Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Studies
2.2. Eligibility Criteria
2.3. Variability Indices
2.4. Primary and Secondary Level Screening
2.5. Data Extraction
2.6. Quality Assessment
3. Results
3.1. General Characteristics of the Studies
3.2. Diversity Analysis
3.3. Methodological Quality of the Studies
3.4. Cigarette Smokers, Electronic Cigarette Users, Former-Smokers, and Never-Smokers
3.5. Smokers before and after Smoking Cessation Intervention
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shukla, S.; Budden, K.F.; Neal, R.; Hansbro, P.M. Microbiome effects on immunity, health and disease in the lung. Clin. Transl. Immunol. 2017, 6, e133. [Google Scholar] [CrossRef] [PubMed]
- Begon, J.; Juillerat, P.; Cornuz, J.; Clair, C. Smoking and digestive tract: A complex relationship. Part 2: Intestinal microblota and cigarette smoking. Rev. Med. Suisse 2015, 11, 1304–1306. [Google Scholar] [PubMed]
- Agirman, G.; Hsiao, E.Y. SnapShot: The microbiota-gut-brain axis. Cell 2021, 184, 2524–2524.e1. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Wang, H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front. Immunol. 2020, 10, 3094. [Google Scholar] [CrossRef] [PubMed]
- Weis, S.; Schwiertz, A.; Unger, M.M.; Becker, A.; Fassbender, K.; Ratering, S.; Kohl, M.; Schnell, S.; Schäfer, K.-H.; Egert, M. Effect of Parkinson’s disease and related medications on the composition of the fecal bacterial microbiota. npj Park. Dis. 2019, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Mao, Q.; Xia, W.; Dong, G.; Yu, C.; Jiang, F. Gut Microbiota Shapes the Efficiency of Cancer Therapy. Front. Microbiol. 2019, 10, 1050. [Google Scholar] [CrossRef] [Green Version]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 2007, 449, 811–818. [Google Scholar] [CrossRef]
- Kim, B.-R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R.E. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, T.; Tsigalou, C.; Karvelas, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomed. 2020, 8, 502. [Google Scholar] [CrossRef]
- Capurso, G.; Lahner, E. The interaction between smoking, alcohol and the gut microbiome. Best Pr. Res. Clin. Gastroenterol. 2017, 31, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Morate, E.; Gimeno-Mallench, L.; Stromsnes, K.; Sanz-Ros, J.; Román-Domínguez, A.; Parejo-Pedrajas, S.; Inglés, M.; Olaso, G.; Gambini, J.; Mas-Bargues, C. Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines 2020, 8, 287. [Google Scholar] [CrossRef]
- Brook, I. The Impact of Smoking on Oral and Nasopharyngeal Bacterial Flora. J. Dent. Res. 2011, 90, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Garmendia, J.; Morey, P.; Bengoechea, J. Impact of cigarette smoke exposure on host-bacterial pathogen interactions. Eur. Respir. J. 2012, 39, 467–477. [Google Scholar] [CrossRef]
- Benjamin, J.L.; Hedin, C.R.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Prescott, N.J.; Pessoa-Lopes, P.; Mathew, C.G.; Sanderson, J.; Hart, A.L.; et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012, 18, 1092–1100. [Google Scholar] [CrossRef]
- Mahid, S.S.; Minor, K.S.; Soto, R.E.; Hornung, C.A.; Galandiuk, S. Smoking and Inflammatory Bowel Disease: A Meta-analysis. Mayo Clin. Proc. 2006, 81, 1462–1471. [Google Scholar] [CrossRef]
- Allais, L.; Kerckhof, F.-M.; Verschuere, S.; Bracke, K.; De Smet, R.; Laukens, D.; Abbeele, P.V.D.; De Vos, M.; Boon, N.; Brusselle, G.; et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. 2015, 18, 1352–1363. [Google Scholar] [CrossRef]
- Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol. 2018, 200, 677–684. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, J.X.; Hu, N.; Ren, J.; Du, M.; Zhu, M.J. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J. Gastroenterol. 2012, 18, 2180–2187. [Google Scholar] [CrossRef]
