Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence
Abstract
:1. Introduction
2. Topic Modeling Procedure
2.1. Overview
2.2. Search for Journal Articles
2.3. Inclusion and Exclusion Criteria
2.4. Text Pre-Processing
2.5. Topic Modeling
3. Topics in Deep Brain Stimulation Research Using Explainable Artificial Intelligence
3.1. Patient Classification
3.2. Precision Psychiatry
3.3. Methodological Concerns
3.4. Complex Systems
3.5. Automated Symptom Assessment
3.6. Heterogeneity of Treatment Response
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Benabid, A.L. Stimulation therapies for Parkinson’s disease: Over the past two decades. Bull. Acad. Natl. Med. 2010, 194, 1273–1286. [Google Scholar] [PubMed]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep Brain Stimulation: Current Challenges and Future Directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gong, C.; Hao, H.; Guo, Y.; Xu, S.; Zhang, Y.; Yin, G.; Cao, X.; Yang, A.; Meng, F.; et al. Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 118–128. [Google Scholar] [CrossRef]
- Lombrozo, T.; Gwynne, N.Z. Explanation and Inference: Mechanistic and Functional Explanations Guide Property Generalization. Front. Hum. Neurosci. 2014, 8, 700. [Google Scholar] [CrossRef] [Green Version]
- Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- Ahmed, I.; Jeon, G.; Piccialli, F. From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where. IEEE Trans. Ind. Inform. 2022, 18, 5031–5042. [Google Scholar] [CrossRef]
- Watts, J.; Khojandi, A.; Shylo, O.; Ramdhani, R. Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s Disease: A Review. Brain Sci. 2020, 11, 809. [Google Scholar] [CrossRef]
- Bouthour, W.; Mégevand, P.; Donoghue, J.; Lüscher, C.; Birbaumer, N.; Krack, P. Biomarkers for Closed-Loop Deep Brain Stimulation in Parkinson Disease and Beyond. Nat. Rev. Neurol. 2019, 15, 343–352. [Google Scholar] [CrossRef]
- Pascual-Valdunciel, A.; Lopo-Martinez, V.; Sendra-Arranz, R.; Gonzalez-Sanchez, M.; Perez-Sanchez, J.R.; Grandas, F.; Torricelli, D.; Moreno, J.; Barroso, F.O.; Pons, J. Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks. IEEE J. Biomed. Health Inform. 2022. ahead of print. Available online: https://ieeexplore.ieee.org/abstract/document/9904814 (accessed on 13 February 2023). [CrossRef] [PubMed]
- Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A.; et al. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [Google Scholar] [CrossRef]
- Brocker, D.T.; Swan, B.D.; So, R.Q.; Turner, D.A.; Gross, R.E.; Grill, W.M. Optimized Temporal Pattern of Brain Stimulation Designed by Computational Evolution. Sci. Transl. Med. 2017, 9, eaah3532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döbrössy, M.D.; Ramanathan, C.; Ashouri Vajari, D.; Tong, Y.; Schlaepfer, T.; Coenen, V.A. Neuromodulation in Psychiatric Disorders: Experimental and Clinical Evidence for Reward and Motivation Network Deep Brain Stimulation: Focus on the Medial Forebrain Bundle. Eur. J. Neurosci. 2021, 53, 89–113. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. Npj Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box Models. ACM Comput. Surv. 2019, 51, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use. In Proceedings of the 4th Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 28 October 2019; pp. 359–380. [Google Scholar]
- Müller, T.T.; Lio, P. PECLIDES Neuro: A Personalisable Clinical Decision Support System for Neurological Diseases. Front. Artif. Intell. 2020, 3, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipton, Z.C. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability Is Both Important and Slippery. Queue 2018, 16(3), 31–57. [Google Scholar] [CrossRef]
- Shamir, R.R.; Dolber, T.; Noecker, A.M.; Walter, B.L.; McIntyre, C.C. Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson’s Disease. Brain Stimulat. 2015, 8, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al. Predicting Optimal Deep Brain Stimulation Parameters for Parkinson’s Disease Using Functional MRI and Machine Learning. Nat. Commun. 2021, 12, 3043. [Google Scholar] [CrossRef]
- van der Waa, J.; Nieuwburg, E.; Cremers, A.; Neerincx, M. Evaluating XAI: A Comparison of Rule-Based and Example-Based Explanations. Artif. Intell. 2021, 291, 103404. [Google Scholar] [CrossRef]
