Role of Melatonin in the Onset of Metabolic Syndrome in Women
Abstract
:1. Introduction
2. Role of Melatonin in Carbohydrate Metabolism
3. Role of Melatonin in Lipid Metabolism
4. Effect of Melatonin on Blood Pressure
5. Relationship between Melatonin, Leptin, and Ghrelin
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Boyko, E.J.; Collier, G.R.; de Courten, M. Etiology of Metabolic Syndrome: Potential role of Insulin Resistance, Leptin Resistance and other players. Ann. N. Y. Acad. Sci. 1999, 892, 25–44. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; IDF: Brussels, Belgium, 2006. [Google Scholar]
- Chrousos, G.P. The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: Neuro-endocrine and target tissue-related causes. IJO 2000, 24, 50–55. [Google Scholar] [CrossRef]
- Bentley-Lewis, R.; Koruda, K.; Seely, W.E. The metabolic syndrome in women. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 696–704. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kurytowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines. Arch. Med. Sci. 2022, 18, 1133–1156. [Google Scholar] [CrossRef]
- Schneider, J.G.; Tompkins, C.; Blumental, R.S.; Mora, S. The metabolic syndrome in women. Cardiol. Rev. 2006, 14, 286–291. [Google Scholar] [CrossRef]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the Metabolic Syndrome among US Adults. Findings from the Third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Giles, W.H.; Mokdad, A.H. Increasing prevalence of the metabolic syndrome among U.S. Adults. Diabetes Care 2004, 27, 2444–2449. [Google Scholar] [CrossRef]
- Ogberal, A.O. Prevalence and gender distribution of the metabolic syndrome. Diabetol. Metab. Syndr. 2010, 2, 1. [Google Scholar] [CrossRef]
- Beigh, S.H.; Jain, S. Prevalence of metabolic syndrome and gender differences. Bioinformation 2012, 8, 613–616. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jiang, B.; Wang, J.; Feng, K.; Chang, Q.; Zhu, S.; Fan, L.; Li, X.; Hu, B.F. BMI Versus the Metabolic Syndrome in Relation to Cardiovascular Risk in Elderly Chinese Individuals. Diabetes Care 2007, 30, 8. [Google Scholar] [CrossRef]
- Njelekela, A.M.; Mpembeni, R.; Muhihi, A.; Mligiliche, N.L.; Spiegelman, D.; Hrtzmark, E.; Liu, E.; Finkelstein, J.L.; Fawzi, W.W.; Willett, W.C.; et al. Gender related differences in the prevalence of cardiovascular disease risk factors and their correlates in urban Tanzania. BMC Cardiovasc. Disord. 2009, 9, 30. [Google Scholar] [CrossRef]
- Strack, C.; Behrens, G.; Sag, S.; Mohr, M.; Zeller, J.; Lahmann, C.; Hubauer, U.; Loew, T.; Maier, L.; Fischer, M.; et al. Gender differences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biol. Sex Differ. 2022, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ko, Y.; Kwak, C.; Yim, E.S. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome. BMC Geriatr. 2016, 16, 27. [Google Scholar] [CrossRef]
- Harderland, R.; Pandi-Perumal, S.R.; Cardinali, D.P. Melatonin. Int. J. Biochem. Cell. Biol. 2006, 38, 313–316. [Google Scholar] [CrossRef]
