Retinitis Pigmentosa (RP): The Role of Oxidative Stress in the Degenerative Process Progression
Abstract
:1. Introduction
- Usually macula (in which cones are prevalent) is less affected than peripheral retina, also in the late stages,
- It is easy to measure in vivo with an objective test (Optical Coherence Tomography).
2. Materials and Methods
- Eligibility criteria included: retinal features of Retinitis Pigmentosa (bilateral extinct scotopic ERG, constricted Visual Field, and pigmented retina), visual acuity better than 20/200, a normal lifestyle based on a Mediterranean diet, mild to moderate physical exercise, abstinence from alcohol and tobacco products, no systemic diabetes, hypertension, or dyslipidaemia, and no excessive exposure to the light or ultraviolet rays.
- Exclusion criteria were: presence of coronary artery disease (CAD) or family history of CAD, prior treatment with Vitamin C or any other antioxidant dietary supplements, steroid or FANS drugs, history of acute or chronic eye infections, fever, cancer or organ failure, peripheral vascular disease, and thrombo-embolic events. We also excluded subjects with other ocular pathologies, severe dioptric media opacities, patients who had a history of intravitreal injection therapies and previous laser treatment, and patients within six months of intraocular or vitreoretinal surgical procedures.
2.1. Oxidative Stress Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
- Data support moving forward with clinical trials to test whether dietary supplementation with antioxidants can slow cone photoreceptor loss of function and death in RP patients.
- Furthermore, our findings suggest that antioxidant supplements may improve morphological damage (CMT). Indeed, as reported in the literature, ROS promotes breakdown of the blood–retinal barrier and alters retinal blood flow by modulating the production of vasoactive factors, also upregulating the retinal expression of VEGF and adhesion molecules as ICAM-1 [31,32,33,34,35]. This cascade of molecular events causes leakage of fluids into the surrounding tissue, which initially accumulate within Müller cells. These morphological alterations may precede the appearance of CSME, they are quantifiable by OCT scans with CMT measurement, and they define the DRT pattern [4,8,11,15,36].
- The indirect measure of ROS was considered studying the effects of substances involved in the production or elimination of these species, using direct chemiluminescence and either direct or spin-trap electron paramagnetic resonance spectroscopy. Several reviews clearly described these methods, their needs and constraints, and their availability in the measurement of ROS [22,23,24,25,26,36,37,38,39].
5. Limitations
- The relatively small number of patients, considering that Retinitis pigmentosa is a rare disease, and this, also in consideration with the inclusion criteria, further reduces the possibility to include candidates;
- The horizontal design of the study that analyses a static environement. In our opinion, the test needs to be repeated over time, in a longitudinal study, correlating the value to the OCT situation. In consideration of the long disease duration (years), at least three years of observation would be necessary to evaluate the data more precisely.
