A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Participants
2.2. Dietary Assessment
2.3. DASH Score
2.4. Biochemical and Anthropometric Assessment
2.5. Definition of Terms
2.6. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Multivariate Logistic Regression Analysis
3.3. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoyas, I.; Leon-Sanz, M. Nutritional Challenges in Metabolic Syndrome. J. Clin. Med. 2019, 8, 1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadpour, S.; Ghorbaninejad, P.; Janbozorgi, N.; Shab-Bidar, S. Associations between adherence to MIND diet and metabolic syndrome and general and abdominal obesity: A cross-sectional study. Diabetol. Metab. Syndr. 2020, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Blanco Mejia, S.; Kendall, C.W.C.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, E.; Giacco, A. Diet, Exercise, and the Metabolic Syndrome: Enrollment of the Mitochondrial Machinery. Nutrients 2022, 14, 4519. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Damiri, B.; Abualsoud, M.S.; Samara, A.M.; Salameh, S.K. Metabolic syndrome among overweight and obese adults in Palestinian refugee camps. Diabetol. Metab. Syndr. 2018, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, Y.; Jeon, J.Y. Association between physical activity and the prevalence of metabolic syndrome: From the Korean National Health and Nutrition Examination Survey, 1999–2012. SpringerPlus 2016, 5, 1870. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.-H.; Ko, J.; Lim, S.-T. Relationship between metabolic syndrome and moderate-to-vigorous physical activity among adults 18 years old and over. PLoS ONE 2021, 16, e0258097. [Google Scholar] [CrossRef]
- Padma, V. DASH Diet in Preventing Hypertension. ABR 2014, 8, 94–96. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller III, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. D N Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- National Heart Lung Blood Institute. Description of the DASH Eating Plan. Available online: https://www.nhlbi.nih.gov/health-topics/dash-eating-plan (accessed on 7 January 2022).
- Bricarello, L.P.; de Almeida Alves, M.; Retondario, A.; de Moura Souza, A.; de Vasconcelos, F.A.G. DASH diet (Dietary Approaches to Stop Hypertension) and overweight/obesity in adolescents: The ERICA study. Clin. Nutr. ESPEN 2021, 42, 173–179. [Google Scholar] [CrossRef]
- Liang, H.; Beydoun, H.A.; Hossain, S.; Maldonado, A.; Zonderman, A.B.; Fanelii-Kuczmarski, M.T.; Beydoun, M.A. Dietary Approaches to Stop Hypertension (DASH) Score and Its Association with Sleep Quality in a National Survey of Middle-Aged and Older Men and Women. Nutrients 2020, 12, 1510. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Wee, C.C.; Kovell, L.C.; Plante, T.B.; Miller, E.R.; Appel, L.J. Effects of Diet on 10-Year Atherosclerotic Cardiovascular Disease Risk (from the DASH Trial). Am. J. Card. 2023, 187, 10–17. [Google Scholar] [CrossRef]
- Fung, T.T.; Hu, F.B.; Wu, K.; Chiuve, S.E.; Fuchs, C.S.; Giovannucci, E. The Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets and colorectal cancer. Am. J. Clin. Nutr. 2010, 92, 1429–1435. [Google Scholar] [CrossRef] [Green Version]
