H3K27me3 Immunohistochemical Loss Predicts Lower Response to Neo-Adjuvant Chemo-Radiotherapy in Rectal Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cases
2.2. Histopathological Assessment
2.3. Immunohistochemistry
2.4. Statistical Analyses
3. Results
3.1. Cases
3.2. Histopathological Assessment
3.3. Immunohistochemistry
3.4. Statistical Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rodel, C.; Cervantes, A.; Arnold, D.; Committee, E.G. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef] [PubMed]
- Reggiani Bonetti, L.; Lionti, S.; Domati, F.; Barresi, V. Do pathological variables have prognostic significance in rectal adenocarcinoma treated with neoadjuvant chemoradiotherapy and surgery? World J. Gastroenterol. 2017, 23, 1412–1423. [Google Scholar] [CrossRef]
- Chetty, R.; Gill, P.; Govender, D.; Bateman, A.; Chang, H.J.; Deshpande, V.; Driman, D.; Gomez, M.; Greywoode, G.; Jaynes, E.; et al. International study group on rectal cancer regression grading: Interobserver variability with commonly used regression grading systems. Hum. Pathol. 2012, 43, 1917–1923. [Google Scholar] [CrossRef]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int. J. Colorectal. Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Mandard, A.M.; Dalibard, F.; Mandard, J.C.; Marnay, J.; Henry-Amar, M.; Petiot, J.F.; Roussel, A.; Jacob, J.H.; Segol, P.; Samama, G.; et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994, 73, 2680–2686. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Hughes, R. Critical appraisal of the ‘wait and see’ approach in rectal cancer for clinical complete responders after chemoradiation. Br. J. Surg. 2012, 99, 897–909. [Google Scholar] [CrossRef]
- Goldstein, M.; Kastan, M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015, 66, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Rath, B.H.; Waung, I.; Camphausen, K.; Tofilon, P.J. Inhibition of the Histone H3K27 Demethylase UTX Enhances Tumor Cell Radiosensitivity. Mol. Cancer Ther. 2018, 17, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Shilatifard, A. Epigenetic modifications of histones in cancer. Genome Biol. 2019, 20, 245. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, N.; Balaji, K.; Jayachandran, K.; Inkman, M.; Zhang, J.; Dahiya, S.; Goldstein, M. Loss of H3K27 Trimethylation Promotes Radiotherapy Resistance in Medulloblastoma and Induces an Actionable Vulnerability to BET Inhibition. Cancer Res. 2022, 82, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, Q.; Cai, E.; Huang, B.; Ying, F.; Wen, Y.; Cai, J.; Yang, P. EZH2/H3K27Me3 and phosphorylated EZH2 predict chemotherapy response and prognosis in ovarian cancer. PeerJ 2020, 8, e9052. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, X.; Jiang, Y.; Liu, S.; Liu, H.; Sun, X.; Zhang, H.; Liu, Z.; Tao, Y.; Li, C.; et al. Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin. J. Mol. Cell Biol. 2020, 12, 125–137. [Google Scholar] [CrossRef]
- Barresi, V.; Bonetti, L.R.; Ieni, A.; Branca, G.; Baron, L.; Tuccari, G. Histologic grading based on counting poorly differentiated clusters in preoperative biopsy predicts nodal involvement and pTNM stage in colorectal cancer patients. Hum. Pathol. 2014, 45, 268–275. [Google Scholar] [CrossRef]