- The present study, as others in the literature, draws on peripheral blood with consistent lack of data on the levels of ROS in the aqueous humour or in the vitreous fluid that are difficult to obtain in atraumatic way [15] in normal and RP eyes. These samples need to be acquired by anterior chamber paracentesis or pars plana vitrectomy; both are surgical procedures in which adequate consent could be difficult to obtain from the patients [40,41,42].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donato, L.; Scimone, C.; Nicocia, G.; D’Angelo, R. Antonina Sidoti Role of oxidative stress in Retinitis pigmentosa: New involved pathways by an RNA-Seq analysis. Cell Cycle 2020, 19, 256. [Google Scholar]
- Donato, L.; D’Angelo, R.; Alibrandi, S.; Rinaldi, C.; Sidoti, A.; Scimone, C. Effects of A2E-Induced Oxidative Stress on Retinal Epithelial Cells: New Insights on Differential Gene Response and Retinal Dystrophies. Antioxidants 2020, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, C.; Donato, L.; Alibrandi, S.; Scimone, C.; D’Angelo, R.; Sidoti, A. Oxidative Stress and the Neurovascular Unit. Life 2021, 11, 767. [Google Scholar] [CrossRef]
- Vargas, A.; Kim, H.S.; Baral, E.; Yu, W.-Q.; Craft, C.M.; Lee, E.-J. Protective effect of clusterin on rod photoreceptor in rat model of retinitis pigmentosa. PLoS ONE 2017, 12, e0182389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giusti, C.; Forte, R.; Vingolo, E.M. Deflazacort treatment of cystoid macular oedema in patients affected by Retinitis Pigmentosa: A pilot study. Eur. Rev. Med. Pharmacol. Sci. 2002, 6, 1–8. [Google Scholar]
- Perdices, L.; Fuentes-Broto, L.; Segura, F.; Ben Gdara, N.; Sánchez-Cano, A.I.; Insa, G.; Orduna, E.; Pinilla, I. Hepatic oxidative stress in pigmented P23H rhodopsin transgenic rats with progressive retinal degeneration. Free Radic. Biol. Med. 2018, 124, 550–557. [Google Scholar] [CrossRef]
- Yamagishi, S.-I.; Maeda, S.; Matsui, T.; Ueda, S.; Fukami, K.; Okuda, S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. Biophys. Acta (BBA) Gen. Subj. 2012, 1820, 663–671. [Google Scholar] [CrossRef]
- Donato, L.; Scimone, C.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. RETRACTED ARTICLE: Non-coding RNAome of RPE cells under oxidative stress suggests unknown regulative aspects of Retinitis pigmentosa etiopathogenesis. Sci. Rep. 2018, 8, 16638. [Google Scholar] [CrossRef]
- Vingolo, E.; Lupo, S.; Grenga, P.; Salvatore, S.; Zinnamosca, L.; Cotesta, D.; Petramala, L.; Letizia, C. Endothelin-1 plasma concentrations in patients with retinitis pigmentosa. Regul. Pept. 2010, 160, 64–67. [Google Scholar] [CrossRef]
- Hara, A.; Nakazawa, M.; Saito, M.; Suzuki, Y. The qualitative assessment of optical coherence tomography and the central retinal sensitivity in patients with retinitis pigmentosa. PLoS ONE 2020, 15, e0232700. [Google Scholar] [CrossRef]
- Giusti, C.; Forte, R.; Vingolo, E.M. Clinical pathogenesis of macular holes in patients affected by retinitis pigmentosa. Eur. Rev. Med. Pharmacol. Sci. 2003, 6, 45–48. [Google Scholar]
- Pan, H.-Z.; Zhang, H.; Chang, D.; Li, H.; Sui, H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br. J. Ophthalmol. 2008, 92, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Strauss, R.W.; Lu, L.; Hafiz, G.; Wolfson, Y.; Shah, S.M.; Sophie, R.; Mir, T.A.; Scholl, H.P. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa? Antioxid. Redox Signal. 2015, 23, 643–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, C.; Liu, Y.; You, J.; Su, G. Autophagy, lysosome dysfunction and mTOR inhibition in MNU-induced photoreceptor cell damage. Tissue Cell 2019, 61, 98–108. [Google Scholar] [CrossRef]