- Mertens, E.; Markey, O.; Geleijnse, J.M.; Lovegrove, J.A.; Givens, D.I. Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: Evidence from the Caerphilly Prospective Study. Eur. J. Nutr. 2018, 57, 1245–1258. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.L.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.; Harmon, B.E.; Boushey, C.J.; Morimoto, Y.; Wilkens, L.R.; Marchand, L.L.; Kröger, J.; Schulze, M.B.; Kolonei, L.N.; Maskarinec, G. A priori-defined diet quality indexes and risk of type 2 diabetes: The Multiethnic Cohort. Diabetologia 2015, 58, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Barak, F.; Falahi, E.; Keshteli, A.H.; Yazdannik, A.; Esmaillzadeh, A. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet in relation to obesity among Iranian female nurses. Public Health Nutr. 2015, 18, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef] [Green Version]
- Abete, I.; Goyenechea, E.; Zulet, M.A.; Martínez, J.A. Obesity and metabolic syndrome: Potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B1–B15. [Google Scholar] [CrossRef]
- Hikmat, F.; Appel, L.J. Effects of the DASH diet on blood pressure in patients with and without metabolic syndrome: Results from the DASH trial. J. Hum. Hypertens. 2014, 28, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, T.; Azizi, F. Beneficial Effects of a Dietary Approaches to Stop Hypertension Eating Plan on Features of the Metabolic Syndrome. Diabetes Care 2005, 28, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorabi, S.; Salari-Moghaddam, A.; Daneshzad, E.; Sadeghi, O.; Azadbakht, L.; Djafarian, K. Association between the DASH diet and metabolic syndrome components in Iranian adults. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Drehmer, M.; Odegaard, A.O.; Schmidt, M.I.; Duncan, B.B.; Cardoso, L.O.; Matos, S.M.A.; Molina, M.D.C.B.; Barreto, S.M.; Pereira, M.A. Brazilian dietary patterns and the dietary approaches to stop hypertension (DASH) diet-relationship with metabolic syndrome and newly diagnosed diabetes in the ELSA-Brasil study. Diabetol. Metab. Syndr. 2017, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, B.T.; Wu, D.; Hou, L.; Dai, Q.; Castaneda, S.F.; Gallo, L.C.; Talavera, G.A.; Sotres-Alvares, D.; Van Horn, L.; Beasley, J.M.; et al. DASH diet and prevalent metabolic syndrome in the Hispanic Community Health Study/Study of Latinos. Prev. Med. Rep. 2019, 15, 100950. [Google Scholar] [CrossRef]
- Farhadnejad, H.; Emamat, H.; Teymoori, F.; Tangestani, H.; Hekmatdoost, A.; Mirmiran, P. Role of dietary approaches to stop hypertension diet in risk of metabolic syndrome: Evidence from observational and interventional studies. Int. J. Prev. Med. 2021, 12, 24. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Teo, K.; Chow, C.K.; Vaz, M.; Rangarajan, S.; Yusuf, S.; PURE Investigators-Writing Group. The Prospective Urban Rural Epidemiology (PURE) Study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am. Heart J. 2009, 158, 1–7.e1. [Google Scholar] [CrossRef]
- Konikowska, K.; Bombała, W.; Szuba, A.; Różańska, D.; Regulska-Ilow, B. Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol. Biomedicines 2022, 10, 2487. [Google Scholar] [CrossRef]
- Dehghan, M.; Ilow, R.; Zatonska, K.; Szuba, S.; Zhang, X.; Mente, A.; Regulska-Ilow, B. Development, reproducibility and validity of the food frequency questionnaire in the Poland arm of the Prospective Urban and Rural Epidemiological (PURE) study. J. Hum. Nutr. Diet. 2012, 25, 225–232. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Food Composition and Nutritional Value Tables, 2nd ed.; PZWL: Warsaw, Poland, 2019. [Google Scholar]
- Rahimi, H.; Yuzbashian, E.; Zareie, R.; Asghari, G.; Djazayery, A.; Movahedi, A.; Mirmiran, P. Dietary approaches to stop hypertension (DASH) score and obesity phenotypes in children and adolescents. Nutr. J. 2020, 19, 112. [Google Scholar] [CrossRef]