- Pevet, P. Système mélatoninergique. L’Encéphale 2006, 32, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Nordio, M. Melatonin and Female fertility: Recent Advancements and its use as a therapeutic agent. Endocrinologia 2022, XXVII, 2/2022. [Google Scholar]
- Barrenetxe, J.; Delagrnge, P.; Martinez, J.A. Physiological and metabolic function of melatonin. J. Physiol. Biochem. 2004, 60, 61–72. [Google Scholar] [CrossRef]
- Imenshahidi, M.; Karimi, G.; Hosseinzadeh, H. Effect of melatonin on cardiovascular risk factors and metabolic syndrome: A comprehensive review. Arch. Pharmacol. 2020, 393, 521–536. [Google Scholar] [CrossRef]
- Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A review of melatonin, its receptors and drugs. Eurasian J. Med. 2016, 48, 135–141. [Google Scholar] [CrossRef]
- Forrestel, A.C.; Miedlich, S.U.; Yurcheshen, M.; Wittin, D.S.; Sellix, T.M. Chronomedecine and type 2 diabetes: Shining some light on melatonin. Diabetologia 2017, 66, 808–822. [Google Scholar] [CrossRef]
- Borjigin, J.; Zhang, L.S.; Calinescu, A.A. Circadian regulation of pineal gland rhythmicity. Mol. Cell. Endocrinol. 2012, 349, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Sumritsopak, R.; Saetung, S.; Chanprasertyothin, S.; Chailurkit, L.; Anothaisintawee, T. Lower nocturnal urinary 6-sulfatoxymelatonin is associated with more severe insulin resistance in patients with prediabetes. Neurobiol. Sleep. Circadian Rhythm. 2018, 4, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C.; Aeschbach, D.; Scheer, F.A.J.L. Circadian System, Sleep and Endocrinology. Mol. Cell. Endocrinol. 2012, 349, 91–104. [Google Scholar] [CrossRef]
- Pobozy, E.; Michalski, A.; Sotowska-Brochocka, J.; Trojanowicz, M. Determination of melatonin and its precursors and metabolites using capillary electrophoresis with UV and fluorometric detection. J. Sep. Sci. 2005, 28, 2165–2172. [Google Scholar] [CrossRef]
- Ribeiro, D.S.; Thygunan, E.; Pessoa, J. Major clinical outcomes of melatonin regulation in obesity: A systematic review. J. Med. Health Sci. 2023, 4, 1–8. [Google Scholar] [CrossRef]
- Peshke, E.; Muhlbauer, E.; Bahr, I. Experimental and clinical aspects of melatonin and clock genes in diabetes. J. Pineal Res. 2015, 59, 1–23. [Google Scholar] [CrossRef]
- Nduhirabandi, F.; Huisamen, B.; Strijdom, H.; Blackhurst, D.; Lochner, A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J. Pineal Res. 2014, 57, 317–332. [Google Scholar] [CrossRef]
- Nduhirabandi, F.; Huisamen, B.; Strijdom, H.; Lochner, A. Role of melatonin in glucose upake by cardiomyocytes from insulin-resistant Wistar rats. Cardiovasc. J. Afr. 2017, 28, 362–369. [Google Scholar] [CrossRef]
- Garaulet, M.; Qian, J.; Florez, J.C.; Arendt, J.; Saxena, R.; Scheer, F.A.J.L. Melatonin effects on glucose metabolism: Time to unlock the controversy. Trends Endocrinol. Metab. 2020, 31, 192–204. [Google Scholar] [CrossRef] [PubMed]
- McMullan, J.G.; Schernhammer, E.S.; Rimm, E.B.; Hu, B.F.; Forman, P.J. Melatonin secretion and the incidence of Type 2 Diabetes. JAMA 2013, 309, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- McMullan, J.G.; Curhan, G.C.; Schernhammer, E.S.; Forman, P.J. Association of Nocturnal Melatonin Secretion with Insulin Resistance in Nondiabetic Young Women. Am. J. Epidemiol. 2013, 178, 231–238. [Google Scholar] [CrossRef]