- Allais, L.; De Smet, R.; Verschuere, S.; Talavera, K.; Cuvelier, C.A.; Maes, T. Transient Receptor Potential Channels in Intestinal Inflammation: What Is the Impact of Cigarette Smoking? Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2017, 84, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.A.; Johnson, W.M.; Varadharaj, S.; Lian, J.; Kearns, P.N.; El-Mahdy, M.A.; Liu, X.; Zweier, J.L. Chronic cig-arette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. American journal of physiology. Heart Circ. Physiol. 2011, 300, H388–H396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tharappel, J.C.; Cholewa, J.; Espandiari, P.; Spear, B.T.; Gairola, C.G.; Glauert, H.P. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung. J. Toxicol. Environ. Health Part A 2010, 73, 1288–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, X.; Yang, Z.; Li, M.D. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front. Physiol. 2021, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Ong, S.-G.; Zhou, Y.; Tian, L.; Bae, H.R.; Baker, N.; Whitlatch, A.; Mohammadi, L.; Guo, H.; Nadeau, K.C.; et al. Modeling Cardiovascular Risks of E-Cigarettes With Human-Induced Pluripotent Stem Cell–Derived Endothelial Cells. J. Am. Coll. Cardiol. 2019, 73, 2722–2737. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Lee, J.; Fonseca, A.G.; Moshensky, A.; Kothari, T.; Sayed, I.M.; Ibeawuchi, S.-R.; Pranadinata, R.F.; Ear, J.; Sahoo, D.; et al. E-cigarettes compromise the gut barrier and trigger inflammation. iScience 2021, 24, 102035. [Google Scholar] [CrossRef]
- Pushalkar, S.; Paul, B.; Li, Q.; Yang, J.; Vasconcelos, R.; Makwana, S.; González, J.M.; Shah, S.; Xie, C.; Janal, M.N.; et al. Electronic Cigarette Aerosol Modulates the Oral Microbiome and Increases Risk of Infection. iScience 2020, 23, 100884. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based de-cisions. ACP J Club. 1995, 123, A12–A13. [Google Scholar] [CrossRef]
- Indices of Diversity and Evenness—ScienceBase-Catalog. Available online: https://www.sciencebase.gov/catalog/item/50578430e4b01ad7e02803c9 (accessed on 15 July 2021).
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2007; p. 256. [Google Scholar]
- Heip, C.; Herman, P.; Soetaert, K. Indices of diversity and evenness. Océanis 1998, 24, 67–87. [Google Scholar]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- JabRef—Free Reference Manager—Stay on top of your Literature. JabRef. Available online: https://www.jabref.org/ (accessed on 15 July 2021).
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Tufanaru, C.; Qureshi, R.; Mattis, P.; Mu, P. Conducting sys-tematic reviews of association (etiology): The Joanna Briggs Institute’s approach. Int. J. Evid. Based Health 2015, 13, 163–169. [Google Scholar] [CrossRef]
- Chen, J.; Ryu, E.; Hathcock, M.; Ballman, K.; Chia, N.; Olson, J.E.; Nelson, H. Impact of demographics on human gut mi-crobial diversity in a US Midwest population. Peer J. 2016, 4, e1514. [Google Scholar] [CrossRef] [Green Version]
- Curtis, K.; Stewart, C.J.; Robinson, M.; Molfese, D.L.; Gosnell, S.N.; Kosten, T.R.; Petrosino, J.F.; De La Garza, R., II; Ramiro Salas, D.R. Insular resting state functional connectivity is associated with gut microbiota diversity. Eur. J. Neurosci. 2019, 50, 2446–2452. [Google Scholar] [CrossRef]
- Kato, I.; Nechvatal, J.M.; Dzinic, S.; Basson, M.D.; Majumdar, A.P.; Ram, J.L. Smoking and other personal characteristics as potential predictors for fecal bacteria populations in humans. Med. Sci. Monit. 2010, 16, CR1–CR7. [Google Scholar]
