Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures of the Study and Clinical and Laboratory Examinations
2.2.1. Assessment of AS
2.2.2. Echocardiographic Examination
2.2.3. Laboratory Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef]
- del Rio, C.; Collins, L.F.; Malani, P. Long-term Health Consequences of COVID-19. JAMA 2020, 324, 1723. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F.; for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Kar, M. Vascular Dysfunction and Its Cardiovascular Consequences During and After COVID-19 Infection: A Narrative Review. Vasc. Health Risk Manag. 2022, 18, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Inciardi, R.M.; Solomon, S.D.; Ridker, P.M.; Metra, M. Coronavirus 2019 Disease (COVID-19), Systemic Inflammation, and Cardiovascular Disease. J. Am. Heart Assoc. 2020, 9, e017756. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M.; Spronck, B.; Hametner, B.; Hughes, A.; Lacolley, P.; Mayer, C.C.; Muiesan, M.L.; Rajkumar, C.; Terentes-Printzios, D.; Weber, T.; et al. Covid-19 Effects on ARTErial StIffness and Vascular AgeiNg: CARTESIAN Study Rationale and Protocol. Artery Res. 2020, 27, 59. [Google Scholar] [CrossRef] [PubMed]
- Zota, I.M.; Stătescu, C.; Sascău, R.A.; Roca, M.; Anghel, L.; Maștaleru, A.; Leon-Constantin, M.M.; Ghiciuc, C.M.; Cozma, S.R.; Dima-Cozma, L.C.; et al. Acute and Long-Term Consequences of COVID-19 on Arterial Stiffness—A Narrative Review. Life 2022, 12, 781. [Google Scholar] [CrossRef]
- Steenblock, C.; Schwarz, P.E.H.; Ludwig, B.; Linkermann, A.; Zimmet, P.; Kulebyakin, K.; Tkachuk, V.A.; Markov, A.G.; Lehnert, H.; de Angelis, M.H.; et al. COVID-19 and metabolic disease: Mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021, 9, 786–798. [Google Scholar] [CrossRef]
- Tessier, C.M.; Kokkinos, A.; Mingrone, G.; Koliaki, C.; Zierath, J.R.; Mantzoros, C.S. COVID-19 editorial: Mechanistic links and therapeutic challenges for metabolic diseases one year into the COVID-19 pandemic. Metabolism 2021, 119, 154769. [Google Scholar] [CrossRef]
- Batabyal, R.; Freishtat, N.; Hill, E.; Rehman, M.; Freishtat, R.; Koutroulis, I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int. J. Obes. 2021, 45, 1163–1169. [Google Scholar] [CrossRef]
- Tudoran, C.; Tudoran, M.; Cut, T.G.; Lazureanu, V.E.; Bende, F.; Fofiu, R.; Enache, A.; Pescariu, S.A.; Novacescu, D. The Impact of Metabolic Syndrome and Obesity on the Evolution of Diastolic Dysfunction in Apparently Healthy Patients Suffering from Post-COVID-19 Syndrome. Biomedicines 2022, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran. J. Med. Sci. 2021, 46, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Lewek, J.; Jatczak-Pawlik, I.; Maciejewski, M.; Jankowski, P.; Banach, M. COVID-19 and cardiovascular complications—The preliminary results of the LATE-COVID study. Arch. Med Sci. 2021, 17, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.C. Anticipating the long-term cardiovascular effects of COVID-19. J. Thromb. Thrombolysis 2020, 50, 512–524. [Google Scholar] [CrossRef]