- Rubio-Sastre, P.; Scheer, F.A.J.L.; Gómez-Abellán, P.; Madrid, J.A.; Garaulet, M. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep 2014, 37, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Terry, D.P.; Goyal, A.; Phillips, L.; Superak, H.; Kutner, M. Design and rationale of a randomized controlled trial of melatonin supplementation in men and women with the metabolic syndrome. Open Access J. Clin. Trials 2013, 5, 51–59. [Google Scholar] [CrossRef]
- Goyal, A.; Terry, D.P.; Superak, H.M.; Nell-Dybdahl, C.L.; Chowdhury, R.; Phillips, L.S.; Kutner, M.H. Melatoninsupplementation to treat the metabolic syndrome: A randomized controlled trial. Diabetes Metab. Syndr. 2014, 6, 124. [Google Scholar] [CrossRef]
- Garaulet, M.; Gómez-Abellán, P.; Rubio-Sastre, P.; Madrid, J.A.; Saxena, R.; Scheer, F.A.J.L. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 2015, 64, 1650–1657. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, Y.; Gao, P.; Zhang, J.; Zhou, X.; Zhu, S.; Chen, Y.; Zhang, H.; DU, Y.; Fang, C.; et al. Role of melatonin receptor 1B gene polymorphism and its effect on the regulation of glucose transport in gestational diabetes mellitus. JZUS-B 2023, 24, 78–88. [Google Scholar] [CrossRef]
- Verteramo, R.; Pierdomenico, M.; Greco, P.; Milano, C. The Role of Melatonin in Pregnancy and the Health Benefits for the Newborn. Biomedicines 2022, 10, 3252. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.M.; Marani, F.; Chiba, F.Y.; Mattera, M.S.L.C.; Tsosura, T.V.S.; Tessarin, G.W.L.; Pereira, R.F.; Belardi, B.E.; Pinheiro, B.C.E.S.; Sumida, D.H. Melatonin promotes reduction in TNF levels and improves the lipid profile and insulin sensitivity in pinealectomized rats with periodontal disease. Life Sci. 2018, 213, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Santos-Ledo, A.; de Luxán-Delgado, B.; Caballero, W.; Caballero, B.; Potes, Y.; Rodríguez-González, S.; Boga, J.A.; Coto-Montes, A.; García-Macia, M. Melatonin ameliorates autophagy impairment in a metabolic syndrome model. Antioxidants 2021, 10, 796–807. [Google Scholar] [CrossRef]
- Al-Mhbashy, H.M.H.; Hussain, S.A.; Numan, N.A.M.; Saed, M.A. The effect of melatonin on the oxidative stress, protein glycation, microalbuminuria and lipid profile in type II diabetes mellitus. Iraqi J. Pharm. Sci. 2006, 15, 27–32. [Google Scholar] [CrossRef]
- Abood, J.S.; Abdulsahib, W.K.; Hussain, A.S.; Ismail, S.H. Melatonin potentiates the Therapeutic Effects of Metformin in Women with Metabolic Syndrome. Sci. Pharm. 2020, 88, 28. [Google Scholar] [CrossRef]
- Pechanova, O.; Paulis, L.; Simko, F. Peripheral and Central Effects of Melatonin on Blood Pressure Regulation. Int. J. Mol. Sci. 2014, 15, 17920–17937. [Google Scholar] [CrossRef]
- Forman, J.P.; Curhan, G.C.; Schernhammer, E.S. Urinary melatonin and risk of incident hypertension among young women. J. Hypertens. 2010, 28, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Seki, H.; Samejima, M.; Hayase, M.; Shirai, F. Salivary melatonin levels and sleep-wake rhythms in pregnant women with hypertensive and glucose metabolic disorders: A prospective analysis. Biosci. Trends 2016, 10, 34–41. [Google Scholar] [CrossRef]
