.9988 | 0.0852 | 0.0363 |
Group 7 | Fit curve 7 | 25:35:1 | 0.71 | y = 3.69 × ln(x − 137.43) − 11.22 | 0.9988 | 0.9983 | 0.0999 | 0.0499 |
Group 8 | Fit curve 8 | 30:40:1 | 0.75 | y = 4.24 × ln(x − 137.59) − 14.11 | 0.9990 | 0.9986 | 0.0905 | 0.0410 |
Group 9 | Fit curve 9 | 35:45:1 | 0.78 | y = 2.90 × ln(x − 161.77) − 7.05 | 0.9970 | 0.9958 | 0.1593 | 0.1268 |
Group 10 | Fit curve 10 | 35:40:1 | 0.88 | y = 4.42 × ln(x − 157.55) − 15.74 | 0.9987 | 0.9980 | 0.0960 | 0.0369 |
Group 11 | Fit curve 11 | 40:55:1 | 0.73 | y = 3.64 × ln(x − 140.55) − 11.04 | 0.9988 | 0.9983 | 0.1019 | 0.0519 |
Group 12 | Fit curve 12 | 45:85:1 | 0.53 | y = 3.79 × ln(x − 126.73) − 11.44 | 0.9991 | 0.9988 | 0.0960 | 0.0552 |
Group 13 | Fit curve 13 | 45:80:1 | 0.56 | y = 3.56 × ln(x − 124.22) − 10.94 | 0.9991 | 0.9988 | 0.0852 | 0.0363 |
Group 14 | Fit curve 14 | 45:75:1 | 0.60 | y = 4.64 × ln(x − 111.1) − 16.28 | 0.9991 | 0.9988 | 0.0940 | 0.0530 |
nα | Equations (6), (11) and (12) | Equations (6), (11) and (13) | Equations (6), (12) and (13) | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b | c | a | b | c | a | b | c | |
0.50 | 2.40 | 152.47 | - | 2.72 | 147.47 | - | 3.14 | 137.86 | 3.91 |
0.53 | 2.48 | 151.30 | - | 2.81 | 146.23 | - | 3.23 | 136.62 | 6.13 |
0.56 | 2.59 | 149.70 | - | 2.92 | 144.65 | −0.66 | 3.34 | 135.27 | 7.74 |
0.57 | 2.64 | 149.05 | - | 2.96 | 144.03 | 2.32 | 3.37 | 134.81 | 8.21 |
0.60 | 2.81 | 146.59 | 2.08 | 3.12 | 141.84 | 6.00 | 3.50 | 133.45 | 9.53 |
0.71 | 4.28 | 127.95 | 14.87 | 4.12 | 130.25 | 14.01 | 3.97 | 133.11 | 13.09 |
0.73 | 4.74 | 123.19 | 17.44 | 4.35 | 128.71 | 15.35 | 4.01 | 134.91 | 13.35 |
0.75 | 5.21 | 119.35 | 19.97 | 4.54 | 128.33 | 16.45 | 4.02 | 137.54 | 13.42 |
0.78 | 5.70 | 118.77 | 22.45 | 4.70 | 131.23 | 17.22 | 3.99 | 142.96 | 13.18 |
0.88 | 4.07 | 162.61 | 13.34 | 3.87 | 163.93 | 12.50 | 3.65 | 166.04 | 11.48 |
1.00 | 4.19 | 183.87 | 15.28 | 4.21 | 183.84 | 15.35 | 4.12 | 183.73 | 15.06 |
qα | Group | BAPI Values | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45 | 1 | 14 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||||||||||
45 | 1 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||
45 | 1 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||||||||||
40 | 1 | 11 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||||||||||||
35 | 1 | 10 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||||||||||||||||
35 | 1 | 9 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||||||||||||||
30 | 1 | 8 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||||||||||||||||