- Tudoran, M.; Tudoran, C.; Lazureanu, V.; Marinescu, A.; Pop, G.; Pescariu, A.; Enache, A.; Cut, T. Alterations of Left Ventricular Function Persisting during Post-Acute COVID-19 in Subjects without Previously Diagnosed Cardiovascular Pathology. J. Pers. Med. 2021, 11, 225. [Google Scholar] [CrossRef]
- Szekely, Y.; Lichter, Y.; Taieb, P.; Banai, A.; Hochstadt, A.; Merdler, I.; Oz, A.G.; Rothschild, E.; Baruch, G.; Peri, Y.; et al. Spectrum of Cardiac Manifestations in COVID-19: A Systematic Echocardiographic Study. Circulation 2020, 142, 342–353. [Google Scholar] [CrossRef]
- Theofilis, P.; Lampsas, S.; Oikonomou, E.; Siasos, G.; Vavuranakis, M.A.; Marinos, G.; Tsioufis, K.; Vavuranakis, M.; Tousoulis, D. Endothelial dysfunction in convalescent COVID-19 patients: Systematic review and meta-analysis. Arch. Cardiovasc. Dis. 2022, 115, 675–677. [Google Scholar] [CrossRef]
- Dimosiari, A.; Patoulias, D. Effect of COVID-19 on endothelial function evaluated with flow-mediated dilation: Another prognostic marker? A meta-analysis of observational studies. Arch. Med Sci. Atheroscler. Dis. 2022, 7, 63–65. [Google Scholar] [CrossRef]
- Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E.; et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Szeghy, R.E.; Province, V.M.; Stute, N.L.; Augenreich, M.A.; Koontz, L.K.; Stickford, J.L.; Stickford, A.S.L.; Ratchford, S.M. Carotid stiffness, intima–media thickness and aortic augmentation index among adults with SARS-CoV-2. Exp. Physiol. 2022, 107, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.; Georgiopoulos, G.; Baker, K.F.; Tiseo, G.; Delialis, D.; Lazaridis, C.; Barbieri, G.; Masi, S.; Vlachogiannis, N.I.; Sopova, K.; et al. Estimated pulse wave velocity improves risk stratification for all-cause mortality in patients with COVID-19. Sci. Rep. 2021, 11, 20239. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R. Arterial Stiffness: Recommendations and Standardization. Pulse 2016, 4, 3–7. [Google Scholar] [CrossRef]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Chang, Y.; Jeon, J.; Song, T.-J.; Kim, J. Association of triglyceride-glucose index with prognosis of COVID-19: A population-based study. J. Infect. Public Health 2022, 15, 837–844. [Google Scholar] [CrossRef]
- Liu, X.-C.; He, G.-D.; Lo, K.; Huang, Y.-Q.; Feng, Y.-Q. The Triglyceride-Glucose Index, an Insulin Resistance Marker, Was Non-linear Associated with All-Cause and Cardiovascular Mortality in the General Population. Front. Cardiovasc. Med. 2021, 7, 628109. [Google Scholar] [CrossRef]