- Stewart, C.J.; Auchtung, T.A.; Ajami, N.J.; Velasquez, K.; Smith, D.P.; De La Garza, R., 2nd; Salas, R.; Petrosino, J.F. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: A pilot study. Peer J. 2018, 6, e4693. [Google Scholar] [CrossRef]
- Prakash, A.; Peters, B.A.; Cobbs, E.; Beggs, D.; Choi, H.; Li, H.; Hayes, R.B.; Ahn, J. Tobacco smoking and the fecal micro-biome in a large, multi-ethnic cohort. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1328–1335. [Google Scholar] [CrossRef]
- Nolan-Kenney, R.; Wu, F.; Hu, J.; Yang, L.; Kelly, D.; Li, H.; Jasmine, F.; Kibriya, M.G.; Parvez, F.; Shaheen, I.; et al. The Association Between Smoking and Gut Microbiome in Bangladesh. Nicotine Tob. Res. 2020, 22, 1339–1346. [Google Scholar] [CrossRef]
- Ishaq, H.M.; Shahzad, M.; Wu, X.; Ma, C.; Xu, J. Molecular Characterization Of Fecal Microbiota Of Healthy Chinese Tobacco Smoker Subjects In Shaanxi Province, Xi’an China. J. Ayub. Med. Coll. Abbottabad JAMC 2017, 29, 3–7. [Google Scholar] [PubMed]
- Zhang, W.; Li, J.; Lu, S.; Han, N.; Miao, J.; Zhang, T.; Qiang, Y.; Kong, Y.; Wang, H.; Gao, T.; et al. Gut microbiota community characteristics and disease-related microorganism pattern in a population of healthy Chinese people. Sci. Rep. 2019, 9, 1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, R.; Zhang, Y.; Chen, L.; Qi, Y.; He, J.; Hu, M.; Zhang, Y.; Fan, L.; Yang, T.; Wang, L.; et al. The effects of cigarettes and alcohol on intestinal microbiota in healthy men. J. Microbiol. 2020, 58, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, L.; Zeitz, J.; Mwinyi, J.; Sutter-Minder, E.; Rehman, A.; Ott, S.J.; Steurer-Stey, C.; Frei, A.; Frei, P.; Scharl, M.; et al. Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE 2013, 8, e59260. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.-J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Harakeh, S.; Angelakis, E.; Karamitros, T.; Bachar, D.; Bahijri, S.; Ajabnoor, G.; Alfadul, S.M.; Farraj, S.A.; Al Amri, T.; Al-Hejin, A.; et al. Impact of smoking cessation, coffee and bread consumption on the intestinal microbial composition among Saudis: A cross-sectional study. PLoS ONE 2020, 15, e0230895. [Google Scholar] [CrossRef]
- Shima, T.; Amamoto, R.; Kaga, C.; Kado, Y.; Sasai, T.; Watanabe, O.; Shiinoki, J.; Iwazaki, K.; Shigemura, H.; Tsuji, H. Asso-ciation of life habits and fermented milk intake with stool frequency, defecatory symptoms and intestinal microbiota in healthy Japanese adults. Benef Microbes 2019, 10, 841–854. [Google Scholar] [CrossRef]
- Huang, C.; Shi, G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J. Transl. Med. 2019, 17, 225. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, L.; Pardo-Roa, C.; Salazar, G.A.; Salazar-Echegarai, F.; Miranda, J.P.; Ramírez, G.; Chávez, J.L.; Kalergis, A.M.; Bueno, S.M.; Álvarez-Lobos, M. Mucosal exposure to cigarette components induces intestinal inflammation and alters an-timicrobial response in mice. Front. Immunol 2019, 10, e2289. [Google Scholar] [CrossRef]
- Tomoda, K.; Kubo, K.; Asahara, T.; Andoh, A.; Nomoto, K.; Nishii, Y.; Yamamoto, Y.; Yoshikawa, M.; Kimura, H. Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats. J. Toxicol. Sci. 2011, 36, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Chi, L.; Mahbub, R.; Gao, B.; Bian, X.; Tu, P.; Ru, H.; Lu, K. Nicotine Alters the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific Manner. Chem. Res. Toxicol. 2017, 30, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Midtvedt, T.; Gordon, J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 2002, 22, 283–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogacka, A.M.; Gómez-Martín, M.; Suárez, A.; González-Bernardo, O.; de Los Reyes-Gavilán, C.G.; González, S. Xenobi-otics formed during food processing: Their relation with the intestinal microbiota and colorectal cancer. Int. J. Mol. Sci. 2019, 20, 2051. [Google Scholar] [CrossRef] [Green Version]
