Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications
Abstract
:1. Introduction
2. Crystal Structure
3. Gas-Sensing Mechanism
4. Gas-Sensing Parameters
4.1. Operating Temperature
4.2. Response and Recovery Time
4.3. Selectivity
4.4. Response
4.5. Sensitivity
4.6. Limit of Detection
4.7. Stability
5. Nanostructures
5.1. Nanoparticles
5.1.1. A-Site Doping
5.1.2. B-Site Doping
5.2. Nanorod/Nanotube/Nanofibers
Material | Detection Gas | O.T. (°C) | Conc. (ppm) | Response | tres/trec (s) | LOD | Reference |
---|---|---|---|---|---|---|---|
NdFeO3 | Trietheylamine | 190 | 100 | 18.9 | 72/35 | [6] | |
GdFeO3 | N-Propanol | 140 | 100 | 58.113 | 28/28 | 1 ppm | [27] |
YFeO3 | Ethanol | 350 | 100 | 18 | 19/9 | [35] | |
LaFeO3 | Ethanol | 160 | 100 | 9.4 | 2/4 | [38] | |
ErFeO3 | Ethylene glycol | 230 | 100 | 15.8 | 61/39 | 35 ppb | [39] |
SmFeO3 | Ethylene glycol | 200 | 100 | 14.3 | 47/56 | [98] | |
Sm0.95Ho0.05FeO3 | Glycol | 200 | 100 | 26.12 | 50/32 | [99] | |
SmFeO3 | Ethylene glycol | 240 | 100 | 18.19 | 41/47 | [100] | |
LaFeO3 | Acetone | 120 | 40 | 46.4 | 14/49 | 135 ppb | [101] |
LaFeO3 | Oxygen | 650 | 5% O2 | 8.3 | 15/18 | [102] | |
LaFeO3 | Hydrogen sulfide | 150–300 | 0.5–4 | 20–90% | 90–240/300–500 | 500 ppb | [103] |
PrFeO3 | Acetone | 180 | 200 | 141.3 | 4/4 | [104] | |
La0.75Ba0.25FeO3 | Ethanol | 210 | 500 | 136.1 | 42/40 | [90] | |
SmFeO3 | Acetone | 140 | 100 | 9.98 | 17/16 | [105] | |
Ag-LaFeO3 | Formaldehyde | 230 | 5 | 4.8 | 2/4 | 5 ppm | [106] |
5.3. Thin Film/Nanosheet
Material | Detection Gas | O.T. (°C) | Conc. (ppm) | Response | tres/trec (s) | LOD | Reference |
---|---|---|---|---|---|---|---|
LaFe0.99P0.01O3−δ | Acetone | 180 | 100 | 30 | 50 ppb | [40] | |
La0.8Ca0.1Pb0.1FeO3 | Ethanol | 250 | 5 | 2.04 | 200/580 | [111] | |
LaFeO3 | Formaldehyde | 120 | 1 | 1.35 | 50 ppb | [112] | |
LaFeO3 | SO2 | 120 | 3 | 7.6% | 15/14 | [55] | |
LaFe0.8Co0.2O3 | CO | 225 | 500 | 86% | 100/500 | [57] | |
La0.8Pb0.1Ca0.1Fe0.8Co0.2O3 | Ozone | 170 | 0.4 | 3.9 | 2.1/- | [113] | |
PrFeO3 | CO2 | 180 | 5000 | 3.846 | 441/98 | [87] | |
LaFeO3 | Ethanol | 128 | 200 | 55 | 13/11 | [114] | |
LaFeO3 | Acetone | 260 | 0.5 | 2.068 | 62/107 | [115] |
5.4. Nanocomposites
Material | Detection Gas | O.T. (°C) | Conc. (ppm) | Response | tres/trec (s) | LOD | Reference |
---|---|---|---|---|---|---|---|
LaFeO3/3%PW12 | Acetone | 250 | 5 | 3.35 | 52.64 ppb | [118] | |
1% LaFeO3/In2O3 | 2-Butanone | 210 | 100 | 425 | 103/21 | 10 ppb | [117] |
LaFeO3/2.5wt% SnO2 QD | Formic acid | 210 | 100 | 31.5 | 16.8/6.6 | 1 ppm | [119] |
p-SmFeO3/p-YFeO3 | Ethanol | 120 | 30 | 163.593 | 37/129 | 380 ppb | [123] |
LaFeO3/C | Formaldehyde | 125 | 50 | 74.3 | 500 ppb | [122] | |
Au/LaFeO3 | Ethanol | 200 | 100 | 44 | 24/8 | [124] | |
Ag/LaFeO3 | Ethanol | 190 | 100 | 155 | 30/5 | [125] | |
SmFeO3/ZnO | Acetone | 350 | 10 | 45 | 10/250 | 100 ppb | [126] |
α-Fe2O3/LaFeO3 | Acetone | 350 | 100 | 48.3 | 16.5/2 | 166.2 ppm | [127] |
Ag/LaFeO3 NCQD | Methanol | 92 | 5 | 73 | 50.9/54.3 | [121] | |
α-Fe2O3/LaFeO3 | Acetone | 230 | 100 | 20 | 3/5 | 1 ppm | [120] |
Co-Fe2O3/SmFeO3 | Methanol | 155 | 5 | 19.7 | 47/19 | 40 ppb | [128] |
3wt% Pd/SmFeO3 | Acetone | 240 | 500 ppb | 7.21 | 8/15 | [129] | |
2wt% Pd/LaFeO3 | Acetone | 200 | 1 | 1.9 | 4/2 | [130] |
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, L.; Zeng, W. Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Gao, S.; Wang, C.; Li, X.; Yuan, R.; Zhang, Q.; Zhao, J.; Chu, H. Amorphous CoSnO3 for Conductometric Triethylamine Gas Sensing. Sens. Actuators B Chem. 2024, 401, 135086. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Niu, Y.; Su, H.; Qi, Y. Simple Thermocatalytic Oxidation Degradation of VOCs. Catal. Lett. 2022, 152, 1801–1818. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Hsieh, J.-C.; Chen, C.-A.; Chen, W.-L.; Meng, H.-F.; Lu, C.-J.; Horng, S.-F.; Zan, H.-W. Ultrasensitive Detection of Hydrogen Sulfide Gas Based on Perovskite Vertical Channel Chemo-Sensor. Sens. Actuators B Chem. 2021, 326, 128988. [Google Scholar] [CrossRef]
- Guo, J.; Ma, S.; Fan, G.; Ni, P.; Ma, N.; Wang, Y.; Zhu, J.; Wang, H. P-Type NdFeO3 Nanorods Synthesized by Electrospinning Are Used in High Performance TEA Sensors. Ceram. Int. 2025, 51, 865–873. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Yang, G.; Gao, L.; Wu, Y.; Zhang, X. Oxygen Vacancies Assisted LaFeO3 Derived from Metal Organic Frameworks Endows a Practical HCHO Sensor with Excellent Sensing Characteristics. J. Ind. Eng. Chem. 2023, 126, 501–509. [Google Scholar] [CrossRef]