- Sánchez-García, A.; Rodríguez-Gutiérrez, R.; Mancillas-Adame, L.; Gonzalez-Nava, V.; González-Colmenero, A.D.; Solis, R.C.; Álvarez-Villalobos, N.A.; González-González, J.G. Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. Int. J. Endocrinol. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Rohani-Rasaf, M.; Mirjalili, K.; Vatannejad, A.; Teimouri, M. Are lipid ratios and triglyceride-glucose index associated with critical care outcomes in COVID-19 patients? PLoS ONE 2022, 17, e0272000. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, A.M.; Bojko, E.R. Age-adjusted cut-off values of lipid accumulation product (LAP) for predicting hypertension. Sci. Rep. 2021, 11, 11095. [Google Scholar] [CrossRef] [PubMed]
- Pranata, R.; Lim, M.A.; Huang, I.; Yonas, E.; Henrina, J.; Vania, R.; Lukito, A.A.; Nasution, S.A.; Alwi, I.; Siswanto, B.B. Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. Clin. Nutr. ESPEN 2021, 43, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Boon, G.J.; Barco, S.; Endres, M.; Geelhoed, J.M.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef]
- Patoulias, D.; Katsimardou, A.; Imprialos, K.; Stavropoulos, K.; Sviggou, A.; Aidinis, A.; Kordalis, V.; Pyrpasopoulou, A.; Papadopoulos, C.; Doumas, M. Coronavirus disease-2019 is associated with arterial stiffness impairment: A meta-analysis of observational studies. J. Hypertens. 2022, 40, e169. [Google Scholar] [CrossRef]
- Ambrosino, P.; Zamparelli, S.S.; Mosella, M.; Formisano, R.; Molino, A.; Spedicato, G.A.; Papa, A.; Motta, A.; Di Minno, M.N.D.; Maniscalco, M. Clinical assessment of endothelial function in convalescent COVID-19 patients: A meta-analysis with meta-regressions. Ann. Med. 2022, 54, 3234–3249. [Google Scholar] [CrossRef]
- Bende, F.; Tudoran, C.; Sporea, I.; Fofiu, R.; Bâldea, V.; Cotrău, R.; Popescu, A.; Sirli, R.; Ungureanu, B.; Tudoran, M. A Multidisciplinary Approach to Evaluate the Presence of Hepatic and Cardiac Abnormalities in Patients with Post-Acute COVID-19 Syndrome—A Pilot Study. J. Clin. Med. 2021, 10, 2507. [Google Scholar] [CrossRef]
- Schnaubelt, S.; Oppenauer, J.; Tihanyi, D.; Mueller, M.; Maldonado-Gonzalez, E.; Zejnilovic, S.; Haslacher, H.; Perkmann, T.; Strassl, R.; Anders, S.; et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J. Intern. Med. 2021, 290, 437–443. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Rubino, F.; Ludwig, B.; Rietzsch, H.; Schwarz, P.E.H.; Rodionov, R.N.; Khunti, K.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; et al. Consequences of the COVID-19 pandemic for patients with metabolic diseases. Nat. Metab. 2021, 3, 289–292. [Google Scholar] [CrossRef]