- Ribière, C.; Peyret, P.; Parisot, N.; Darcha, C.; Déchelotte, P.J.; Barnich, N.; Peyretaillade, E.; Boucher, D. Oral exposure to the environmental pollutant benzo [a] pyrene impacts onintestinal epithelium and induces gut microbial shifts in murine model. Sci. Rep. 2016, 6, e31027. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xu, K.; Ji, S.; Pu, Y.; Man, Z.; Ji, J.; Chen, M.; Yin, L.; Zhang, J.; Pu, Y. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. Sci. Total Environ. 2020, 705, 135879. [Google Scholar] [CrossRef] [PubMed]
- Salaspuro, M.P. Acetaldehyde, Microbes, and Cancer of the Digestive Tract. Crit. Rev. Clin. Lab. Sci. 2003, 40, 183–208. [Google Scholar] [CrossRef]
- Elamin, E.E.; Masclee, A.A.; Dekker, J.; Jonkers, D.M. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr. Rev. 2013, 71, 483–499. [Google Scholar] [CrossRef]
- Gagliani, N.; Palm, N.W.; de Zoete, M.R.; Flavell, R.A. Inflammasomes and intestinal homeostasis: Regulating and con-necting infection, inflammation and the microbiota. Int. Immunol. 2014, 26, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Onyiah, J.C.; Sheikh, S.Z.; Maharshak, N.; Steinbach, E.C.; Russo, S.M.; Kobayashi, T.; Mackey, L.C.; Hansen, J.J.; Moeser, A.J.; Rawls, J.F.; et al. Carbon monoxide and heme oxygenase-1 prevent intestinal inflam-mation in mice by promoting bacterial clearance. Gastroenterology 2013, 144, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Breton, J.; Massart, S.; Vandamme, P.; De Brandt, E.; Pot, B.; Foligné, B. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 2013, 14, 62. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut. 2017, 222, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roussos, A.; Koursarakos, P.; Patsopoulos, D.; Gerogianni, I.; and Philippou, N. Increased prevalence of irritable bowel syndrome in patients withbronchial asthma. Respir. Med. 2003, 97, 75–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutten, E.P.; Lenaerts, K.; Buurman, W.A.; Wouters, E.F. Disturbed intestinal integrity in patients with COPD: Effects of activities of daily living. Chest. 2014, 145, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Opstelten, J.L.; Plassais, J.; van Mil, S.W.; Achouri, E.; Pichaud, M.; Siersema, P.D.; Oldenburg, B.; Cervino, A.C. Gut microbial diversity is reduced in smokers with crohn’s disease. Inflamm. Bowel. Dis. 2016, 22, 2070–2077. [Google Scholar] [CrossRef] [Green Version]
- Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The Role of the Microbiome in Asthma: The Gut–Lung Axis. Int. J. Mol. Sci. 2018, 20, 123. [Google Scholar] [CrossRef] [Green Version]
- Khlystov, A.; Samburova, V. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef]
- van Splunter, M.; Liu, L.; van Neerven, R.J.J.; Wichers, H.J.; Hettinga, K.A.; de Jong, N.W. Mechanisms underlying the skin-gut cross talk in the development of age-mediated food allergy. Nutrients 2020, 12, 3830. [Google Scholar] [CrossRef]
Author, Country, Year [Ref] | Study Design | Sample Characteristics° | Type of Cigarettes | Amount of Exposure - Assessment | Methodology | Statistical Adjustments | Diet | Quality of the Study |
---|---|---|---|---|---|---|---|---|
Biedermann, Switzerland, 2013 [47] | prospective, controlled | N = 20 (20 M; 18–60 years) 10 smokers undergoing cessation, 5 control smokers, 5 non-smokers | cigarettes | ≥10 cigarettes/day - breath CO monitor | variable regions V1–V2 of the 16S rRNA gene sequencing | not adjusted | assessed: BMI decreased in smokers without diet modifications | MINORS: 17/24 |