- Strong, S.; Liew, G.; Michaelides, M. Retinitis pigmentosa-associated cystoid macular oedema: Pathogenesis and avenues of intervention. Br. J. Ophthalmol. 2016, 101, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, L.; Scimone, C.; Alibrandi, S.; Rinaldi, C.; Sidoti, A.; D’Angelo, R. Transcriptome Analyses of lncRNAs in A2E-Stressed Retinal Epithelial Cells Unveil Advanced Links between Metabolic Impairments Related to Oxidative Stress and Retinitis Pigmentosa. Antioxidants 2020, 9, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Hayden, M.R.; Sowers, S.; Bagree, S.V.; Sowers, J.R. Retinal Redox Stress and Remodeling in Cardiometabolic Syndrome and Diabetes. Oxidative Med. Cell. Longev. 2010, 3, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.S.X.; Xu, Y.; Sun, S.; Sun, Y.; Wang, X. Intermittent high glucose enhances cell proliferation and VEGF expression in retinal endothelial cells: The role of mitochondrial reactive oxygen species. Mol. Cell. Biochem. 2010, 343, 27–35. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Mir, T.A. The mechanism of cone cell death in Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 62, 24–37. [Google Scholar] [CrossRef]
- Overvad, K.; Diamant, B.; Holm, L.; Hølmer, G.; Mortensen, S.A.; Stender, S. Coenzyme Q10 in health and disease. Eur. J. Clin. Nutr. 1999, 53, 764–770. [Google Scholar] [CrossRef] [Green Version]
- Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [Google Scholar] [CrossRef]
- Littarru, G.P.; Langsjoen, P. Coenzyme Q10 and statins: Biochemical and clinical implications. Mitochondrion 2007, 7, S168–S174. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Madeddu, C.; Macciò, A.; Gramignano, G.; Lusso, M.R.; Massa, E.; Astara, G.; Serpe, R. Cancer-related anorexia/cachexia syndrome and oxidative stress: An innovative approach beyond current treatment. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1651–1659. [Google Scholar]
- Gökkusu, C.; Palanduz, S.; Ademoğlu, E.; Tamer, S. Oxidant and antioxidant systems in niddm patients: Influence of vitamin e supplementation. Endocr. Res. 2001, 27, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Domanico, D.; Fragiotta, S.; Cutini, A.; Carnevale, C.; Zompatori, L.; Vingolo, E.M. Circulating levels of reactive oxygen species in patients with nonproliferative diabetic retinopathy and the influence of antioxidant supplementation: 6-month follow-up. Indian J. Ophthalmol. 2015, 63, 9–14. [Google Scholar] [PubMed]
- Gizi, A.; Papassotiriou, I.; Apostolakou, F.; Lazaropoulou, C.; Papastamataki, M.; Kanavaki, I.; Kalotychou, V.; Goussetis, E.; Kattamis, A.; Rombos, I.; et al. Assessment of oxidative stress in patients with sickle cell disease: The glutathione system and the oxidant–antioxidant status. Blood Cells Mol. Dis. 2011, 46, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Erb, C.; Konieczka, K. Mitochondriale Dysfunktion und Bedeutung von Coenzym Q10 beim Glaukom. Klin. Mon. Augenheilkd. 2018, 235, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.M.R.; Roche, S.L.; Jackson, A.C.W.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Pro-survival redox signalling in progesterone-mediated retinal neuroprotection. Eur. J. Neurosci. 2017, 46, 1663–1672. [Google Scholar] [CrossRef]
- Berkowitz, B.A.; Podolsky, R.H.; Farrell, B.; Lee, H.; Trepanier, C.; Berri, A.M.; Dernay, K.; Graffice, E.; Khorassani, F.S.; Kern, T.S.; et al. D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo. Investig. Opthalmol. Vis. Sci. 2018, 59, 2999–3010. [Google Scholar] [CrossRef]
- Mancino, R.; Di Pierro, D.; Varesi, C.; Cerulli, A.; Feraco, A.; Cedrone, C.; Pinazo-Duran, M.D.; Coletta, M.; Nucci, C. Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol. Vis. 2011, 17, 1298–1304. [Google Scholar]