25 | 1 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||||||||||||||
20 | 1 | 6 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||||||||||||||
15 | 1 | 5 | 15 | 16 | 17 | 18 | 19 | 20 | ||||||||||||||||||
15 | 1 | 4 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||||||||||||||||
15 | 1 | 3 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||||||||||||||
10 | 1 | 1 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Samples | Concentration of Caffeine (x, mg/L) | mα | nβ | qγ | y = a × ln(x − b) − c + IV − 1 | BAIPI Values for Calculation (y) | BAIPI Values for Direct Assessment | |||
---|---|---|---|---|---|---|---|---|---|---|
IV | a | b | c | |||||||
Model | ||||||||||
LJS | 282.31 | 25:34:1 | 0.74 | 25 | 8.91 | 4.02 | 136.12 | 13.41 | 14.54 | 7.5 |
LJM | 258.74 | 38:53:1 | 0.73 | 38 | 3.76 | 4.01 | 134.91 | 13.35 | 8.73 | 6 |
BCS | 303.93 | 44:78:1 | 0.57 | 44 | 1.39 | 3.37 | 134.81 | 8.21 | 9.49 | 5.8 |
HMS | 227.70 | 34:42:1 | 0.82 | 34 | 5.35 | 3.86 | 152.08 | 12.41 | 8.63 | 5.95 |
HMML | 157.18 | 44:75:1 | 0.60 | 44 | 1.39 | 3.50 | 133.45 | 9.53 | 1.94 | 4.1 |
LGS | 306.55 | 18:33:1 | 0.56 | 18 | 11.68 | 3.34 | 135.27 | 7.74 | 20.09 | 8.3 |
SRS | 235.81 | 13:13:1 | 1.00 | 13 | 13.65 | 4.12 | 183.73 | 15.06 | 13.89 | 7.45 |
SRSL | 257.26 | 12:13:1 | 0.96 | 12 | 14.05 | 3.78 | 179.44 | 12.88 | 16.61 | 7.8 |
EGS | 300.35 | 45:83:1 | 0.54 | 45 | 0.99 | 3.26 | 136.18 | 6.70 | 9.94 | 5.75 |
EGSL | 215.27 | 16:23:1 | 0.70 | 16 | 12.47 | 3.94 | 132.50 | 12.90 | 15.95 | 7.8 |
SSS | 215.57 | 9:18:1 | 0.51 | 9 | 15.24 | 3.17 | 137.46 | 4.77 | 23.28 | 8.6 |
Validation | ||||||||||
FWS | 283.56 | 20:22:1 | 0.91 | 20 | 10.88 | 3.63 | 171.33 | 11.54 | 15.44 | 7.6 |
WJS | 306.13 | 26:37:1 | 0.70 | 26 | 9.30 | 3.92 | 132.32 | 12.82 | 15.05 | 6.8 |
GMS | 213.78 | 33:56:1 | 0.60 | 33 | 5.74 | 3.50 | 133.47 | 9.52 | 10.37 | 6.2 |
GNS | 192.33 | 34:58:1 | 0.59 | 34 | 5.74 | 3.45 | 134.00 | 9.01 | 9.34 | 5.95 |
XTS | 269.28 | 60:96:1 | 0.62 | 60 | −4.94 | 3.61 | 132.51 | 10.49 | 1.25 | 4.1 |
XGR | 272.68 | 40:76:1 | 0.53 | 40 | 3.37 | 3.25 | 136.42 | 6.40 | 11.35 | 6.1 |
YTS | 283.85 | 23:26:1 | 0.90 | 23 | 10.09 | 3.63 | 170.29 | 11.49 | 14.37 | 7.3 |
YGR | 195.97 | 17:26:1 | 0.65 | 17 | 12.47 | 3.75 | 131.75 | 11.63 | 15.13 | 7.8 |
LTB | 209.87 | 17:27:1 | 0.63 | 17 | 12.47 | 3.63 | 132.37 | 10.65 | 16.30 | 7.95 |
LTA | 201.61 | 17:31:1 | 0.55 | 17 | 12.47 | 3.29 | 135.82 | 7.13 | 17.70 | 7.75 |
AWH | 255.99 | 40:47:1 | 0.84 | 40 | 3.37 | 3.79 | 156.17 | 12.06 | 7.54 | 5.6 |
AWL | 204.33 | 51:70:1 | 0.73 | 51 | −1.38 | 4.01 | 134.99 | 13.36 | 1.13 | 3.8 |