Chen, USA, 2016 [38] | cross-sectional | N = 118 (60 F, 58 M; 20–79 years) 17 smokers | cigarettes | not specified - self reported | 16S rDNA–targeted sequencing | not adjusted | not assessed | JBI: 6/8 |
Curtis, USA, 2019 [39] | cross-sectional | N = 30 (3 F, 27 M)10 cigarette smokers (37 ± 3), 10 e-cigarette smokers (30 ± 3), 10 non-smokers (32.2 ± 2) | cigarettes, e-cigarettes | cigarette smokers: ≥10 cigarettes/day; e-cigarette smokers: 6 months - self reported | 16s rRNA PCR | not adjusted | not assessed | JBI: 4/8 |
Harakeh, UAE, 2020 [49] | cross-sectional | N = 104 (54 F, 50 M; 24 ± 7.7) 19 smokers | not specified | not specified - self-reported | V3 and V4 regions of the 16S rRNA gene using Miseq technology | not adjusted | assessed for coffee consumption smokers who consumed coffee had higher concentrations of Bacteroides thetaiotaomicron followed by B. massiliensis | JBI:7/8 |
Ishaq, China, 2017 [44] | cross-sectional | N = 20 (20 M; 35–50 years) 14 smokers, 6 non-smokers | cigarettes | 10 years - self-reported | V3 region of the 16S rRNA gene sequencing | not adjusted | assessed but not analyzed | JBI: 6/8 |
Kato, USA, 2010 [40] | cross-sectional | N = 62 (26 F, 36 M; ≥48 years or <48 with polyps) N of smokers not specified | cigarettes | not specified - Self-reported | 16S rRNA real time PCR | adjusted for diet, physical activity, number of pack-years of cigarette smoking, BMI | analyzed; does not affect smoking effect | JBI: 8/8 |
Lee, Korea, 2018 [48] | cross-sectional | N = 758 (758 M) 203 smokers (45.7 ± 8.2), 267 former smokers (47.2 ± 8.5), 288 never smokers (44.2 ± 9.1) | cigarettes | never-smokers: <100 cigarettes/lifetime; former-smokers: ≥100 cigarettes/lifetime and no smoke in the last 1 month; current-smokers: ≥100 cigarettes/lifetime and smoke in the last 1 month - self reported | V3 and V4 regions of the 16S rRNA gene sequencing | subjects who had taken antibiotics, probiotics, and cholesterol-lowering medication, were excluded | assessed but not analyzed | JBI: 7/8 |
Lin, China, 2020 [46] | cross-sectional | N = 116 (116 M) 14 non-smoking and non-drinking (57.21 ± 17.40 years), 31 smoking only (49.84 ± 11.55), 28 drinking only (50.07 ± 10.7), 43 smoking and drinking combined (47.44 ± 9.74) | cigarettes | not specified - self-reported | V3-V4 region of the 16S rRNA gene sequencing | not adjusted | alcohol drinking | JBI: 6/8 |
Nolan-Kenney, USA, 2019 [43] | cross-sectional | N = 249 (147 F, 102 M; 48.6 ± 7.9) 151 never smokers, 36 former smokers, 62 current smokers | cigarettes and bidis (Bangladesh locally produced cigarette) | bidis calculated in packs per day = number of sticks smoked per day divided by 20 - self-reported | V3-V4 region of the 16 s rRNA gene sequencing | adjusted for sex, age, BMI, betel quid use, and education | not assessed | JBI:7/8 |
Prakash, USA, 2021 [42] | cross-sectional | N = 803 (507 F, 296 M; 38–87 years) 543 never smokers, 181 former smokers, 79 current smokers | cigarettes | current smokers: daily use of ≤10 cigarettes N = 41; daily use of >10 cigarettes N = 37 - self-reported | V4 region of the 16S rRNA gene sequencing | adjusted for age, sex, race, BMI, and fiber | fiber intake assessed | JBI: 7/8 |
Shima, Japan, 2019 [50] | cross-sectional | N = 366 subjects (181 F, 185 M; 40.0 ± 11.0 years) 312 non-smokers, 54 smokers | Not specified | not specified - self-reported | reverse-transcription-quantitative polymerase chain reaction (RT-qPCR) | adjusted for age, sex, BMI, and frequency of alcohol, exercise, and fermented milk consumption | assessed fermented milk consumption | JBI: 7/8 |
Stewart, USA, 2018 [41] | cross-sectional | N = 30 (2 F, 28 M; 24–45 years) 10 cigarette smokers, 10 e-cigarette smokers, 10 non-smokers | cigarettes, e-cigarettes | daily use of e-cigarette for min 6 months; ≥10 cigarettes/day- self-reported | V4 regions of the 16S rRNA gene sequencing | not adjusted | assessed, no differences among groups | JBI: 7/8 |