- Yang, K.; Ma, J.; Qiao, X.; Cui, Y.; Jia, L.; Wang, H. Hierarchical Porous LaFeO3 Nanostructure for Efficient Trace Detection of Formaldehyde. Sens. Actuators B Chem. 2020, 313, 128022. [Google Scholar] [CrossRef]
- Srinivasan, P.; Ezhilan, M.; Kulandaisamy, A.J.; Babu, K.J.; Rayappan, J.B.B. Room Temperature Chemiresistive Gas Sensors: Challenges and Strategies—A Mini Review. J. Mater. Sci. Mater. Electron. 2019, 30, 15825–15847. [Google Scholar] [CrossRef]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Umar, A.; Nadargi, J.D.; Lokare, S.A.; Akbar, S.; Mulla, I.S.; Suryavanshi, S.S.; Bhandari, N.L.; Chaskar, M.G. Gas Sensors and Factors Influencing Sensing Mechanism with a Special Focus on MOS Sensors. J. Mater. Sci. 2023, 58, 559–582. [Google Scholar] [CrossRef]
- Yang, X.; Deng, Y.; Yang, H.; Liao, Y.; Cheng, X.; Zou, Y.; Wu, L.; Deng, Y. Functionalization of Mesoporous Semiconductor Metal Oxides for Gas Sensing: Recent Advances and Emerging Challenges. Adv. Sci. 2023, 10, 2204810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; et al. Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Y.; Liu, B.; Duan, Z.; Zhang, Y.; Yuan, Z.; Tai, H. Enhancing the Carbon Dioxide Sensing Performance of LaFeO3 by Co Doping. Sens. Actuators B Chem. 2024, 402, 135136. [Google Scholar] [CrossRef]
- Wu, M.; Chen, S.; Xiang, W. Oxygen Vacancy Induced Performance Enhancement of Toluene Catalytic Oxidation Using LaFeO3 Perovskite Oxides. Chem. Eng. J. 2020, 387, 124101. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Kim, I.-D. Recent Advances in ABO3 Perovskites: Their Gas-Sensing Performance as Resistive-Type Gas Sensors. J. Korean Ceram. Soc. 2020, 57, 24–39. [Google Scholar] [CrossRef]
- Yin, Y.; Shen, Y.; Zhou, P.; Lu, R.; Li, A.; Zhao, S.; Liu, W.; Wei, D.; Wei, K. Fabrication, Characterization and n-Propanol Sensing Properties of Perovskite-Type ZnSnO3 Nanospheres Based Gas Sensor. Appl. Surf. Sci. 2020, 509, 145335. [Google Scholar] [CrossRef]
- Duan, Z.; Xu, M.; Li, T.; Zhang, Y.; Zou, H. Super-Fast Response Humidity Sensor Based on La0.7Sr0.3MnO3 Nanocrystals Prepared by PVP-Assisted Sol-Gel Method. Sens. Actuators B Chem. 2018, 258, 527–534. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.-G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef]
- Kotnana, G.; Jammalamadaka, S.N. Band Gap Tuning and Orbital Mediated Electron–Phonon Coupling in HoFe1−xCrxO3 (0 ≤ x ≤ 1). J. Appl. Phys. 2015, 118, 124101. [Google Scholar] [CrossRef]
- Gateshki, M.; Suescun, L.; Kolesnik, S.; Mais, J.; Świerczek, K.; Short, S.; Dabrowski, B. Structural, Magnetic and Electronic Properties of LaNi0.5Fe0.5O3 in the Temperature Range 5–1000 K. J. Solid State Chem. 2008, 181, 1833–1839. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, J.; Shang, J.; Shen, H.; Li, L.; Wang, F.; Shen, X.; Tian, T.; Kalashnikova, A.M.; Wu, A.; et al. Recent Advances of Rare Earth Orthoferrite RFeO3 Magneto-Optical Single Crystals. J. Cryst. Growth 2025, 649, 127939. [Google Scholar] [CrossRef]
- Kotnana, G.; Babu, P.D.; Jammalamadaka, S.N. Metamagnetic Transitions and Magnetocaloric Properties of HoCr1-xFexO3 (x = 0.25 and 0.75) Compounds. J. Supercond. Nov. Magn. 2022, 35, 2057–2067. [Google Scholar] [CrossRef]
- Kotnana, G.; Babu, P.D.; Jammalamadaka, S.N. Magnetic and Magnetocaloric Properties of HoCr0.75Fe0.25O3 Compound. AIP Adv. 2017, 8, 056407. [Google Scholar] [CrossRef]
- Dubrovin, R.M.; Roginskii, E.M.; Chernyshev, V.A.; Novikova, N.N.; Elistratova, M.A.; Eliseyev, I.A.; Smirnov, A.N.; Brulev, A.I.; Boldyrev, K.N.; Davydov, V.Y.; et al. Lattice Dynamics and Mixing of Polar Phonons in the Rare-Earth Orthoferrite TbFeO3. Phys. Rev. B 2024, 110, 134310. [Google Scholar] [CrossRef]
- Lin, J.; Liu, N.; Zhang, T.; Liang, H.; Zhang, G.; Wang, X. Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies. Chemosensors 2023, 11, 355. [Google Scholar] [CrossRef]
- Bharati, K.; Gupta, M.; Rajkumari; Tiwari, P.R.; Singh, R.P.; Bhardwaj, B.; Singh, K.A.; Yadav, B.C.; Tripathi, S.; Kumar, S. LPG Sensing Study of Calcium-Doped Praseodymium Orthoferrite Nanomaterial. Anal. Chem. 2024, 96, 19491–19503. [Google Scholar] [CrossRef]