BCH | 239.47 | 50:72:1 | 0.69 | 50 | −0.59 | 3.90 | 132.08 | 12.67 | 3.77 | 4.8 |
BCL | 249.82 | 55:97:1 | 0.56 | 55 | −2.57 | 3.34 | 135.24 | 7.77 | 4.25 | 5.1 |
YTS | 306.85 | 55:87:1 | 0.64 | 55 | −2.57 | 3.66 | 132.15 | 10.93 | 3.96 | 4.8 |
HMH | 224.07 | 39:48:1 | 0.83 | 39 | 3.37 | 3.84 | 153.43 | 12.29 | 6.22 | 5.45 |
HML | 232.93 | 35:45:1 | 0.76 | 35 | 6.53 | 4.01 | 139.95 | 13.35 | 8.89 | 6.5 |
THK | 204.17 | 22:31:1 | 0.70 | 22 | 9.70 | 3.94 | 132.62 | 12.95 | 12.95 | 6.1 |
TBJ | 277.26 | 15:16:1 | 0.92 | 15 | 13.26 | 3.64 | 174.17 | 11.77 | 17.03 | 7.2 |
JLT | 228.59 | 26:37:1 | 0.71 | 26 | 8.51 | 3.97 | 133.23 | 13.12 | 12.47 | 7.1 |
LGL | 206.88 | 22:36:1 | 0.60 | 22 | 10.49 | 3.52 | 133.28 | 9.70 | 14.71 | 6.8 |
SMF | 216.72 | 45:57:1 | 0.78 | 45 | 0.99 | 3.98 | 143.44 | 13.14 | 4.01 | 4.3 |
HYW | 250.67 | 37:47:1 | 0.78 | 37 | 4.55 | 3.99 | 142.86 | 13.18 | 8.81 | 6 |
LMH | 260.01 | 35:56:1 | 0.63 | 35 | 5.35 | 3.62 | 132.40 | 10.62 | 10.97 | 6.5 |
TTS | 238.36 | 20:20:1 | 1.00 | 20 | 11.28 | 4.11 | 183.67 | 15.01 | 11.40 | 6.8 |
DGS | 246.54 | 22:23:1 | 0.94 | 22 | 10.49 | 3.69 | 177.12 | 12.25 | 12.67 | 6.45 |
YQS | 261.78 | 79:97:1 | 0.82 | 79 | −14.43 | 3.86 | 152.11 | 12.41 | −7.84 | 2.3 |
EGK | 294.86 | 17:18:1 | 0.96 | 17 | 12.07 | 3.77 | 179.33 | 12.84 | 15.95 | 7.75 |
FGT | 299.18 | 14:16:1 | 0.85 | 14 | 13.65 | 3.75 | 159.02 | 11.84 | 19.07 | 7.6 |
FKY | 271.52 | 13:21:1 | 0.62 | 13 | 14.05 | 3.60 | 132.55 | 10.46 | 19.88 | 7.8 |
SKK | 172.98 | 12:23:1 | 0.50 | 12 | 14.44 | 3.13 | 138.02 | 3.48 | 20.88 | 8.45 |
KSC | 270.69 | 20:32:1 | 0.61 | 20 | 11.28 | 3.52 | 133.21 | 9.77 | 17.67 | 8.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Du, D.; Cheng, S.; Wei, Z. Evaluating the Intensity of Bitter–Astringent Interactive Perception in Green Tea Based on the Weber–Fechner Law. Chemosensors 2025, 13, 137. https://doi.org/10.3390/chemosensors13040137
Li S, Du D, Cheng S, Wei Z. Evaluating the Intensity of Bitter–Astringent Interactive Perception in Green Tea Based on the Weber–Fechner Law. Chemosensors. 2025; 13(4):137. https://doi.org/10.3390/chemosensors13040137
Chicago/Turabian StyleLi, Siying, Dongdong Du, Shaoming Cheng, and Zhenbo Wei. 2025. "Evaluating the Intensity of Bitter–Astringent Interactive Perception in Green Tea Based on the Weber–Fechner Law" Chemosensors 13, no. 4: 137. https://doi.org/10.3390/chemosensors13040137
APA StyleLi, S., Du, D., Cheng, S., & Wei, Z. (2025). Evaluating the Intensity of Bitter–Astringent Interactive Perception in Green Tea Based on the Weber–Fechner Law. Chemosensors, 13(4), 137. https://doi.org/10.3390/chemosensors13040137