- Reggiani Bonetti, L.; Lionti, S.; Domati, F.; Pagliani, G.; Mattioli, E.; Barresi, V. Histological grading based on poorly differentiated clusters is predictive of tumour response and clinical outcome in rectal carcinoma treated with neoadjuvant chemoradiotherapy. Histopathology 2017, 71, 393–405. [Google Scholar] [CrossRef]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Flejou, J.F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours, 8th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- DeCaria, K.; Rahal, R.; Niu, J.; Lockwood, G.; Bryant, H.; System Performance Steering Committee; the Technical Working Group. Rectal cancer resection and circumferential margin rates in Canada: A population-based study. Curr. Oncol. 2015, 22, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Ammendola, S.; Caldonazzi, N.; Simbolo, M.; Piredda, M.L.; Brunelli, M.; Poliani, P.L.; Pinna, G.; Sala, F.; Ghimenton, C.; Scarpa, A.; et al. H3K27me3 immunostaining is diagnostic and prognostic in diffuse gliomas with oligodendroglial or mixed oligoastrocytic morphology. Virchows Arch. 2021, 479, 987–996. [Google Scholar] [CrossRef]
- Ammendola, S.; Rizzo, P.C.; Longhi, M.; Zivelonghi, E.; Pedron, S.; Pinna, G.; Sala, F.; Nicolato, A.; Scarpa, A.; Barresi, V. The Immunohistochemical Loss of H3K27me3 in Intracranial Meningiomas Predicts Shorter Progression-Free Survival after Stereotactic Radiosurgery. Cancers 2022, 14, 1718. [Google Scholar] [CrossRef]
- Van de Velde, C.J.; Boelens, P.G.; Borras, J.M.; Coebergh, J.W.; Cervantes, A.; Blomqvist, L.; Beets-Tan, R.G.; van den Broek, C.B.; Brown, G.; Van Cutsem, E.; et al. EURECCA colorectal: Multidisciplinary management: European consensus conference colon & rectum. Eur. J. Cancer 2014, 50, 1.e1–1.e34. [Google Scholar] [CrossRef] [PubMed]
- Dossa, F.; Chesney, T.R.; Acuna, S.A.; Baxter, N.N. A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 501–513. [Google Scholar] [CrossRef]
- Munk, N.E.; Bondeven, P.; Pedersen, B.G. Diagnostic performance of MRI and endoscopy for assessing complete response in rectal cancer after neoadjuvant chemoradiotherapy: A systematic review of the literature. Acta Radiol. 2021, 2841851211065925. [Google Scholar] [CrossRef] [PubMed]
- Hammarstrom, K.; Imam, I.; Mezheyeuski, A.; Ekstrom, J.; Sjoblom, T.; Glimelius, B. A Comprehensive Evaluation of Associations Between Routinely Collected Staging Information and The Response to (Chemo)Radiotherapy in Rectal Cancer. Cancers 2020, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Lino-Silva, L.S.; Gamboa-Dominguez, A.; Zuniga-Tamayo, D.; Salcedo-Hernandez, R.A.; Cetina, L.; Cantu-de-Leon, D. Mismatch repair protein expression and intratumoral budding in rectal cancer are associated with an increased pathological complete response to preoperative chemoradiotherapy: A case-control study. World J. Clin. Oncol. 2018, 9, 133–139. [Google Scholar] [CrossRef]