- White, R.L. Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites. J. Appl. Phys. 1969, 40, 1061–1069. [Google Scholar] [CrossRef]
- Tang, L.; Chen, Z.; Zuo, F.; Hua, B.; Zhou, H.; Li, M.; Li, J.; Sun, Y. Enhancing Perovskite Electrocatalysis through Synergistic Functionalization of B-Site Cation for Efficient Water Splitting. Chem. Eng. J. 2020, 401, 126082. [Google Scholar] [CrossRef]
- Chatla, E.; Vankudothu, N.; Shravan Kumar Reddy, S.; Shanmukharao Smatham, S.; Sreenath Reddy, M.; Gopal Reddy, C.; Yadagiri Reddy, P. Impact of Tb Substitution on Structural, Electrical and Magnetic Properties of Ho1−xTbxFeO3 Orthoferrite. Appl. Phys. A 2023, 130, 10. [Google Scholar] [CrossRef]
- Balamurugan, C.; Song, S.-J.; Lee, D.-W. Porous Nanostructured GdFeO3 Perovskite Oxides and Their Gas Response Performance to NOx. Sens. Actuators B Chem. 2018, 272, 400–414. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, C.; Qin, H.; Hu, J. High-Performance Acetone Gas Sensor Based on Ferrite–DyFeO3. J. Mater. Sci. 2020, 55, 16300–16310. [Google Scholar] [CrossRef]
- Chai, H.; Li, Y.; Luo, Y.; Debliquy, M.; Zhang, C. Investigation on Isopropanol Sensing Properties of LnFeO3(Ln = Nd, Dy, Er) Perovskite Materials Synthesized by Microwave-Assisted Hydrothermal Method. Appl. Surf. Sci. 2022, 601, 154292. [Google Scholar] [CrossRef]
- Liu, J.M.; Ma, S.Y.; Liu, W.W.; Xu, C.Y.; Wei, J.S.; Jiang, H.T.; Liu, M.M.; Ma, N.N. A Novel Ethanol Sensor with High Response Based on One-Dimensional YFeO3 Nanorods. Ceram. Int. 2023, 49, 33082–33088. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, D.; Liu, W.; Miao, T.; Chen, J.; Cheng, B.; Qin, H.; Hu, J. Study on Gas Sensing Characteristics of LaFeO3 Sensor under Multi-Wavelength Light Illumination. Mater. Lett. 2023, 344, 134350. [Google Scholar] [CrossRef]
- Guo, J.; Ma, S.; Ma, N.; Liu, J.; Wei, J.; Xu, C.; Fan, G.; Ni, P. Hydrothermal Synthesis of NdFeO3 Nanoparticles and Their High Gas-Sensitive Properties. Ceram. Int. 2024, 50, 43654–43664. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, Z.; Zou, H.; Ma, M. Fabrication of Electrospun LaFeO3 Nanotubes via Annealing Technique for Fast Ethanol Detection. Mater. Lett. 2018, 215, 58–61. [Google Scholar] [CrossRef]
- Wei, J.S.; Ma, S.Y.; Cai, Y.H.; Xu, C.Y.; Liu, J.M.; Jiang, H.T. A High-Performance Ethylene Glycol Sensor Based on Fibrous ErFeO3 Prepared by Electrostatic Spinning. Ceram. Int. 2023, 49, 32611–32618. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Shen, Y.; Zhang, R.; Meng, F. Phosphorus-Doped Porous Perovskite LaFe1-xPxO3-δ Nanosheets with Rich Surface Oxygen Vacancies for Ppb Level Acetone Sensing at Low Temperature. Chem. Eng. J. 2022, 431, 134280. [Google Scholar] [CrossRef]
- Warshi, M.K.; Mishra, V.; Sagdeo, A.; Mishra, V.; Kumar, R.; Sagdeo, P.R. Structural, Optical and Electronic Properties of RFeO3. Ceram. Int. 2018, 44, 8344–8349. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Review of Perovskite-Structure Related Cathode Materials for Solid Oxide Fuel Cells. Ceram. Int. 2020, 46, 5521–5535. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112, 1555–1614. [Google Scholar] [CrossRef] [PubMed]
- Kotnana, G.; Sahu, D.P.; Jammalamadaka, S.N. Inverse and Enhanced Magnetocaloric Properties of HoCrO3. J. Alloys Compd. 2017, 709, 410–414. [Google Scholar] [CrossRef]
- Kotnana, G.; Reddy, V.R.; Jammalamadaka, S.N. Magnetic and Hyperfine Interactions in HoFe1−xCrxO3 (0≤x≤1) Compounds. J. Magn. Magn. Mater. 2017, 429, 353–358. [Google Scholar] [CrossRef]
- Chen, D.; Chen, C.; Baiyee, Z.M.; Shao, Z.; Ciucci, F. Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chem. Rev. 2015, 115, 9869–9921. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Conejo-Dávila, A.S.; Estrada-Monje, A.; Maldonado-Orozco, M.C.; Reyes-López, S.Y.; Zaragoza-Contreras, E.A. Electrochemical Perovskite-Based Sensors for the Detection of Relevant Biomarkers for Human Kidney Health. Chemosensors 2023, 11, 507. [Google Scholar] [CrossRef]
- Zhang, G.; Song, X.-Z.; Wang, X.-F.; Liu, N.; Li, X.; Wei, Z.; Qian, G.; Wang, Z.; Yu, S.; Tan, Z. LnFeO3 (Ln = La, Nd, Sm) Derived from Bimetallic Organic Frameworks for Gas Sensor. J. Alloys Compd. 2022, 902, 163803. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, X.; Ma, Z.; Yang, K.; Gao, X.; Wang, H.; Jia, L. Formaldehyde Gas Sensor with 1 Ppb Detection Limit Based on In-Doped LaFeO3 Porous Structure. Sens. Actuators B Chem. 2022, 371, 132558. [Google Scholar] [CrossRef]