- Cai, Z.; Klein, T.; Geenen, L.W.; Tu, L.; Tian, S.; van den Bosch, A.E.; de Rijke, Y.B.; Reiss, I.K.M.; Boersma, E.; Duncker, D.J.; et al. Lower plazma melatonin levels predict worse long term survival in pulmonary arterial hypertension. J. Clin. Med. 2020, 9, 1248–1255. [Google Scholar] [CrossRef]
- Cagnacci, A.; Cannonoletta, M.; Renzi, A.; Baldassari, F.; Arangino, S.; Volpe, A. Prolonged melatonin administration decreases nocturnal blood pressure in women. Am. J. Hypertens. 2005, 18, 1614–1618. [Google Scholar] [CrossRef]
- Możdżan, M.; Możdżan, M.; Chatubiński, M.; Wojdan, K.; Broncel, M. The effect of melatonin on circadian blood pressure in patient with type 2 diabetes and essential hypertension. Arch. Med. Sci. 2014, 10, 669–675. [Google Scholar] [CrossRef]
- De Vecchis, R.; Paccone, A.; Di Maio, M. Property of melatonin of acting as an antihypertensive agent to antagonize nocturnal high blood pressure: A meta-analysis. Int. J. Stat. Med. Res. 2019, 8, 67–71. [Google Scholar] [CrossRef]
- Simko, F.; Reiter, R.J.; Paulis, L. Melatonin as a rational alternative in the conservative treatment of resistant hypertension. Hypertens. Res. 2019, 42, 1828–1831. [Google Scholar] [CrossRef]
- Jabbari, M.; Kheirouri, S.; Alizadeh, M. Decreased serum levels of ghrelin and brain derived neurotrophic factor in premenopausal women with metabolic syndrome. Lab. Med. 2018, 49, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Ghadge, A.A.; Khaire, A.A. Leptin as a predictive marker for metabolic syndrome. Cytokine 2019, 121, 154735. [Google Scholar] [CrossRef]
- Zamboni, M.; Zoico, E.; Fantin, F.; Panourgia, M.P.; Francesco, D.V.; Tosoni, P.; Solerte, B.; Vettor, R.; Bosello, O. Relation between leptin and the metabolic syndrome in elderly women. J. Gerontol. Med. Sci. 2004, 59, 396–400. [Google Scholar] [CrossRef]
- van Zyl, S.; van der Merwe, L.J.; van Rooyen, F.C.; Joubert, G.; Walsh, C.M. The relationship between obesity, leptin, adiponectin and the components of metabolic syndrome in urban African women, Free state, South Africa. SAJCN 2017, 30, 68–73. [Google Scholar] [CrossRef]
- Söylemez, S.; Sivri, A.B.Ҫ.; Șimșek, E.; Polat, B.; Ҫakir, B. Melatonin, leptin, and ghrelin levels in nurses working night shifts. J. Surg. Med. 2019, 3, 22–26. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef]
- Alamdari, M.N.; Mahdavi, R.; Roshanravan, N.; Yaghi, N.L.; Ostadrahimi, A.R.; Faramarzi, E. A double blind placebo controlled trial related to the effect of melatonin on oxidative stress and inflammatory parameters of obese women. Horm. Metab. Res. 2015, 47, 504–508. [Google Scholar] [CrossRef]
- Galvao-Moreira, L.V.; Nascimento, A.C.B.; D’Albuquerque, I.M.S.C.; Sousa, M.A.S.; Brito, H.O.; Nascimento, S.B.; da Costa Chein, M.B.; Brito, L.M.O. Hormonal metabolic and inflammatory circulating biomarker profiles in obese and non-obese Brazilian middle aged women. PLoS ONE 2019, 14, e222239. [Google Scholar] [CrossRef]