- Rogers, A.C.; Gibbons, D.; Hanly, A.M.; Hyland, J.M.; O’Connell, P.R.; Winter, D.C.; Sheahan, K. Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod. Pathol. 2014, 27, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, S.; Freitas, M.; Antunes, L.; Monteiro-Reis, S.; Vieira-Coimbra, M.; Tavares, A.; Paulino, S.; Videira, J.F.; Jeronimo, C.; Henrique, R. Prognostic value of histone marks H3K27me3 and H3K9me3 and modifying enzymes EZH2, SETDB1 and LSD-1 in colorectal cancer. J. Cancer Res. Clin. Oncol. 2018, 144, 2127–2137. [Google Scholar] [CrossRef]
- Benard, A.; Goossens-Beumer, I.J.; van Hoesel, A.Q.; Horati, H.; Putter, H.; Zeestraten, E.C.; van de Velde, C.J.; Kuppen, P.J. Prognostic value of polycomb proteins EZH2, BMI1 and SUZ12 and histone modification H3K27me3 in colorectal cancer. PLoS ONE 2014, 9, e108265. [Google Scholar] [CrossRef]
- Benard, A.; van de Velde, C.J.; Lessard, L.; Putter, H.; Takeshima, L.; Kuppen, P.J.; Hoon, D.S. Epigenetic status of LINE-1 predicts clinical outcome in early-stage rectal cancer. Br. J. Cancer 2013, 109, 3073–3083. [Google Scholar] [CrossRef] [Green Version]
- Panwalkar, P.; Clark, J.; Ramaswamy, V.; Hawes, D.; Yang, F.; Dunham, C.; Yip, S.; Hukin, J.; Sun, Y.; Schipper, M.J.; et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 2017, 134, 705–714. [Google Scholar] [CrossRef]
- Katz, L.M.; Hielscher, T.; Liechty, B.; Silverman, J.; Zagzag, D.; Sen, R.; Wu, P.; Golfinos, J.G.; Reuss, D.; Neidert, M.C.; et al. Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol. 2018, 135, 955–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pediconi, N.; Salerno, D.; Lupacchini, L.; Angrisani, A.; Peruzzi, G.; De Smaele, E.; Levrero, M.; Belloni, L. EZH2, JMJD3, and UTX epigenetically regulate hepatic plasticity inducing retro-differentiation and proliferation of liver cells. Cell Death Dis. 2019, 10, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katagi, H.; Louis, N.; Unruh, D.; Sasaki, T.; He, X.; Zhang, A.; Ma, Q.; Piunti, A.; Shimazu, Y.; Lamano, J.B.; et al. Radiosensitization by Histone H3 Demethylase Inhibition in Diffuse Intrinsic Pontine Glioma. Clin. Cancer Res. 2019, 25, 5572–5583. [Google Scholar] [CrossRef] [PubMed]
- Zlobec, I.; Berger, M.D.; Lugli, A. Tumour budding and its clinical implications in gastrointestinal cancers. Br. J. Cancer 2020, 123, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Haddad, T.S.; Lugli, A.; Aherne, S.; Barresi, V.; Terris, B.; Bokhorst, J.M.; Brockmoeller, S.F.; Cuatrecasas, M.; Simmer, F.; El-Zimaity, H.; et al. Improving tumor budding reporting in colorectal cancer: A Delphi consensus study. Virchows Arch. 2021, 479, 459–469. [Google Scholar] [CrossRef]
- Barresi, V.; Reggiani Bonetti, L.; Ieni, A.; Caruso, R.A.; Tuccari, G. Poorly Differentiated Clusters: Clinical Impact in Colorectal Cancer. Clin. Colorectal. Cancer 2017, 16, 9–15. [Google Scholar] [CrossRef]
Parameter | H3K27me3 Immuno-Expression | p | |
---|---|---|---|
Lost | Retained | ||
Tumor localization | |||
Lower | 6 | 10 | |
Middle | 12 | 6 | |
Upper | 2 | 3 | 0.204 |
c TNM stage | |||
II | 4 | 2 | |
III | 16 | 17 | 0.418 |
TB grade | |||
Bd1 | 11 | 16 | |
Bd2 | 4 | 0 | |
Bd3 | 1 | 1 | 0.086 |
PDC grade | |||
PDC-G1 | 12 | 14 | |
PDC-G2 | 5 | 1 | |
PDC-G3 | 1 | 2 | 0.209 |
yp stage | |||
0 | 1 | 8 | |
I | 8 | 2 | |
II | 6 | 2 | |
III | 5 | 5 | |
IV | 0 | 2 | 0.0111 |
Lymphovascular invasion | |||
Absent | 15 | 12 | |
Present | 5 | 7 | 0.429 |