- Shen, C.; Liang, H.; Zhao, Z.; Guo, S.; Chen, Y.; Tan, Z.; Song, X.-Z.; Wang, X. Mo-Doped LaFeO3 Gas Sensors with Enhanced Sensing Performance for Triethylamine Gas. Sensors 2024, 24, 4851. [Google Scholar] [CrossRef]
- Siemons, M.; Leifert, A.; Simon, U. Preparation and Gas Sensing Characteristics of Nanoparticulate P-Type Semiconducting LnFeO3 and LnCrO3 Materials. Adv. Funct. Mater. 2007, 17, 2189–2197. [Google Scholar] [CrossRef]
- Park, C.O.; Akbar, S.A. Ceramics for Chemical Sensing. J. Mater. Sci. 2003, 38, 4611–4637. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jiang, Y.; Duan, Z.; Yuan, Z.; Liu, B.; Huang, Q.; Zhao, Q.; Yang, Y.; Tai, H. Synergistic Effect of Charge Transfer and Interlayer Swelling in V2CTx/SnS2 Driving Ultrafast and Highly Sensitive NO2 Detection at Room Temperature. Sens. Actuators B Chem. 2024, 411, 135788. [Google Scholar] [CrossRef]
- Aranthady, C.; Jangid, T.; Gupta, K.; Mishra, A.K.; Kaushik, S.D.; Siruguri, V.; Rao, G.M.; Shanbhag, G.V.; Sundaram, N.G. Selective SO2 Detection at Low Concentration by Ca Substituted LaFeO3 Chemiresistive Gas Sensor: A Comparative Study of LaFeO3 Pellet vs Thin Film. Sens. Actuators B Chem. 2021, 329, 129211. [Google Scholar] [CrossRef]
- Benali, A.; Benali, E.M.; Melo, B.M.G.; Tozri, A.; Bejar, M.; Dhahri, E.; Graça, M.-P.F.; Valente, M.A.; Peng, L.; Wu, J.; et al. Significant Improvement of Dielectric, Magnetic, and Gas-Sensing Properties of the (La0.8Ca0.2)0.6Bi0.4FeO3 Nanomaterial: Particles Size Effects. J. Mater. Sci. Mater. Electron. 2023, 34, 45. [Google Scholar] [CrossRef]
- Bhowmick, T.; Nag, S.; Majumder, S.B. Investigations on Lanthanum Iron Cobalt Oxide Thin Film as Selective Carbon Monoxide Sensor. J. Alloys Compd. 2021, 884, 161161. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Sackmann, A.; Weimar, U.; Bârsan, N. A Highly Selective Sensor to Acetylene and Ethylene Based on LaFeO3. Sens. Actuators B Chem. 2020, 303, 127204. [Google Scholar] [CrossRef]
- Ni, P.; Ma, S.; Ma, N.; Xu, C.; Fan, G.; Guo, J.; Wei, J.; Liu, J. Porous Hollow Sphere Structure PrFeO3 as an Efficient Sensing Material for N-Butanol Detection. J. Alloys Compd. 2024, 1002, 175392. [Google Scholar] [CrossRef]
- Liu, H.; Miao, T.; Liu, W.; Chen, J.; Cheng, B.; Qin, H.; Hu, J. Highly Sensitive Acetone Gas Sensor Based on YFeO3 Planar Electrode under Multi-Wavelength Light Illumination. Mater. Lett. 2023, 333, 133596. [Google Scholar] [CrossRef]
- Liu, H.; Cao, Y.; Liu, W.; Chen, J.; Hu, J. Gas Response of SmFeO3 Planar Electrode Sensor to Volatile Organic Compounds Gases under Light Illumination. Mater. Lett. 2022, 326, 133009. [Google Scholar] [CrossRef]
- Sheng, H.; Ma, S.; Han, T.; Yun, P.; Yang, T.; Ren, J. A Highly Sensitivity and Anti-Humidity Gas Sensor for Ethanol Detection with NdFeO3 Nano-Coral Granules. Vacuum 2022, 195, 110642. [Google Scholar] [CrossRef]
- Nga Phan, T.T.; My Dinh, T.T.; Duc Nguyen, M.; Li, D.; Nhan Phan, C.; Kien Pham, T.; Tu Nguyen, C.; Huyen Pham, T. Hierarchically Structured LaFeO3 with Hollow Core and Porous Shell as Efficient Sensing Material for Ethanol Detection. Sens. Actuators B Chem. 2022, 354, 131195. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Jiang, C.; Guo, H.; Qu, F.; Shimakawa, Y.; Yang, M. Integrated Sensing Array of the Perovskite-Type LnFeO3 (Ln = La, Pr, Nd, Sm) to Discriminate Detection of Volatile Sulfur Compounds. J. Hazard. Mater. 2021, 413, 125380. [Google Scholar] [CrossRef]
- Yang, T.T.; Ma, S.Y.; Cao, P.F.; Xu, X.L.; Wang, L.; Pei, S.T.; Han, T.; Xu, X.H.; Yun, P.D.; Sheng, H. Synthesis and Characterization of ErFeO3 Nanoparticles by a Hydrothermal Method for Isopropanol Sensing Properties. Vacuum 2021, 185, 110005. [Google Scholar] [CrossRef]
- Anajafi, Z.; Naseri, M.; Neri, G. Gas Sensing and Electrochemical Properties of Rare Earthferrite, LnFeO3 (Ln = Nd, Sm). Ceram. Int. 2020, 46, 26682–26688. [Google Scholar] [CrossRef]
- Cao, E.; Yang, Y.; Cui, T.; Zhang, Y.; Hao, W.; Sun, L.; Peng, H.; Deng, X. Effect of Synthesis Route on Electrical and Ethanol Sensing Characteristics for LaFeO3-δ Nanoparticles by Citric Sol-Gel Method. Appl. Surf. Sci. 2017, 393, 134–143. [Google Scholar] [CrossRef]