- Szeghy, R.E.; Stute, N.L.; Province, V.M.; Augenreich, M.A.; Stickford, J.L.; Stickford, A.S.L.; Ratchford, S.M. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J. Appl. Physiol. 2022, 132, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Gaudio, A.; Mikhailidis, D.P.; Katsiki, N.; Castellino, N.; Cicero, L.L.; Geraci, G.; Sessa, C.; Fiorito, L.; Marino, F.; et al. Vascular Dysfunction of COVID-19 Is Partially Reverted in the Long-Term. Circ. Res. 2022, 130, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Küçük, U.; Gazi, E.; Duygu, A.; Akşit, E. Evaluation of Aortic Elasticity Parameters in Survivors of COVID-19 Using Echocardiography Imaging. Med. Princ. Pract. 2022, 31, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Mancia, G. Arterial stiffness and COVID-19: A bidirectional cause-effect relationship. J. Clin. Hypertens. 2021, 23, 1099–1103. [Google Scholar] [CrossRef]
- Vaz, I. Vascular complications from SARS-CoV2: A unique finding or a common feature of viral infections? Am. J. Physiol. Circ. Physiol. 2021, 321, H253. [Google Scholar] [CrossRef]
- Tudoran, C.; Tudoran, M.; Cut, T.G.; Lazureanu, V.E.; Oancea, C.; Marinescu, A.R.; Pescariu, S.A.; Pop, G.N.; Bende, F. Evolution of Echocardiographic Abnormalities Identified in Previously Healthy Individuals Recovering from COVID-19. J. Pers. Med. 2022, 12, 46. [Google Scholar] [CrossRef]
- Martínez-Salazar, B.; Holwerda, M.; Stüdle, C.; Piragyte, I.; Mercader, N.; Engelhardt, B.; Rieben, R.; Döring, Y. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front. Cell Dev. Biol. 2022, 10, 824851. [Google Scholar] [CrossRef] [PubMed]
- Teuwen, L.-A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Results of Clinical, Laboratory, and Echocardiographic Parameters | Group A: 67 Women with MS and a History of COVID-19 | Group B: 54 Women without MS, But with a History of COVID-19 | Group C: 40 Healthy, Age-Matched Women Controls | p | ||
---|---|---|---|---|---|---|
A–B | B–C | C–A | ||||
Mean age (years) | 50.59 ± 4.53 | 47.76 ± 5.43 | 49.47 ± 5.14 | 0.0022 | 0.0126 | 0.2422 |
BMI (kg/m2) | 30.1 (24.9–31.2) | 24.8 (23.5–28.2) | 24.6 (22.6–28.3) | <0.0001 | 0.4002 | <0.0001 |
WC (cm) | 90 (89–95) | 79 (73–85) | 75 (70.2–84) | <0.0001 | 0.2530 | <0.0001 |
SBP (mmHg) | 130 (120–135) | 117.5 (100–120) | 120 (120–130) | <0.0001 | 0.0007 | 0.0001 |
DBP (mmHg) | 80 (70–80) | 70 (60–70) | 70 (70–75) | <0.0001 | 0.0114 | 0.0001 |
HR (b/min) | 75 (75–80) | 80 (75–85) | 70 (70–75) | 0.0042 | 0.0040 | 0.3063 |
Time elapsed since COVID-19 diagnosis | 56 (56–70) | 63 (56–70) | NA | 0.0485 | NA | NA |
Initial lung injury (CCT) | 15 (0–30) | 0 (0–8) | NA | 0.0002 | NA | NA |
Number of symptoms | 6 (3–6) | 3 (2.75–6) | NA | 0.0011 | NA | NA |
PCFS level | 2 (1–2) | 1 (1–2) | NA | <0.0001 | NA | NA |
Laboratory data | ||||||
Initial CRP (mg/dL) | 30.1 (25.6–32.5) | 26.6 (12.1–30.2) | 1.9 (1.2–2.6) | 0.0051 | <0.0001 | <0.0001 |
BBG (mg/dL) | 102 (100–113) | 90 (88–94.2) | 90 (87.25–96) | <0.0001 | 0.7860 | <0.0001 |
LDL chol. (mg/dL) | 130 (120–150) | 100 (90–112.5) | 100 (99.25–105.7) | <0.0001 | 0.2497 | <0.0001 |
HDL chol. (mg/dL) | 30 (30–40) | 45 (40–51.25) | 55 (50–60) | <0.0001 | <0.0001 | <0.0001 |