- Mazidi, M.; Pennathur, S.; Afshinnia, F. Link of dietary patterns with metabolic syndrome: Analysis of the National Health and Nutrition Examination Survey. Nutr. Diabetes 2017, 7, e255. [Google Scholar] [CrossRef]
- Baxter, A.J.; Coyne, T.; McClintock, C. Dietary patterns and metabolic syndrome—A review of epidemiologic evidence. Asia Pac. J. Clin. Nutr. 2006, 15, 134–142. [Google Scholar]
- Wei, Z.Y.; Liu, J.J.; Zhan, X.M.; Feng, H.M.; Zhang, Y.Y. Dietary patterns and the risk of metabolic syndrome in Chinese adults: A population-based cross-sectional study. Public Health Nutr. 2018, 21, 2409–2416. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, A.M.; Toledo, E.; Rodriguez-Diez, M.C.; Gea, A.; Lopez-Iracheta, R.; Shivappa, N.; Hébert, J.R.; Martinez-Gonzalez, M.A. Dietary indexes, food patterns and incidence of metabolic syndrome in a Mediterranean cohort: The SUN project. Clin. Nutr. 2015, 34, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J.; Philips, C.M. Comparing dietary score associations with lipoprotein particle subclass profiles: A cross-sectional analysis of a middle-to older-aged population. Clin. Nutr. 2021, 40, 4720–4729. [Google Scholar] [CrossRef]
- AlEssa, H.B.; Malik, V.S.; Yuan, C.; Willett, W.C.; Huang, T.; Hu, F.B.; Tobias, D.K. Dietary patterns and cardiometabolic and endocrine plasma biomarkers in US women. Am. J. Clin. Nutr. 2017, 105, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.M.; Harrington, J.M.; Perry, I.J. Relationship between dietary quality, determined by DASH score, and cardiometabolic health biomarkers: A cross-sectional analysis in adults. Clinical Nutrition 2019, 38, 1620–1628. [Google Scholar] [CrossRef]
- Steinberg, D.; Bennet, G.G.; Svetkey, L. The DASH Diet, 20 Years Later. JAMA 2017, 317, 1529–1530. [Google Scholar] [CrossRef] [Green Version]
- Mellen, P.B.; Gao, S.K.; Vitolins, M.Z.; Goff, D.C., Jr. Deteriorating dietary habits among adults with hypertension: DASH dietary accordance, NHANES 1988–1994 and –2004. Arch. Intern. Med. 2008, 168, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Andrade, F.C. Diagnostic status of hypertension on the adherence to the Dietary Approaches to Stop Hypertension (DASH) diet. Prev. Med. Rep. 2016, 4, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, C.M.; Batch, B.C.; Svetkey, L.P. Effect of socioeconomic status on food availability and cost of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern. J. Clin. Hypertens. 2008, 10, 603–611. [Google Scholar] [CrossRef] [PubMed]
Women with MetS (n = 127) | Women without MetS (n = 210) | p-Value | Men with MetS (n = 88) | Men without MetS (n = 110) | p-Value | |
---|---|---|---|---|---|---|
Characteristic | Mean score ± SD | Mean score ± SD | ||||
Age [years] | 58.57 ± 15.93 | 59.04 ± 9.11 | 0.900 | 58.34 ± 12.66 | 56.98 ± 9.44 | 0.164 |
Body weight [kg] | 82.50 ± 20.19 | 66.44 ± 11.85 | <0.0001 | 97.68 ± 19.36 | 78.81 ± 10.20 | <0.0001 |
BMI [kg/m2] | 32.02 ± 6.80 | 25.95 ± 4.60 | <0.0001 | 32.08 ± 5.40 | 26.21 ± 3.01 | <0.0001 |
Energy value of a daily food ration [kcal] | 1879.72 ± 694.24 | 1908.87 ± 709.97 | 0.623 | 2140.86 ± 671.94 | 2018.13 ± 677.06 | 0.163 |
Metabolic syndrome components | Mean score ± SD | p-value | Mean score ± SD | p-value | ||
HDL-c (mg/dL) | 46.53 ± 15.89 | 71.24 ± 18.64 | <0.0001 | 36.32 ± 11.93 | 58.76 ± 14.43 | <0.0001 |