- Bharati, K.; Tiwari, P.R.; Singh, R.P.; Singh, A.; Yadav, B.C.; Singh, M.P.; Kumar, S. Synthesis of Bismuth-Doped Praseodymium Ortho Ferrite Nanomaterials for LPG Sensing. Appl. Nanosci. 2024, 14, 277–289. [Google Scholar] [CrossRef]
- Benali, E.M.; Saher, L.; Benali, A.; Bejar, M.; Dhahri, E.; Wu, J.; Peng, L.; Gordo, P.M.; Pina, J.; Costa, B.F.O. Synthesis, Characterization, and Sensitivity Tests of La0.8Ba0.1Bi0.1FeO3 Nanoparticles towards a Few Parts-per-Billion of Acetone Gas. Heliyon 2024, 10, e26778. [Google Scholar] [CrossRef]
- Benali, E.M.; Benali, A.; Bejar, M.; Dhahri, E.; Khomchenko, V.A.; Peng, L.; Wu, J.; Costa, B.F.O. Structural, Morphological and Excellent Gas Sensing Properties of La1–2xBaxBixFeO3 (0.00 ≤ x ≤ 0.20) Nanoparticles. J. Alloys Compd. 2021, 883, 160856. [Google Scholar] [CrossRef]
- Pei, S.; Ma, S.; Xu, X.; Xu, X.; Almamoun, O. Modulated PrFeO3 by Doping Sm3+ for Enhanced Acetone Sensing Properties. J. Alloys Compd. 2021, 856, 158274. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, H.; Zhang, H.; Lü, W.; Hu, J. CO2 Gas Sensors Based on Yb1−xCaxFeO3 Nanocrystalline Powders. J. Rare Earths 2017, 35, 602–609. [Google Scholar] [CrossRef]
- Xiaofeng, W.; Ma, W.; Sun, K.; Hu, J.; Qin, H. Nanocrystalline Gd1–xCaxFeO3 Sensors for Detection of Methanol Gas. J. Rare Earths 2017, 35, 690–696. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, H.; Lv, W.; Zhang, H.; Hu, J. Gas Sensors Based on Ytterbium Ferrites Nanocrystalline Powders for Detecting Acetone with Low Concentrations. Sens. Actuators B Chem. 2017, 246, 9–19. [Google Scholar] [CrossRef]
- Derakhshi, Z.; Baghshahi, S.; Khodadadi, A.A.; Tamizifar, M. Cu-Doped LaFe1-xCuxO3 Perovskites Nano-Crystallites for Enhanced VOCs Detection. Ceram. Int. 2024, 50, 23175–23187. [Google Scholar] [CrossRef]
- Bharati, K.; Tiwari, P.R.; Singh, R.P.; Bala; Singh, A.; Yadav, B.C.; Kumar, S. Cobalt-Doped Praseodymium Ortho Ferrite as a Promising Nanomaterial for Carbon Dioxide Gas Sensing. J. Mater. Chem. C 2023, 11, 15581–15590. [Google Scholar] [CrossRef]
- Lee, K.; Hajra, S.; Sahu, M.; Mishra, Y.K.; Kim, H.J. Co+3 Substituted Gadolinium Nano-Orthoferrites for Environmental Monitoring: Synthesis, Device Fabrication, and Detailed Gas Sensing Performance. J. Ind. Eng. Chem. 2022, 106, 512–519. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Wang, A.; Wu, S.; Zhang, L. N-Type LaFe1-xMnxO3 Prepared by Sol-Gel Method for Gas Sensing. J. Alloys Compd. 2020, 816, 152647. [Google Scholar] [CrossRef]
- Smiy, S.; Saoudi, H.; Benali, A.; Bejar, M.; Dhahri, E.; Fiorido, T.; Bendahan, M.; Aguir, K. Correlation between Structural, Magnetic and Gas Sensor Properties of La0.885Pb0.005Ca0.11Fe1-xCoxO2.95(0.00 ≤ x ≤ 0.15) Compounds. Mater. Res. Bull. 2020, 130, 110922. [Google Scholar] [CrossRef]
- Benali, A.; Bejar, M.; Dhahri, E.; Graça, M.P.F.; Valente, M.A.; Radwan, A. High Ethanol Gas Sensing Property and Modulation of Magnetic and AC-Conduction Mechanism in 5% Mg-Doped La0.8Ca0.1Pb0.1FeO3 Compound. J. Mater. Sci. Mater. Electron. 2019, 30, 12389–12398. [Google Scholar] [CrossRef]
- Jaouali, I.; Hamrouni, H.; Moussa, N.; Nsib, M.F.; Centeno, M.A.; Bonavita, A.; Neri, G.; Leonardi, S.G. LaFeO3 Ceramics as Selective Oxygen Sensors at Mild Temperature. Ceram. Int. 2018, 44, 4183–4189. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, R.K.; Singh, P. Fabrication of Lanthanum Ferrite Based Liquefied Petroleum Gas Sensor. Sens. Actuators B Chem. 2016, 229, 25–30. [Google Scholar] [CrossRef]
- Anajafi, Z.; Naseri, M.; Neri, G. Optical, Magnetic and Gas Sensing Properties of LaFeO3 Nanoparticles Synthesized by Different Chemical Methods. J. Electron. Mater. 2019, 48, 6503–6511. [Google Scholar] [CrossRef]
- Gildo-Ortiz, L.; Reyes-Gómez, J.; Flores-Álvarez, J.M.; Guillén-Bonilla, H.; Olvera, M.d.l.L.; Rodríguez Betancourtt, V.M.; Verde-Gómez, Y.; Guillén-Cervantes, A.; Santoyo-Salazar, J. Synthesis, Characterization and Sensitivity Tests of Perovskite-Type LaFeO3 Nanoparticles in CO and Propane Atmospheres. Ceram. Int. 2016, 42, 18821–18827. [Google Scholar] [CrossRef]