- Ma, Y.; Gong, A.; Nan, W.; Ding, P.; Wang, F.; Fu, Y. Personalized Brain–Computer Interface and Its Applications. J. Pers. Med. 2023, 13, 46. [Google Scholar] [CrossRef]
- Peralta, M.; Jannin, P.; Baxter, J.S.H. Machine Learning in Deep Brain Stimulation: A Systematic Review. Artif. Intell. Med. 2021, 122, 102198. [Google Scholar] [CrossRef]
- Fellous, J.-M.; Sapiro, G.; Rossi, A.; Mayberg, H.; Ferrante, M. Explainable Artificial Intelligence for Neuroscience: Behavioral Neurostimulation. Front. Neurosci. 2019, 13, 1346. [Google Scholar] [CrossRef] [Green Version]
- Farrokhi, F.; Buchlak, Q.D.; Sikora, M.; Esmaili, N.; Marsans, M.; McLeod, P.; Mark, J.; Cox, E.; Bennett, C.; Carlson, J. Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms. World Neurosurg. 2020, 134, e325–e338. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kumar, V. Application of Text Mining Techniques on Scholarly Research Articles: Methods and Tools. New Rev. Acad. Librariansh. 2022, 28, 279–302. [Google Scholar] [CrossRef]
- Abdelrazek, A.; Eid, Y.; Gawish, E.; Medhat, W.; Hassan, A. Topic Modeling Algorithms and Applications: A Survey. Inf. Syst. 2023, 112, 102131. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Chen, Z.S.; Kulkarni., P.P.; Galatzer-Levy, I.R.; Bigio, B.; Nasca, C.; Zhang, Y. Modern Views of Machine Learning for Precision Psychiatry. Patterns 2022, 3, 100602. [Google Scholar] [CrossRef]
- Habets, J.G.V.; Janssen, M.L.F.; Duits, A.A.; Sijben, L.C.J.; Mulders, A.E.P.; De Greef, B.; Temel, Y.; Kuijf, M.L.; Kubben, P.L.; Herff, C. Machine Learning Prediction of Motor Response after Deep Brain Stimulation in Parkinson’s Disease-Proof of Principle in a Retrospective Cohort. PeerJ 2020, 8, e10317. [Google Scholar] [CrossRef]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine Learning in Human Movement Biomechanics: Best Practices, Common Pitfalls, and New Opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef]
- Jung, K.; Florin, E.; Patil, K.R.; Caspers, J.; Rubbert, C.; Eickhoff, S.B.; Popovych, O.V. Whole-Brain Dynamical Modelling for Classification of Parkinson’s Disease. Brain Commun. 2023, 5, fcac331. [Google Scholar] [CrossRef] [PubMed]
- Padberg, F.; Bulubas, L.; Mizutani-Tiebel, Y.; Burkhardt, G.; Kranz, G.S.; Koutsouleris, N.; Kambeitz, J.; Hasan, A.; Takahashi, S.; Keeser, D.; et al. The Intervention, the Patient and the Illness—Personalizing Non-Invasive Brain Stimulation in Psychiatry. Exp. Neurol. 2021, 341, 113713. [Google Scholar] [CrossRef]
- Pinto, M.; Leal, A.; Lopes, F.; Pais, J.; Dourado, A.; Sales, F.; Martins, P.; Teixeira, C.A. On the Clinical Acceptance of Black-box Systems for EEG Seizure Prediction. Epilepsia Open 2022, 7, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Rupprechter, S.; Morinan, G.; Peng, Y.; Foltynie, T.; Sibley, K.; Weil, R.S.; Leyland, L.-A.; Baig, F.; Morgante, F.; Gilron, R.; et al. A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease. Sensors 2021, 21, 5437. [Google Scholar] [CrossRef]
- Sendi, M.; Waters, A.; Tiruvadi, V.; Riva-Posse, P.; Crowell, A.; Isbaine, F.; Gale, J.T.; Choi, K.S.; Gross, R.E.; Mayberg, H.S.; et al. Intraoperative Neural Signals Predict Rapid Antidepressant Effects of Deep Brain Stimulation. Transl. Psychiatry 2021, 11, 551. [Google Scholar] [CrossRef]
- Tang, Y.; Kurths, J.; Lin, W.; Ott, E.; Kocarev, L. Introduction to Focus Issue: When Machine Learning Meets Complex Systems: Networks, Chaos, and Nonlinear Dynamics. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063151. [Google Scholar] [CrossRef]
- Zdravkova, K.; Krasniqi, V.; Dalipi, F.; Ferati, M. Cutting-Edge Communication and Learning Assistive Technologies for Disabled Children: An Artificial Intelligence Perspective. Front. Artif. Intell. 2022, 5, 970430. [Google Scholar] [CrossRef]
- Feczko, E.; Miranda-Dominguez, O.; Marr, M.; Graham, A.M.; Nigg, J.T.; Fair, D.A. The Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes. Trends Cogn. Sci. 2019, 23, 584–601. [Google Scholar] [CrossRef]