Perineural invasion | |||
Absent | 19 | 15 | |
Present | 1 | 4 | 0.139 |
Dworak TRG | |||
0 | 0 | 0 | |
1 | 6 | 3 | |
2 | 10 | 2 | |
3 | 3 | 5 | |
4 | 1 | 9 | 0.0042 |
Two-tiered Dworak TRG | |||
TRG 0-1-2 | 16 | 5 | |
TRG 3-4 | 4 | 14 | 0.0009 |
Tumor progression | |||
No | 13 | 17 | |
Yes | 7 | 2 | 0.0735 |
Parameter | Tumor Progression | p | |
---|---|---|---|
No | Yes | ||
Tumor localization | |||
Lower | 15 | 4 | |
Middle | 15 | 7 | |
Upper | 4 | 1 | 0.697 |
c TNM stage | |||
II | 6 | 2 | |
III | 28 | 10 | 0.939 |
TB grade | |||
Bd1 | 27 | 6 | |
Bd2 | 3 | 2 | |
Bd3 | 0 | 2 | 0.0245 |
PDC grade | |||
PDC-G1 | 26 | 5 | |
PDC-G2 | 5 | 2 | |
PDC-G3 | 1 | 3 | 0.0322 |
yp stage | |||
0 | 11 | 1 | |
I | 10 | 1 | |
II | 7 | 2 | |
III | 5 | 7 | |
IV | 1 | 1 | 0.0296 |
Radial margin | |||
uninvolved | 34 | 8 | |
involved | 0 | 4 | 0.0005 |
Lymphovascular invasion | |||
Absent | 26 | 5 | |
Present | 8 | 7 | 0.0287 |
Perineural invasion | |||
Absent | 30 | 9 | |
Present | 4 | 3 | 0.277 |
Dworak TRG | |||
0 | 1 | 1 | |
1 | 7 | 2 | |
2 | 7 | 7 | |
3 | 7 | 1 | |
4 | 12 | 1 | 0.0968 |
Two-tiered Dworak TRG | |||
TRG 0-1-2 | 15 | 10 | |
TRG 3-4 | 19 | 2 | 0.0204 |
Parameter | H.R. (95% C.I.) | p |
---|---|---|
Sex | ||
Male | 1 | |
Female | 1.1 (0.3–3.6) | 0.792 |
Age | ||
<60 years | 1 | |
≥60 years | 0.7 (0.2–2.4) | 0.664 |
Tumor localization | ||
Lower | 1 | |
Middle | 1.5 (0.4–5.2) | |
Upper | 0.8 (0.1–5.7) | 0.710 |
TB grade | ||
Bd1 | 1 | |
Bd2 | 2.4 (0.3–17.3) | |
Bd3 | 8.3 (0.2–258.7) | 0.008 |
PDC grade | ||
PDC-G1 | 1 | |
PDC-G2 | 1.8 (0.3–9.9) | |
PDC-G3 | 6.9 (0.5–84.3) | 0.0093 |
H3K27me3 immuno-expression | ||
Retained | 1 | |
Lost | 0.3 (0.09–1.3) | 0.138 |
c TNM stage | ||
II | 1 | |
III | 1.1 (0.2–4.9) | 0.859 |
ypTNM stage | ||
0 | 1 | |
I | 0.9 (0.2–4.3) | |
II | 2.7 (0.5–14.7) | |
III | 9.1 (1.7–47.6) | |
IV | 6.2 (0.3–117.8) | 0.0159 |
Lymphovascular invasion | ||
Absent | 1 | |
Present | 4.4 (1.2–15.5) | 0.0213 |
Perineural invasion | ||
Absent | 1 | |
Present | 2.3 (0.4–11.9) | 0.296 |
Radial margin | ||
Uninvolved | 1 | |
Involved | 318 (24.5–4127) | <0.0001 |
Dworak TRG | ||
0 | 1 | |
1 | 0.3 (0.01–9.7) | |
2 | 0.7 (0.02–21.2) | |
3 | 0.1 (0.005–5.6) | |
4 | 0.1 (0.003–3) | 0.139 |
Two-tiered Dworak TRG | ||
TRG 0-1-2 | 1 | |
TRG 3-4 | 0.2 (0.09–0.9) | 0.0336 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammendola, S.; Caldonazzi, N.; Rizzo, P.C.; Turri, G.; Pedrazzani, C.; Barresi, V. H3K27me3 Immunohistochemical Loss Predicts Lower Response to Neo-Adjuvant Chemo-Radiotherapy in Rectal Carcinoma. Biomedicines 2022, 10, 2042. https://doi.org/10.3390/biomedicines10082042
Ammendola S, Caldonazzi N, Rizzo PC, Turri G, Pedrazzani C, Barresi V. H3K27me3 Immunohistochemical Loss Predicts Lower Response to Neo-Adjuvant Chemo-Radiotherapy in Rectal Carcinoma. Biomedicines. 2022; 10(8):2042. https://doi.org/10.3390/biomedicines10082042
Chicago/Turabian StyleAmmendola, Serena, Nicolò Caldonazzi, Paola Chiara Rizzo, Giulia Turri, Corrado Pedrazzani, and Valeria Barresi. 2022. "H3K27me3 Immunohistochemical Loss Predicts Lower Response to Neo-Adjuvant Chemo-Radiotherapy in Rectal Carcinoma" Biomedicines 10, no. 8: 2042. https://doi.org/10.3390/biomedicines10082042