- Zhang, G.H.; Chen, Q.; Deng, X.Y.; Jiao, H.Y.; Wang, P.Y.; Gengzang, D.J. Synthesis and Characterization of In-Doped LaFeO3 Hollow Nanofibers with Enhanced Formaldehyde Sensing Properties. Mater. Lett. 2019, 236, 229–232. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Zhang, S.; Chen, W.; Kuang, Z.; Ao, D.; Liu, W.; Fu, Y. A Fast Response & Recovery H2S Gas Sensor Based on α-Fe2O3 Nanoparticles with Ppb Level Detection Limit. J. Hazard. Mater. 2015, 300, 167–174. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Qin, H.; Zhang, H.; Zhang, Z.; Zhou, G.; Gao, C.; Hu, J. CO2 Sensing Properties and Mechanism of PrFeO3 and NdFeO3 Thick Film Sensor. J. Rare Earths 2019, 37, 80–87. [Google Scholar] [CrossRef]
- Bhat, M.A.; Rana, P.; Mir, F.A.; Pathak, D. A Brief Study on Exploration of Ni Doped PrFeO3 Perovskite as Multifunctional Material. J. Mater. Sci. Mater. Electron. 2023, 34, 269. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, X.; Zhang, X.; Gong, L.; Zhang, Y.; Zhang, K. Preparation and Characterization of Ba-Doped LaFeO3 Nanofibers by Electrospinning and Their Ethanol Sensing Properties. Mater. Chem. Phys. 2018, 213, 122–129. [Google Scholar] [CrossRef]
- Benali, A.; Azizi, S.; Bejar, M.; Dhahri, E.; Graça, M.F.P. Structural, Electrical and Ethanol Sensing Properties of Double-Doping LaFeO3 Perovskite Oxides. Ceram. Int. 2014, 40, 14367–14373. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Shikha, P.; Komal; Kang, T.S.; Randhawa, B.S. Mn Doping Induced Physico-Chemical Changes in LaCe Ferrite Nanofabricated by Ionic Liquid Assisted Hydrothermal Route. J. Alloys Compd. 2017, 701, 788–796. [Google Scholar] [CrossRef]
- Zhao, K.; He, F.; Huang, Z.; Wei, G.; Zheng, A.; Li, H.; Zhao, Z. Perovskite-Type LaFe1−xMnxO3 (X= 0, 0.3, 0.5, 0.7, 1.0) Oxygen Carriers for Chemical-Looping Steam Methane Reforming: Oxidation Activity and Resistance to Carbon Formation. Korean J. Chem. Eng. 2017, 34, 1651–1660. [Google Scholar] [CrossRef]
- Sun, K.-M.; Song, X.-Z.; Wang, X.-F.; Li, X.; Tan, Z. Annealing Temperature-Dependent Porous ZnFe2O4 Olives Derived from Bimetallic Organic Frameworks for High-Performance Ethanol Gas Sensing. Mater. Chem. Phys. 2020, 241, 122379. [Google Scholar] [CrossRef]
- Zhu, H.; Gu, X.; Zuo, D.; Wang, Z.; Wang, N.; Yao, K. Microemulsion-Based Synthesis of Porous Zinc Ferrite Nanorods and Its Application in a Room-Temperature Ethanol Sensor. Nanotechnology 2008, 19, 405503. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Mandal, K.; Pati, S.P.; Das, D. High Performance Gas Sensing Based on Nano Rods of Nickel Ferrite Fabricated by a Facile Solvothermal Route. Mater. Res. Express 2018, 5, 065056. [Google Scholar] [CrossRef]
- Han, T.; Ma, S.; Xu, X.; Cao, P.; Liu, W.; Xu, X.; Pei, S. Electrospinning Synthesis, Crystal Structure, and Ethylene Glycol Sensing Properties of Orthorhombic SmBO3 (B=Fe, Co) Perovskites. J. Alloys Compd. 2021, 876, 160211. [Google Scholar] [CrossRef]
- Han, T.; Ma, S.; Yun, P.; Sheng, H.; Xu, X.; Cao, P.; Pei, S.; Alhadi, A. Synthesis and Characterization of Ho-Doped SmFeO3 Nanofibers with Enhanced Glycol Sensing Properties. Vacuum 2021, 191, 110378. [Google Scholar] [CrossRef]
- Han, T.; Ma, S.Y.; Xu, X.L.; Xu, X.H.; Pei, S.T.; Tie, Y.; Cao, P.F.; Liu, W.W.; Wang, B.J.; Zhang, R.; et al. Rough SmFeO3 Nanofibers as an Optimization Ethylene Glycol Gas Sensor Prepared by Electrospinning. Mater. Lett. 2020, 268, 127575. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.C.; Mhlongo, G.H. LaBO3 (B= Fe, Co) Nanofibers and Their Structural, Luminescence and Gas Sensing Characteristics. Phys. B Condens. Matter 2020, 578, 411883. [Google Scholar] [CrossRef]
- Mun, T.; Koo, J.Y.; Lee, J.; Kim, S.J.; Umarji, G.; Amalnerkar, D.; Lee, W. Resistive-Type Lanthanum Ferrite Oxygen Sensor Based on Nanoparticle-Assimilated Nanofiber Architecture. Sens. Actuators B Chem. 2020, 324, 128712. [Google Scholar] [CrossRef]
- Queraltó, A.; Graf, D.; Frohnhoven, R.; Fischer, T.; Vanrompay, H.; Bals, S.; Bartasyte, A.; Mathur, S. LaFeO3 Nanofibers for High Detection of Sulfur-Containing Gases. ACS Sustain. Chem. Eng. 2019, 7, 6023–6032. [Google Scholar] [CrossRef]
- Ma, L.; Ma, S.Y.; Shen, X.F.; Wang, T.T.; Jiang, X.H.; Chen, Q.; Qiang, Z.; Yang, H.M.; Chen, H. PrFeO3 Hollow Nanofibers as a Highly Efficient Gas Sensor for Acetone Detection. Sens. Actuators B Chem. 2018, 255, 2546–2554. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, Y.; Jiang, B.; He, J.; Zheng, X.; Liang, Q. Effect of Lanthanides on Acetone Sensing Properties of LnFeO3 Nanofibers (Ln = La, Nd, and Sm). IEEE Sens. J. 2017, 17, 2404–2410. [Google Scholar] [CrossRef]