Triglycerides (mg/dL) | 170 (160–180) | 140 (130–145) | 130 (120–140) | <0.0001 | 0.0122 | <0.0001 |
Uric acid (mg/dL) | 7.3 (7.1–7.8) | 6.5 (6–6.8) | 6.2 (5.9–6.4) | <0.0001 | 0.0035 | <0.0001 |
eGRF (mL/min) | 100 (100–110) | 119 (110–121) | 120 (115–125) | <0.0001 | 0.1276 | <0.0001 |
TyG index | 4.87 (4.8–4.9) | 4.72 (4.67–4.75) | 4.2 (4–4.3) | <0.0001 | <0.0001 | <0.0001 |
LAP | 61.4 (55.7–75) | 32.68 (22–43) | 27.2 (19–39.2) | <0.0001 | 0.0363 | <0.0001 |
VAI | 4.35 (3.6–4.8) | 2.38 (1.88–2.78) | 0.6 (0.54–0.66) | <0.0001 | <0.0001 | <0.0001 |
Results of PWV and TTE Parameters | Group A: 67 Women with MS and a History of COVID-19 | Group B: 54 Women with a History of COVID-19, without MS | Group C: 40 Healthy, Age-Matched Women Controls | p | ||
---|---|---|---|---|---|---|
A–B | B–C | C–A | ||||
PWV (m/s) | 10 (9–12) | 10 (9–11) | 7 (6–8) | 0.0148 | <0.0001 | <0.0001 |
Results of the transthoracic echocardiography | ||||||
DAD (mm) | 29.5 (28.8–30.3) | 28.1(27.7–29.1) | 28.4 (28–29) | <0.0001 | 0.5826 | <0.0001 |
SAD (mm) | 31 (30.7–32) | 30 (30–31) | 31.15 (30.8–31.9) | <0.0001 | 0.0001 | 0.9031 |
AoS (%) | 5.6 (4.58–6.53) | 7.14 (6.38–8) | 10 (9–10.7) | <0.0001 | <0.0001 | <0.0001 |
AoSI β | 9 (7.5–11.4) | 7.27 (6.13–8.48) | 5 (4.7–5.7) | <0.0001 | <0.0001 | <0.0001 |
AoD (10−3 mm Hg−1) | 2.1 (1.83–2.52) | 3.12 (2.6–3.7) | 3.86 (3.5–4.28) | <0.0001 | 0.0001 | <0.0001 |
LVEF (%) | 55 (50–58) | 60 (55–66.25) | 65.5 (65–70) | <0.0001 | <0.0001 | <0.0001 |
LVMI (g/m2) | 94.6 (88.6–98.7)) | 89.83 (75.37–94) | 80.3 (70.14–88.3) | 0.0002 | 0.0002 | <0.0001 |
LAVI (mL/m2) | 23.43 (19–33) | 16.1 (14–21.38) | 13.15 (12.7–13.7) | <0.0001 | <0.0001 | <0.0001 |
TRV (m/s) | 2.68 (2.57–2.73) | 2.54 (2–2.7) | 1.3 (1–1.67) | 0.0011 | <0.0001 | <0.0001 |
E/A ratio | 0.98 (0.76–1.3) | 1.11 (0.88–1.33) | 1.27 (1.21–1.38) | 0.2922 | <0.0001 | <0.0001 |
E/e’ ratio | 14 (11.5–14.24) | 11.66 (9.4–12.8) | 8.98 (8.56–9.46) | <0.0001 | <0.0001 | <0.0001 |
Parameter | PWV | AoS | AoSI | AoD | E/e’ | TRV |
---|---|---|---|---|---|---|
Days since diagnosis | r = −0.66, p < 0.0001 95%CI [−0.753–(−0.551)] | r = 0.57, p < 0.0001 95%CI [0.444–0.685] | R = −0.58, p < 0.0001 95%CI [−0.690–(−0.452)] | R = 0.46, p < 0.0001 95%CI [0.314–0.595] | R = −0.5, p < 0.0001 95%CI [−0.621–(−0.350)] | R = −0.59, p < 0.0001 95%CI [−0.695–(−0.460)] |
Lung injury | r = 0.63, p < 0.0001 95%CI [0.517–0.732] | r = −0.62, p < 0.0001 95%CI [−0.722–(−0.501)] | R = 0.6, p < 0.0001 95%CI [0.456–0.693] | R = −0.54, p < 0.0001 95%CI [−0.659–(−0.405)] | R = 0.6, p < 0.0001 95%CI [0.482–0.710] | R = 0.63, p < 0.0001 95%CI [0.513–0.730] |
No. of symptoms | r = 0.63, p < 0.0001 95%CI [0.517–0.732] | r = −0.68, p < 0.0001 95%CI [−0.770–(−0.579)] | R = 0.58, p < 0.0001, 95%CI [0.451–0.689] | R = −0.55, p < 0.0001 95%CI [−0.666–(−0.417)] | R = 0.58, p < 0.0001 95%CI [0.452–0.690] | R = 0.69, p < 0.0001 95%CI [0.595–0.780] |