- Drysdale, A.T.; Grosenick, L.; Downar, J.; Dunlop, K.; Mansouri, F.; Meng, Y.; Fetcho, R.N.; Zebley, B.; Oathes, D.J.; Etkin, A.; et al. Resting-State Connectivity Biomarkers Define Neurophysiological Subtypes of Depression. Nat. Med. 2017, 23, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Tafazoli, S.; MacDowell, C.J.; Che, Z.; Letai, K.C.; Steinhardt, C.R.; Buschman, T.J. Learning to Control the Brain through Adaptive Closed-Loop Patterned Stimulation. J. Neural Eng. 2020, 17, 056007. [Google Scholar] [CrossRef]
- Cagnan, H.; Denison, T.; McIntyre, C.; Brown, P. Emerging Technologies for Improved Deep Brain Stimulation. Nat. Biotechnol. 2019, 37, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Zanzotto, F.M. Viewpoint: Human-in-the-Loop Artificial Intelligence. J. Artif. Intell. Res. 2019, 64, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine Learning. Proc. Natl. Acad. Sci. 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [Green Version]
- Krylov, D.; Dylov, D.V.; Rosenblum, M. Reinforcement Learning for Suppression of Collective Activity in Oscillatory Ensembles. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 033126. [Google Scholar] [CrossRef]
- Wells, L.; Bednarz, T. Explainable AI and Reinforcement Learning-A Systematic Review of Current Approaches and Trends. Front. Artif. Intell. 2021, 4, 550030. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Y.; Jiang, J.; Lucas, M.V.; Fonzo, G.A.; Rolle, C.E.; Cooper, C.; Chin-Fatt, C.; Krepel, N.; Cornelssen, C.A.; et al. An Electroencephalographic Signature Predicts Antidepressant Response in Major Depression. Nat. Biotechnol. 2020, 38, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable AI Methods—A Brief Overview. In xxAI—Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers; Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., Samek, W., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Swizterland, 2022; pp. 13–38. ISBN 978-3-031-04083-2. [Google Scholar]
- Chaddad, A.; Lu, Q.; Li, J.; Katib, Y.; Kateb, R.; Tanougast, C.; Bouridane, A.; Abdulkadir, A. Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine. arXiv 2022, arXiv:2211.09317. [Google Scholar]
- Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.-Y. BioGPT: Generative Pre-Trained Transformer for Biomedical Text Generation and Mining. Brief. Bioinform. 2022, 23, bbac409. Available online: https://academic.oup.com/bib/article-abstract/23/6/bbac409/6713511 (accessed on 16 February 2023). [CrossRef]
- Yang, J.; Wright, S.; Hamblin, M.; McCloskey, D.; Alcantar, M.A.; Schrübbers, L.; Lopatkin, A.J.; Satish, S.; Nili, A.; Palsson, B.; et al. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell 2019, 177, 1649–1661. Available online: https://reader.elsevier.com/reader/sd/pii/S0092867419304027?token=899385E08D5FD8834AA0F4192705C3F6F07913AE40DE540FE03DA26565D59137C6C57AE40350CFC4FF0806CE620DA5D4&originRegion=us-east-1&originCreation=20230214194639 (accessed on 14 February 2023). [CrossRef]
- Langlotz, C.P.; Allen, B.; Erickson, B.J.; Kalpathy-Cramer, J.; Bigelow, K.; Cook, T.S.; Flanders, A.E.; Lungren, M.P.; Mendelson, D.S.; Rudie, J.D.; et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 2019, 291, 781–791. [Google Scholar] [CrossRef]
- Esmaeili, M.; Vettukattil, R.; Banitalebi, H.; Krogh, N.R.; Geitung, J.T. Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization. J. Pers. Med. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Maley, C.T.; Becker, J.E.; Shultz, E.K.B. Electroconvulsive Therapy and Other Neuromodulation Techniques for the Treatment of Psychosis. Child Adolesc. Psychiatr. Clin. N. Am. 2019, 28, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.S.; Wong, S.N.; Arulsamy, A.; Watterson, J.L.; Shaikh, M.F. Medical Technology: A Systematic Review on Medical Devices Utilized for Epilepsy Prediction and Management. Curr. Neuropharmacol. 2022, 20, 950–964. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) Study: Imaging Acquisition across 21 Sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef]
- Fernandes, H.M.; Deco, G.; Kringelbach, M.L. Chapter 26—Whole-Brain Modeling to Predict Optimal Deep Brain Stimulation Targeting. In Connectomic Deep Brain Stimulation; Horn, A., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 543–559. ISBN 978-0-12-821861-7. [Google Scholar]
- Lin, A.; Witvliet, D.; Hernandez-Nunez, L.; Linderman, S.W.; Samuel, A.D.T.; Venkatachalam, V. Imaging Whole-Brain Activity to Understand Behaviour. Nat. Rev. Phys. 2022, 4, 292–305. [Google Scholar] [CrossRef]