- Zannetti, M.; Cappellari, G.G.; Semolic, A.; Burekovic, I.; Fonda, M.; Cattin, L.; Barazzoni, R. Gender-Specific Association of Desacylated Ghrelin with Subclinical atherosclerosis in the Metabolic syndrome. Arch. Med. Res. 2017, 48, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, M.; Cappellari, G.G.; Graziani, A.; Barazzoni, R. Unacylated ghrelin improves vascular dysfunction and attenuates atherosclerosis during high-fat diet consumption in rodents. Int. J. Mol. Sci. 2019, 20, 499. [Google Scholar] [CrossRef] [PubMed]
Authors/Refs | Study Design | All Participants/%Mets Males/%MetS Females/%MetS | Ages | Country/Region | Diagnostic Criteria | MetS Characteristics Males | MetS Characteristics Females |
---|---|---|---|---|---|---|---|
Ford, E.S. et al. [8] | Cross-sectional health survey | 8814/23.7 4265/24 4549/23.4 | ≥20 | US | NCEP ATPIII | ↑Abd Ob 29.8% ↑TG 35.1% ↑BP 38.2% ↑FG 15.6% | ↑Abd Ob 46.3% ↑TG 24.7% ↑BP 29.3% ↑FG 10.0% |
Ford, E.S. et al. [9] | Cross-sectional health survey | 1677/27 841 836 | ≥20 | US | NCEP ATPIII | ↑Abd Ob 36% ↑BP 40.9% ↑TG 35.6% ↑FG 37.7% ↓HDL C 36.6% | ↑Abd Ob 51.9 ↑BP 37.3% ↑TG 29.9% ↑FG 23.8% ↓HDL-C 43.4% |
Lee, S. et al. [15] | Nationwide cross-sectional survey | 103,763/100 43,129/100 60,634/100 | 66 | Korean | AHA/NHLBI, WHO for obesity in Asian–Pacific region | ↑FG 87.5% ↑TG 83.5% ↑BP 83.1% | ↑FG 78.6% ↑TG 79.0% ↑BP 78.5% |
Ogbera, A.O. [10] | Cross-sectional survey | 963/86 703/83 260/86 | 35–85 | Nigeria | IDF TF | ↓HDL-C ↑TG | ↑BMI ↑HBA1c ↑LDL-C ↑TChol |
Beigh, S.H. et al. [11] | Comparative study | 500/25.6 294/23 206/29 | ≥30 | India | NCEP ATP III Asian modified | ↑WC42% ↑FG 25% ↓HDL-34% | ↑WC 63% ↑FG 42% ↓HDL-C25% |
He, Y. et al. [12] | Population-based cross-sectional study | 2334/46.3 943/34.8 1391/54.1 | ≥60 | China | IDF2005 | ↓HDL C 25.5% ↑TG 31.5% ↑BP 88% | ↓HDL-C 41.9% ↑TG 43.7% ↑BP 82.6% |
Njelekela, A.M. et al. [13] | Cross-sectional epidemiological study | 209/38 115/23 94/53 | 44–66 | Africa | NCEP ATPIII | ↑BMI 13% ↑WC 11% ↑WHR 51% ↑BP | ↑BMI 35% ↑WC 58% ↑WHR 73% ↓HDL-C ↑FG |
Strack, C. et al. [14] | Cross-sectional study | 432 173/67.6 259/45 | 18–69 | Germany | NCEP ATP III | ↑WC ↑FG ↑TG | ↑HDL-C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peneva, V.M.; Terzieva, D.D.; Mitkov, M.D. Role of Melatonin in the Onset of Metabolic Syndrome in Women. Biomedicines 2023, 11, 1580. https://doi.org/10.3390/biomedicines11061580
Peneva VM, Terzieva DD, Mitkov MD. Role of Melatonin in the Onset of Metabolic Syndrome in Women. Biomedicines. 2023; 11(6):1580. https://doi.org/10.3390/biomedicines11061580
Chicago/Turabian StylePeneva, Vania Miloucheva, Dora Dimitrova Terzieva, and Mitko Dimitrov Mitkov. 2023. "Role of Melatonin in the Onset of Metabolic Syndrome in Women" Biomedicines 11, no. 6: 1580. https://doi.org/10.3390/biomedicines11061580
APA StylePeneva, V. M., Terzieva, D. D., & Mitkov, M. D. (2023). Role of Melatonin in the Onset of Metabolic Syndrome in Women. Biomedicines, 11(6), 1580. https://doi.org/10.3390/biomedicines11061580