TGs (mg/dL) | 153.17 ± 74.20 | 94.32 ± 35.42 | <0.0001 | 178.30 ± 107.54 | 94.85 ± 32.56 | <0.0001 |
Glucose (mg/dL) | 109.25 ± 43.40 | 89.90 ± 8.31 | 0.0034 | 128.07 ± 48.72 | 91.81 ± 8.22 | <0.0001 |
Waist circumference (cm) | 100.71 ± 14.50 | 80.82 ± 11.15 | <0.0001 | 111.06 ± 13.89 | 90.79 ± 8.84 | <0.0001 |
Systolic blood pressure (mm Hg) | 130.46 ± 17.88 | 131.76 ± 16.59 | 0.442 | 138.32 ± 17.91 | 137.33 ± 15.04 | 0.762 |
Diastolic blood pressure (mm Hg) | 82.22 ± 11.22 | 81.48 ± 10.05 | 0.597 | 86.25 ± 10.78 | 85.70 ± 8.16 | 0.898 |
MetS Group (n = 215) | Control Group (n = 320) | p Value | Women with MetS (n = 127) | Women without MetS (n = 210) | p Value | Men with MetS (n = 88) | Men without MetS (n = 110) | p Value | |
---|---|---|---|---|---|---|---|---|---|
DASH components | Mean score ± SD | Mean score ± SD | Mean score ± SD | ||||||
Total fruits (g/1000 kcal) | 156.68 ± 92.79 | 181.36 ± 108.81 | 0.012 | 162.96 ± 89.82 | 206.25 ± 115.30 | 0.001 | 147.62 ± 96.72 | 133.85 ± 75.42 | 0.606 |
Vegetables (except potatoes and legumes) (g/1000 kcal) | 203.58 ± 84.68 | 196.42 ± 98.30 | 0.124 | 218.61 ± 93.33 | 206.07 ± 98.95 | 0.106 | 181.90 ± 64.93 | 177.99 ± 94.77 | 0.219 |
Nuts and legumes (g/1000kcal) | 12.53 ± 14.55 | 16.89 ± 13.93 | <0.0001 | 12.11 ± 13.12 | 17.50 ± 15.21 | <0.0001 | 13.15 ± 16.46 | 15.72 ± 11.05 | 0.007 |
Whole grains (g/1000 kcal) | 29.54 ± 31.30 | 29.69 ± 26.52 | 0.138 | 30.79 ± 30.33 | 30.21 ± 24.27 | 0.278 | 27.74 ± 32.73 | 28.69 ± 30.45 | 0.484 |
Low-fat dairy (g/1000 kcal) | 92.06 ± 93.46 | 83.40 ± 90.72 | 0.225 | 100.40 ± 104.82 | 92.16 ± 102.78 | 0.340 | 80.04 ± 72.99 | 66.68 ± 58.32 | 0.359 |
Sodium (mg/1000 kcal) | 1124.58 ± 306.09 | 1027.98 ± 264.65 | 0.001 | 1128.55 ± 306.56 | 1035.58 ± 268.69 | 0.005 | 1118.86 ± 307.07 | 1013.47 ± 257.33 | 0.049 |
Red and processed meat (g/1000 kcal) | 36.76 ± 26.05 | 28.92 ± 20.63 | 0.0004 | 34.06 ± 23.58 | 26.78 ± 20.81 | 0.004 | 40.67 ± 28.95 | 33.02 ± 19.73 | 0.083 |
Sweetened beverages (g/1000 kcal) | 72.17 ± 93.88 | 57.08 ± 67.86 | 0.581 | 72.61 ± 95.08 | 56.37 ± 61.47 | 0.626 | 71.53 ± 92.66 | 58.44 ± 78.92 | 0.767 |
Total DASH score | 23.13 ± 5.44 | 24.62 ± 5.07 | 0.002 | 22.94 ± 5.45 | 24.69 ± 5.04 | 0.005 | 23.42 ± 5.45 | 24.49 ± 5.13 | 0.177 |
Variables | Coefficient | SE | p-Value | OR | 95% CI | |
---|---|---|---|---|---|---|
Model I | TGs medication | 0.807 | 0.228 | <0.0001 | 2.24 | 1.43–3.51 |
BMI | 0.238 | 0.025 | <0.0001 | 1.27 | 1.21–1.33 | |
DASH score | −0.053 | 0.020 | 0.009 | 0.95 | 0.91–0.99 |
Variables | Coefficient | SE | p-Value | OR | 95% CI | ||
---|---|---|---|---|---|---|---|
Model II | Low HDL-c | Gender (Ref. Women) | 0.299 | 0.204 | 0.142 | 1.35 | 0.90–2.01 |
BMI | 0.166 | 0.020 | <0.0001 | 1.18 | 1.14–1.23 | ||
DASH score | −0.034 | 0.019 | 0.073 | 0.97 | 0.93–1.00 | ||
Model III | High TGs | Gender (Ref. Women) | 0.470 | 0.191 | 0.014 | 1.60 | 1.10–2.32 |
Model IV | High blood glucose | Gender (Ref. Women) | 0.382 | 0.203 | 0.060 | 1.47 | 0.98–2.18 |
TGs medication | 0.327 | 0.217 | 0.132 | 1.39 | 0.91–2.13 | ||
BMI | 0.139 | 0.019 | <0.001 | 1.15 | 1.11–1.19 | ||
Model V | Visceral obesity | TGs medication | 0.528 | 0.349 | 0.131 | 1.70 | 0.86–3.36 |
BMI | 0.867 | 0.080 | <0.0001 | 2.38 | 2.03–2.79 | ||
DASH score | −0.071 | 0.030 | 0.017 | 0.93 | 0.88–0.99 | ||
Model VI | Hypertension | Gender (Ref. Women) | 0.593 | 0.244 | 0.015 | 1.81 | 1.12–2.92 |
TGs medication | 1.504 | 0.343 | <0.0001 | 4.50 | 2.30–8.82 | ||
BMI | 0.160 | 0.027 | <0.0001 | 1.18 | 1.11–1.24 |