Authors | Year | Title | Journal |
---|---|---|---|
Chen, Y., Gong, C., Hao, H., Guo, Y., Xu, S., Zhang, Y., … and Li, L. | 2019 | Automatic sleep stage classification based on subthalamic local field potentials [3] | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
Chen, Z. S., Galatzer-Levy, I. R., Bigio, B., Nasca, C., and Zhang, Y. | 2022 | Modern views of machine learning for precision psychiatry [29] | Patterns |
Fellous, J. M., Sapiro, G., Rossi, A., Mayberg, H., and Ferrante, M. | 2019 | Explainable artificial intelligence for neuroscience: behavioral neurostimulation [23] | Frontiers in neuroscience |
Habets, J. G., Janssen, M. L., Duits, A. A., Sijben, L. C., Mulders, A. E., De Greef, B., … and Herff, C. | 2020 | Machine learning prediction of motor response after deep brain stimulation in Parkinson’s disease—proof of principle in a retrospective cohort [30] | PeerJ |
Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., and Delp, S. L. | 2018 | Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities [31] | Journal of biomechanics |
Jung, K., Florin, E., Patil, K. R., Caspers, J., Rubbert, C., Eickhoff, S. B., and Popovych, O. V. | 2023 | Whole-brain dynamical modelling for classification of Parkinson’s disease [32] | Brain Communications |
Padberg, F., Bulubas, L., Mizutani-Tiebel, Y., Burkhardt, G., Kranz, G. S., Koutsouleris, N., … and Brunoni, A. R. | 2021 | The intervention, the patient and the illness–personalizing non-invasive brain stimulation in psychiatry [33] | Experimental Neurology |
Pinto, M. F., Leal, A., Lopes, F., Pais, J., Dourado, A., Sales, F., … and Teixeira, C. A. | 2022 | On the clinical acceptance of black-box systems for EEG seizure prediction [34] | Epilepsia Open |
Rupprechter, S., Morinan, G., Peng, Y., Foltynie, T., Sibley, K., Weil, R. S., … and O’Keeffe, J. | 2021 | A clinically interpretable computer-vision based method for quantifying gait in Parkinson’s disease [35] | Sensors |
Sendi, M. S., Waters, A. C., Tiruvadi, V., Riva-Posse, P., Crowell, A., Isbaine, F., … and Mahmoudi, B. | 2021 | Intraoperative neural signals predict rapid antidepressant effects of deep brain stimulation [36] | Translational psychiatry |
Tang, Y., Kurths, J., Lin, W., Ott, E., and Kocarev, L. | 2020 | Introduction to focus issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics [37] | Chaos: An Interdisciplinary Journal of Nonlinear Science |
Zdravkova, K., Krasniqi, V., Dalipi, F., and Ferati, M. | 2022 | Cutting-edge communication and learning assistive technologies for disabled children: An artificial intelligence perspective [38] | Frontiers in Artificial Intelligence |
Topic | Theme | Top 5 Bigrams |
---|---|---|
1 | Patient Classification | mental health, deep learning, assistive technology, precision psychiatry, mental disorder |
2 | model fit, Parkinson disease, model parameter, filter condition, behavior model | |
3 | Precision Psychiatry | sleep stage, beta power, closed loop deep brain stimulation, vote length, wake sleep |
4 | prediction model, Unified Parkinson’s Disease Rating Scale, weak responder, subthalamic nucleus deep brain stimulation, model can | |
5 | Methodological Concerns | seizure prediction, clinical trial, support vector machine model, previous studies, decision tree model |
6 | neural network, feature selection, model performance, test set, support vector machine model | |
7 | Complex Systems | machine learning, reservoir computing, learning method, complex system, dynamic system |
8 | Automated Symptom Assessment | feature value, step frequency, Parkinson’s disease patient, model estimation, arm swing |
9 | Heterogeneity of Treatment Response | psychiatric disorder, brain stimulation, functional connectivity, deep brain, neural circuit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, B. Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence. Biomedicines 2023, 11, 771. https://doi.org/10.3390/biomedicines11030771
Allen B. Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence. Biomedicines. 2023; 11(3):771. https://doi.org/10.3390/biomedicines11030771
Chicago/Turabian StyleAllen, Ben. 2023. "Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence" Biomedicines 11, no. 3: 771. https://doi.org/10.3390/biomedicines11030771