- Wei, W.; Guo, S.; Chen, C.; Sun, L.; Chen, Y.; Guo, W.; Ruan, S. High Sensitive and Fast Formaldehyde Gas Sensor Based on Ag-Doped LaFeO3 Nanofibers. J. Alloys Compd. 2017, 695, 1122–1127. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, Q.; Huang, Y.; Xu, K.; Chu, P.K.; Ma, F. Oxygen Vacancy Enhanced Gas-Sensing Performance of CeO2/Graphene Heterostructure at Room Temperature. Anal. Chem. 2018, 90, 9821–9829. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Li, C.; Han, D.; Wang, Z. Manipulating the Defect Structure (VO) of In2O3 Nanoparticles for Enhancement of Formaldehyde Detection. ACS Appl. Mater. Interfaces 2018, 10, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Xu, Y.; Yang, K.; Ma, J.; Li, C.; Wang, H.; Jia, L. Mo Doped BiVO4 Gas Sensor with High Sensitivity and Selectivity towards H2S. Chem. Eng. J. 2020, 395, 125144. [Google Scholar] [CrossRef]
- Ji, Q.; Bi, L.; Zhang, J.; Cao, H.; Zhao, X.S. The Role of Oxygen Vacancies of ABO3 Perovskite Oxides in the Oxygen Reduction Reaction. Energy Environ. Sci. 2020, 13, 1408–1428. [Google Scholar] [CrossRef]
- Smiy, S.; Bejar, M.; Dhahri, E.; Fiorido, T.; Aguir, K.; Bendahan, M. Preparation of Double-Doping LaFeO3 Thin Film for Ethanol Sensing Application. J. Mol. Struct. 2022, 1267, 133543. [Google Scholar] [CrossRef]
- Hu, J.; Chen, X.; Zhang, Y. Batch Fabrication of Formaldehyde Sensors Based on LaFeO3 Thin Film with Ppb-Level Detection Limit. Sens. Actuators B Chem. 2021, 349, 130738. [Google Scholar] [CrossRef]
- Smiy, S.; Bejar, M.; Dhahri, E.; Fiorido, T.; Bendahan, M.; Aguir, K. Ozone Detection Based on Nanostructured La0.8Pb0.1Ca0.1Fe0.8Co0.2O3 Thin Films. J. Alloys Compd. 2020, 829, 154596. [Google Scholar] [CrossRef]
- Cao, E.; Chu, Z.; Wang, H.; Hao, W.; Sun, L.; Zhang, Y. Effect of Film Thickness on the Electrical and Ethanol Sensing Characteristics of LaFeO3 Nanoparticle-Based Thick Film Sensors. Ceram. Int. 2018, 44, 7180–7185. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, H.; Wang, X.; Li, L.; Hu, J. Acetone Sensing Properties and Mechanism of Nano-LaFeO3 Thick-Films. Sens. Actuators B Chem. 2016, 235, 56–66. [Google Scholar] [CrossRef]
- Nieto, A.; Hernández, T.; Rivera De la Rosa, J.; Garza Méndez, F.J.; Olvera, M.d.l.L.; Serrano, T.; Gómez, I.; Kharisov, B. Investigation of Sm1−xCaxFe0.7Co0.3O3 Films (x = 0.0–0.3) Prepared by Modified Sol–Gel Spin-Coating Method for Carbon Monoxide and Propane Gas Sensing. J. Mater. Sci. Mater. Electron. 2018, 29, 15587–15596. [Google Scholar] [CrossRef]
- Meng, F.; Qin, L.; Gao, H.; Zhu, H.; Yuan, Z. Perovskite-Structured LaFeO3 Modified In2O3 Gas Sensor with High Selectivity and Ultra-Low Detection Limit for 2-Butanone. J. Alloys Compd. 2024, 970, 172464. [Google Scholar] [CrossRef]
- Wang, T.; Xu, J.; Li, F.; Yang, Y.; Yu, H.; Dong, X. Perovskite-Structured LaFeO3 Gas Sensor Modified by Polyoxometalate Electron Acceptor with High Sensitivity and Low Detection Limit for Acetone Gas☆. J. Rare Earths 2024. [Google Scholar] [CrossRef]
- Xia, Z.; Zheng, C.; Hu, J.; Yuan, Q.; Zhang, C.; Zhang, J.; He, L.; Gao, H.; Jin, L.; Chu, X.; et al. Synthesis of SnO2 Quantum Dot Sensitized LaFeO3 for Conductometric Formic Acid Gas Sensors. Sens. Actuators B Chem. 2023, 379, 133198. [Google Scholar] [CrossRef]
- Zhang, N.; Ruan, S.; Yin, Y.; Li, F.; Wen, S.; Chen, Y. Self-Sacrificial Template-Driven LaFeO3/α-Fe2O3 Porous Nano-Octahedrons for Acetone Sensing. ACS Appl. Nano Mater. 2018, 1, 4671–4681. [Google Scholar] [CrossRef]
- Rong, Q.; Zhang, Y.; Li, K.; Wang, H.; Hu, J.; Zhu, Z.; Zhang, J.; Liu, Q. Ag-LaFeO3/NCQDs p-n heterojunctions for superior methanol gas sensing performance. Mater. Res. Bull. 2019, 115, 55–64. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, K.; Xiao, C.; Jia, L. C-Doped LaFeO3 Porous Nanostructures for Highly Selective Detection of Formaldehyde. Sens. Actuators B Chem. 2021, 347, 130550. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, D.; Miao, T.; Liu, W.; Chen, J.; Cheng, B.; Qin, H.; Hu, J. Highly Sensitive P-SmFeO3/p-YFeO3 Planar-Electrode Sensor for Detection of Volatile Organic Compounds. Chemosensors 2023, 11, 187. [Google Scholar] [CrossRef]
- Li, F.; Wang, S.; Wu, Z.; Xiong, X.; Li, J.; Zhou, J.; Gao, X. Excellent Ethanol Sensor Based on LaFeO3 Modified with Gold Nanoparticles. J. Mater. Sci. Mater. Electron. 2021, 32, 27587–27595. [Google Scholar] [CrossRef]