- Hee, M.R.; Puliafito, C.A.; Duker, J.S.; Reichel, E.; Coker, J.G.; Wilkins, J.R.; Schuman, J.S.; Swanson, E.A.; Fujimoto, J.G. Topography of diabetic macular oedema with optical coherence tomography. Ophthalmology 1998, 105, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Pavlatou, M.G.; Papastamataki, M.; Apostolakou, F.; Papassotiriou, I.; Tentolouris, N. FORT and FORD: Two simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus. Metabolism 2009, 58, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Vingolo, E.M.; Bellelli, A.; Santori, M.; Pannarale, L.; Forte, R.; Iannaccone, A.; Grenga, R. Cataractogenesis in Retinitis Pigmentosa Cataractogenesis. In Degenerative Diseases of the Retina; Vingolo, R.P.E.M., Bellelli, A., Santori, M., Pannarale, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Abramson, J.L.; Hooper, W.C.; Jones, D.P.; Ashfaq, S.; Rhodes, S.D.; Weintraub, W.S.; Harrison, D.G.; Quyyumi, A.A.; Vaccarino, V. Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease. Atherosclerosis 2005, 178, 115–121. [Google Scholar] [CrossRef]
- Vergely, C.; Maupoil, V.; Clermont, G.; Bril, A.; Rochette, L. Identification and quantification of free radicals during myocardial ischemia and reperfusion using electron paramagnetic resonance spectroscopy. Arch. Biochem. Biophys. 2003, 420, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Lorgis, L.; Zeller, M.; Dentan, G.; Sicard, P.; Richard, C.; Buffet, P.; L’Huillier, I.; Beer, J.; Cottin, Y.; Rochette, L.; et al. The free oxygen radicals test (FORT) to assess circulating oxidative stress in patients with acute myocardial infarction. Atherosclerosis 2010, 213, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Lupo, S.; Grenga, P.L.; Vingolo, E.M. Fourier-Domain Optical Coherence Tomography and Microperimetry Findings in Retinitis Pigmentosa. Am. J. Ophthalmol. 2011, 151, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Bertini, M.; Vingolo, E.M. Aminaphtone in the treatment of pseudophakic cystoid macular oedema: A case report. Clin. Ter. 2011, 162, e135–e137. [Google Scholar]
- Gao, L.; Mao, Q.; Cao, J.; Wang, Y.; Zhou, X.; Fan, L. Effects of coenzyme Q10 on vascular endothelial function in humans: A meta-analysis of randomized controlled trials. Atherosclerosis 2012, 221, 311–316. [Google Scholar] [CrossRef]
- Kang, K.; Tarchick, M.J.; Yu, X.; Beight, C.; Bu, P.; Yu, M. Carnosic acid slows photoreceptor degeneration in the Pde6brd10 mouse model of retinitis pigmentosa. Sci. Rep. 2016, 6, 22632. [Google Scholar] [CrossRef] [Green Version]
- Berson, E.L.; Weigel-DiFranco, C.; Rosner, B.; Gaudio, A.R.; Sandberg, M.A. Association of Vitamin A Supplementation With Disease Course in Children With Retinitis Pigmentosa. JAMA Ophthalmol. 2018, 136, 490. [Google Scholar] [CrossRef]
- Tarpey, M.M.; Wink, D.A.; Grisham, M.B. Methods for detection of reactive metabolites of oxygen and nitrogen: In vitro and in vivo considerations. Am. J. Physiol. Integr. Comp. Physiol. 2004, 286, R431–R444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vingolo, E.M.; Casillo, L.; Contento, L.; Toja, F.; Florido, A. Retinitis Pigmentosa (RP): The Role of Oxidative Stress in the Degenerative Process Progression. Biomedicines 2022, 10, 582. https://doi.org/10.3390/biomedicines10030582
Vingolo EM, Casillo L, Contento L, Toja F, Florido A. Retinitis Pigmentosa (RP): The Role of Oxidative Stress in the Degenerative Process Progression. Biomedicines. 2022; 10(3):582. https://doi.org/10.3390/biomedicines10030582
Chicago/Turabian StyleVingolo, Enzo M., Lorenzo Casillo, Laura Contento, Francesca Toja, and Antonio Florido. 2022. "Retinitis Pigmentosa (RP): The Role of Oxidative Stress in the Degenerative Process Progression" Biomedicines 10, no. 3: 582. https://doi.org/10.3390/biomedicines10030582