Zhang, China, 2019 [45] | cross-sectional | N = 131 (51 F, 80 M; 22–69 years) | cigarettes | not specified - self reported | V3 and V4 regions of the 16S rRNA gene sequencing | not adjusted | assessed; yogurt+ have greater diversity | JBI: 8/8 |
Author, Year [Ref] | Variability | Firmicutes | Bacteroidetes | Actinobacteria | Proteobacteria | Tenericutes |
---|---|---|---|---|---|---|
Biedermann, 2013 (after smoking cessation) [47] | ↑* UniFrac distance ↑* α-diversity in subjects undergoing smoking cessation | ↑* | ↓* | ↑* | ↓* | /// |
Chen, 2016 [38] | ↓ Shannon index ↓ Unifrac distance | /// | /// | /// | /// | /// |
Curtis, 2019 [39] | ↓* Shannon index ↑* Unifrac distance in tobacco smokers | /// /// | ↑* Prevotella ↓* Bacteroides (in tobacco smokers); | /// /// | /// /// | /// /// |
↓* Shannon index in e-cigarette users | ↓* Prevotella ↓ Bacteroides (in e-cigarette users) | |||||
Harakeh, 2020 [49] | ↔ Chao1/Shannon indices | ↑ Lactobacillus amylovorus | ↑* Bacteroides (↑ B. thetaiotaomicron)↓* Fusobacteria & Tenericutes | /// | /// | /// |
Ishaq, 2017 [44] | ↓ Shannon index | ↓ (Lactobacillus and Clostridium leptum subgroup) | ↑* (Bacteroides vulgatus) | ↓ (Bifidobacterium) | /// | /// |
Kato 2010 [40] | /// | /// | /// | /// | ↑*(Desulfovibrio) | /// |
Lee, 2018 [48] | ↓* Shannon index ↓ Unifrac distance | ↓* | ↑* | /// | ↓* | ↑* |
Lin, 2020 [46] | ↔ Sobs/Shannon/ Heip indices | ↓* Firmicutes including several genus Phascolarctobacterium, Ruminococcaceae_UCG-002, Ruminococcaceae_UCG-003, andRuminiclostridium_9. | ↑* Bacteroides (smoking pack-year) | ↑* Actinomyces | /// | /// |
Nolan-Kenney, 2019 [43] | ↔ Simpson/Shannon indices | ↑* Erysipelotrichi-to-Catenibacterium, Peptostreptococcaceae, Mitsuokella | /// | ↑* Slackia, Collinsella | ↑* Alphaproteobacteria | /// |
Prakash, 2021 [42] | ↓* Bray–Curtis dissimilarity in former smokers than never and current smokers | ↓* Lachnospira ↑* Veillonellaceae in current and former smokers | ↑*Prevotella in current and former smokers | /// | /// | ↓* in current and former smokers |
Shima, 2019 [50] | ↓* total bacterial count ↓ Clostridium leptum in smokers | ↓* Enterococcus | /// | /// | /// | /// |
Stewart, 2018 [41] | ↓* Shannon index in tobacco smokers | /// /// | ↑* Prevotella ↓* Bacteroides | /// | /// | /// |
↓ Shannon index in e-cigarette users | /// | /// | /// | /// | ||
Zhang, 2019 [45] | ↓* Shannon index ↓* Pielou index | /// | ↑*Bacteroides | /// | /// | /// |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antinozzi, M.; Giffi, M.; Sini, N.; Gallè, F.; Valeriani, F.; De Vito, C.; Liguori, G.; Romano Spica, V.; Cattaruzza, M.S. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines 2022, 10, 510. https://doi.org/10.3390/biomedicines10020510
Antinozzi M, Giffi M, Sini N, Gallè F, Valeriani F, De Vito C, Liguori G, Romano Spica V, Cattaruzza MS. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines. 2022; 10(2):510. https://doi.org/10.3390/biomedicines10020510
Chicago/Turabian StyleAntinozzi, Martina, Monica Giffi, Nicolò Sini, Francesca Gallè, Federica Valeriani, Corrado De Vito, Giorgio Liguori, Vincenzo Romano Spica, and Maria Sofia Cattaruzza. 2022. "Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review" Biomedicines 10, no. 2: 510. https://doi.org/10.3390/biomedicines10020510
APA StyleAntinozzi, M., Giffi, M., Sini, N., Gallè, F., Valeriani, F., De Vito, C., Liguori, G., Romano Spica, V., & Cattaruzza, M. S. (2022). Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines, 10(2), 510. https://doi.org/10.3390/biomedicines10020510