- Li, F.; Lv, Q.; Gao, L.; Zhong, X.; Zhou, J.; Gao, X. Ultra-Sensitive Ag-LaFeO3 for Selective Detection of Ethanol. J. Mater. Sci. 2021, 56, 15061–15068. [Google Scholar] [CrossRef]
- Anajafi, Z.; Naseri, M.; Neri, G. Acetone Sensing Behavior of P-SmFeO3/n-ZnO Nanocomposite Synthesized by Thermal Treatment Method. Sens. Actuators B Chem. 2020, 304, 127252. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Zou, H.; Zhang, Y.; Hu, J.; Wang, H.; Zi, B.; Zhang, J.; Zhu, Z.; Duan, L.; et al. Microwave-Assisted Synthesis of Porous and Hollow α-Fe2O3/LaFeO3 Nanostructures for Acetone Gas Sensing as Well as Photocatalytic Degradation of Methylene Blue. Nanotechnology 2020, 31, 215601. [Google Scholar] [CrossRef]
- Li, K.; Chen, M.; Rong, Q.; Zhu, Z.; Liu, Q.; Zhang, J. High Selectivity Methanol Sensor Based on Co-Fe2O3/SmFeO3 p-n Heterojunction Composites. J. Alloys Compd. 2018, 765, 193–200. [Google Scholar] [CrossRef]
- Li, L.; Qin, H.; Zhang, L.; Hu, J. Ultrasensitive Sensing Performances to Sub-Ppb Level Acetone for Pd-Functionalized SmFeO3 Packed Powder Sensors. RSC Adv. 2016, 6, 60967–60974. [Google Scholar] [CrossRef]
- Wang, X.; Qin, H.; Pei, J.; Chen, Y.; Li, L.; Xie, J.; Hu, J. Sensing Performances to Low Concentration Acetone for Palladium Doped LaFeO3 Sensors. J. Rare Earths 2016, 34, 704–710. [Google Scholar] [CrossRef]
Material | Detection Gas | O.T. (°C) | Conc. (ppm) | Response | tres/trec (s) | LOD | Reference |
---|---|---|---|---|---|---|---|
NdFeO3 | N-Butanol | 260 | 100 | 441 | 33/7 | 24 ppb | [37] |
PrFeO3 | N-Butanol | 280 | 100 | 85 | 18/13 | 26.3 ppb | [59] |
LaFeO3 | Formaldehyde | 160 | 100 | 8.9 | 53/32 | 1 ppm | [7] |
LaFeO3 | Ethanol | 110 | 30 | 154.5 | 70/127 | [36] | |
YFeO3 | Acetone | 110 | 30 | 128.1 | [60] | ||
SmFeO3 | Acetone | 120 | 30 | 29.228 | [61] | ||
NdFeO3 | Isopropanol | 275 | 0.8 | 3.81 | 57/52 | [34] | |
NdFeO3 | Ethanol | 250 | 100 | 150 | 19/22 | 5 ppm | [62] |
LaFeO3 | Ethanol | 300 | 143 | 14.5 | 23/39 | 1 ppb | [63] |
LaFeO3 | Dimethyl disulfide | 210 | 100 | 127 | [64] | ||
ErFeO3 | Isopropanol | 270 | 50 | 12.75 | 6/25 | 2 ppm | [65] |
SmFeO3 | Acetone | 200 | 10 | 82 | 6.6 ppb | [66] | |
LaFeO3 | Formaldehyde | 125 | 50 | 116 | 7/24 | 50 ppb | [8] |
DyFeO3 | Acetone | 190 | 2 | 3.81 | 42/44 | [33] | |
LaFeO3 | Acetylene | 150 | 500 | 28.8 | [58] | ||
LaFeO3 | Ethanol | 112 | 200 | 46.1 | [67] | ||
Pr0.8Ca0.2FeO3 | LPG | 25 | 0.5 vol% | 1.3 | 7.5/7.1 | [28] | |
Pr0.8Bi0.2FeO3 | LPG | 25 | 2.0 vol% | 3.63 | 15.3/22.4 | [68] | |
La0.8Ba0.1Bi0.1FeO3 | Acetone | 200 | 5 | 10.31 | 9/7 | [69] | |
(La0.8Ca0.2)0.6Bi0.4FeO3 | Hydrogen sulfide | 160 | 100 | 29 | 16/17 | [56] | |
LaFeO3-1.5% In | Formaldehyde | 125 | 100 | 122 | 36/40 | 1 ppb | [49] |
La0.8Ba0.1Bi0.1FeO3 | Ethanol | 180 | 100 | 21 | 10/6 | [70] | |
Sm-PrFeO3 | Acetone | 270 | 50 | 44.94 | 15/16 | [71] | |
Yb0.8Ca0.2FeO3 | CO2 | 260 | 5000 | 1.85 | 24/31 | [72] | |
Gd0.9Ca0.1FeO3 | Methanol | 260 | 600 | 117.7 | 60/66 | [73] | |
Yb0.8Ca0.2FeO3 | Acetone | 230 | 0.5 | 2.5 | 29/55 | [74] | |
LaFe0.96Mo0.04O3 | Triethylamine | 140 | 100 | 70 | 12/59 | [50] | |
LaFe0.4Cu0.6O3 | Ethanol | 300 | 300 | 17 | 240/660 | [75] | |
LaCo0.1Fe0.9O3 | CO2 | 220 | 5000 | 6.69% | 6/42 | [15] | |
PrFe0.9Co0.1O3 | CO2 | 25 | 500 | 1.22 | 17.2/18.4 | [76] | |
GdFe0.7Co0.3O3 | NO2 | 200 | 20 | 6.86% | 104/97 | 112 ppb | [77] |
LaFe0.5Mn0.5O3 | Ethanol | 190 | 50 | 2.01 | 20/5 | [78] | |
La0.885Pb0.005Ca0.11Fe0.95Co0.05O2.95 | Ammonia | 250 | 10 | 1.011 | 27/28 | [79] | |
La0.8Ca0.1Pb0.1Fe0.95Mg0.05O3 | Ethanol | 225 | 1000 | ≈330 | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotnana, G.; Hong, S. Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications. Chemosensors 2025, 13, 156. https://doi.org/10.3390/chemosensors13050156
Kotnana G, Hong S. Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications. Chemosensors. 2025; 13(5):156. https://doi.org/10.3390/chemosensors13050156
Chicago/Turabian StyleKotnana, Ganesh, and Seongin Hong. 2025. "Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications" Chemosensors 13, no. 5: 156. https://doi.org/10.3390/chemosensors13050156
APA StyleKotnana, G., & Hong, S. (2025). Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications. Chemosensors, 13(5), 156. https://doi.org/10.3390/chemosensors13050156