HDL-c (mg/dL) | TGs (mg/dL) | FG (mg/dL) | WC (cm) | SBP (mm Hg) | DBP (mm Hg) | ||
---|---|---|---|---|---|---|---|
Total (n = 535) ** | Total fruits (g/1000 kcal) | 0.117 * | −0.062 * | −0.079 * | −0.117 * | −0.025 | −0.059 * |
Vegetables (except potatoes and legumes) (g/1000 kcal) | 0.018 | 0.034 | −0.017 | 0.036 | 0.002 | −0.003 | |
Nuts and legumes (g/1000 kcal) | 0.126 * | −0.117 * | −0.040 | −0.110 * | 0.004 | −0.015 | |
Whole grains (g/1000 kcal) | 0.063 * | −0.027 | −0.007 | −0.051 | −0.012 | −0.053 | |
Low-fat dairy (g/1000 kcal) | −0.031 | 0.045 | 0.028 | 0.034 | 0.003 | −0.035 | |
Sodium (mg/1000 kcal) | −0.064 * | 0.078 * | 0.030 | 0.102 * | −0.040 | −0.034 | |
Red and processed meat (g/1000 kcal) | −0.106 * | 0.075 * | 0.072 * | 0.168 * | −0.018 | 0.027 | |
Sweetened beverages (g/1000 kcal) | −0.028 | 0.021 | 0.011 | −0.002 | −0.027 | 0.029 | |
DASH total score | 0.088 * | −0.081 * | −0.028 | −0.081 * | 0.035 | −0.017 | |
Women (n = 337) | Total fruits (g/1000 kcal) | 0.095 * | −0.087 * | −0.049 | −0.083 * | 0.004 | −0.036 |
Vegetables (except potatoes and legumes) (g/1000 kcal) | −0.022 | 0.034 | −0.034 | 0.095 * | 0.007 | 0.044 | |
Nuts and legumes (g/1000 kcal) | 0.125 * | −0.134 * | −0.010 | −0.126 * | −0.015 | −0.020 | |
Whole grains (g/1000 kcal) | 0.074 * | −0.034 | −0.008 | 0.002 | 0.032 | −0.011 | |
Low-fat dairy (g/1000 kcal) | −0.019 | 0.009 | 0.018 | 0.032 | 0.019 | −0.030 | |
Sodium (mg/1000 kcal) | −0.090 * | 0.104 * | 0.013 | 0.143 * | −0.022 | 0.004 | |
Red and processed meat (g/1000 kcal) | −0.091 * | 0.053 | 0.025 | 0.140 * | −0.083 * | 0.006 | |
Sweetened beverages (g/1000 kcal) | −0.016 | 0.002 | −0.010 | −0.009 | −0.027 | 0.034 | |
DASH total score | 0.112 * | −0.111 * | −0.009 | −0.093 * | 0.035 | −0.029 | |
Men (n = 198) | Total fruits (g/1000 kcal) | 0.017 | −0.006 | −0.041 | −0.028 | 0.010 | 0.008 |
Vegetables (except potatoes and legumes) (g/1000 kcal) | −0.011 | 0.061 | 0.072 | 0.053 | 0.052 | −0.014 | |
Nuts and legumes (g/1000 kcal) | 0.148 * | −0.094 | −0.093 | −0.120 * | 0.040 | 0.000 | |
Whole grains (g/1000 kcal) | 0.022 | −0.012 | 0.004 | −0.117 * | −0.062 | −0.108 * | |
Low-fat dairy (g/1000 kcal) | −0.074 | 0.121 * | 0.076 | 0.090 | −0.006 | −0.024 | |
Sodium (mg/1000 kcal) | −0.045 | 0.040 | 0.053 | 0.040 | −0.065 | −0.093 | |
Red and processed meat (g/1000 kcal) | −0.046 | 0.093 | 0.099 * | 0.125 * | 0.042 | −0.008 | |
Sweetened beverages (g/1000 kcal) | −0.060 | 0.055 | 0.055 | 0.010 | −0.041 | 0.011 | |
DASH total score | 0.080 | −0.041 | −0.063 | −0.076 | 0.037 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konikowska, K.; Bombała, W.; Szuba, A.; Różańska, D.; Regulska-Ilow, B. A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity. Biomedicines 2023, 11, 317. https://doi.org/10.3390/biomedicines11020317
Konikowska K, Bombała W, Szuba A, Różańska D, Regulska-Ilow B. A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity. Biomedicines. 2023; 11(2):317. https://doi.org/10.3390/biomedicines11020317
Chicago/Turabian StyleKonikowska, Klaudia, Wojciech Bombała, Andrzej Szuba, Dorota Różańska, and Bożena Regulska-Ilow. 2023. "A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity" Biomedicines 11, no. 2: 317. https://doi.org/10.3390/biomedicines11020317
APA StyleKonikowska, K., Bombała, W., Szuba, A., Różańska, D., & Regulska-Ilow, B. (2023). A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity. Biomedicines, 11(2), 317. https://doi.org/10.3390/biomedicines11020317