PCFS | r = 0.56, p < 0.0001 95%CI [0.517–0.732] | r = −0.65, p < 0.0001 95%CI [−0.747–(−0.541)] | R = 0.56, p < 0.0001 95%CI [0.421–0.670] | R = −0.56, p < 0.0001 95%CI [−0.674–(−0.427)] | R = 0.62, p < 0.0001 95%CI [0.506–0.725] | R = 0.69, p < 0.0001 95%CI [0.589–0.766] |
Initial CRP | r = 0.56, p < 0.0001 95%CI [0.419–0.668] | r = −0.59, p < 0.0001 95%CI [−0.699–(-.467)] | R = 0.54, p < 0.0001 95%CI [0.431–0.676] | R = −0.57, p < 0.0001 95%CI [−0.674–(−0.428)] | R = 0.72, p < 0.0001 95%CI [0.621–0.796] | R = 0.78, p < 0.0001 95%CI [0.702–0.873] |
No. of MS factors | r = 0.41, p < 0.0001 95%CI [0.188–0.501] | r = −0.63, p < 0.0001 95%CI [−0.729–(−0.512)] | R = 0.52, p < 0.0001 95%CI [0.368–0.633] | R = −0.67, p < 0.0001 95%CI [−0.760–(−0.562)] | R = 0.5, p < 0.0001 95%CI [0.320–0.600] | R = 0.48, p < 0.0001 95%CI [0.335–0.610] |
TyG index | r = 0.4, p = 0.001 95%CI [0.146–0.469] | r = −0.61, p < 0.0001 95%CI [−0.716–(−0.493)] | R = 0.5, p < 0.0001 95%CI [0.361–0.631] | R = −0.64, p < 0.0001 95%CI [−0.735–(−0.5200)] | R = 0.45, p < 0.0001 95%CI [0.295–0.581] | R = 0.4, p < 0.0001 95%CI [0.364–0.630] |
VAI | r = 0.34, p = 0.0002 95%CI [0.158–0.478] | r = −0.53, p < 0.0001 95%CI [−0.653–(−0.396)] | R = 0.5, p < 0.0001 95%CI [0.356–0.625] | R = −0.60, p < 0.0001 95%CI [−0.708–(−0.480)] | R = 0.49, p < 0.0001 95%CI [0.348–0.619] | R = 0.44, p < 0.0001 95%CI [0.286–0.575] |
LAP | r = 0.33, p = 0.0002 95%CI [0.167–0.484] | r = −0.56, p < 0.0001 95%CI [−0.678–(−0.434)] | r−0.47, p < 0.0001 95%CI [0.329–0.606] | R = −0.63, p < 0.0001 95%CI [−0.732–(−0.517)] | R = 0.5, p < 0.0001 95%CI [0.320–0.599] | R = 0.51, p < 0.0001 95%CI [0.366–0.632] |
LVMI | r = 0.43, p < 0.0001 95%CI [0.282–0.572] | r = −0.54, p < 0.0001 95%CI [−0.663–(−0.411)] | R = 0.47, p < 0.0001 95%CI [0.324–0.602] | R = −0.54, p < 0.0001 95%CI [−0.661–(−0.408)] | R = 0.5, p < 0.0001 95%CI [0.354–0.623] | R = 0.45, p < 0.0001 95%CI [0.299–0.584] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudoran, C.; Bende, F.; Bende, R.; Giurgi-Oncu, C.; Dumache, R.; Tudoran, M. Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome. Biomedicines 2023, 11, 492. https://doi.org/10.3390/biomedicines11020492
Tudoran C, Bende F, Bende R, Giurgi-Oncu C, Dumache R, Tudoran M. Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome. Biomedicines. 2023; 11(2):492. https://doi.org/10.3390/biomedicines11020492
Chicago/Turabian StyleTudoran, Cristina, Felix Bende, Renata Bende, Catalina Giurgi-Oncu, Raluca Dumache, and Mariana Tudoran. 2023. "Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome" Biomedicines 11, no. 2: 492. https://doi.org/10.3390/biomedicines11020492
APA StyleTudoran, C., Bende, F., Bende, R., Giurgi-Oncu, C., Dumache, R., & Tudoran, M. (2023). Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome. Biomedicines, 11(2), 492. https://doi.org/10.3390/biomedicines11020492