Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Blood Samples
2.2. Cell Preparation
2.2.1. ECFC Isolation and Expansion
2.2.2. Human Umbilical Vein Endothelial Cell (HUVEC) Expansion
2.2.3. Endothelial Cells (ECs) In Vitro Activation
2.3. Flow Cytometry
2.3.1. Assessment of ECFC Immunophenotype
2.3.2. Assessment of EC Activation in Response to TNFα Treatment
2.4. Thrombogenesis Assay
2.4.1. EC Preparation and Chamber Characteristics
2.4.2. Preparation of Whole Blood Samples for Perfusion
2.4.3. Flow Chamber Perfusion
2.4.4. Quantification of Platelet Aggregates and Fibrin Deposition
2.5. Thrombin Generation Assay (TGA)
2.5.1. Platelet-Rich Plasma (PRP) Preparation
2.5.2. TGA on ECs
2.6. Statistical Analysis
3. Results
3.1. ECFCs Are Responsive to TNFα Stimulation
3.2. ECFCs Are a Suitable Substrate for the Thrombogenesis Assay
3.3. ECFCs Are a Suitable Substrate for TGA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kruger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Bian, J.S. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front. Pharmacol. 2019, 10, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulanger, C.M. Endothelium. Arterioscler. Thromb. Vasc. Biol. 2016, 36, e26–e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, B.K.; Chan, K.G.; Goh, B.H.; Yap, W.H. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front. Pharmacol. 2018, 9, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, H.H.; Leo, C.H.; Parry, L.J.; Ritchie, R.H. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front. Pharmacol. 2018, 9, 501. [Google Scholar] [CrossRef]
- Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 2011, 17, 1410–1422. [Google Scholar] [CrossRef]
- Riva, N.; Donadini, M.P.; Ageno, W. Epidemiology and pathophysiology of venous thromboembolism: Similarities with atherothrombosis and the role of inflammation. Thromb. Haemost. 2015, 113, 1176–1183. [Google Scholar] [CrossRef]
- Allende-Vigo, M.Z. Pathophysiologic mechanisms linking adipose tissue and cardiometabolic risk. Endocr. Pract. 2010, 16, 692–698. [Google Scholar] [CrossRef]
- Medina, R.J.; Barber, C.L.; Sabatier, F.; Dignat-George, F.; Melero-Martin, J.M.; Khosrotehrani, K.; Ohneda, O.; Randi, A.M.; Chan, J.K.Y.; Yamaguchi, T.; et al. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl. Med. 2017, 6, 1316–1320. [Google Scholar] [CrossRef]
- Mund, J.A.; Case, J. The ontogeny of endothelial progenitor cells through flow cytometry. Curr. Opin. Hematol. 2011, 18, 166–170. [Google Scholar] [CrossRef]
- Moschetta, M.; Mishima, Y.; Sahin, I.; Manier, S.; Glavey, S.; Vacca, A.; Roccaro, A.M.; Ghobrial, I.M. Role of endothelial progenitor cells in cancer progression. Biochim. Biophys. Acta 2014, 1846, 26–39. [Google Scholar] [CrossRef]
- Yoder, M.C.; Mead, L.E.; Prater, D.; Krier, T.R.; Mroueh, K.N.; Li, F.; Krasich, R.; Temm, C.J.; Prchal, J.T.; Ingram, D.A. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007, 109, 1801–1809. [Google Scholar] [CrossRef] [Green Version]
- Banno, K.; Yoder, M.C. Tissue regeneration using endothelial colony-forming cells: Promising cells for vascular repair. Pediatr. Res. 2018, 83, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschalaki, K.E.; Randi, A.M. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front. Med. 2018, 5, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Bella, S.; Calcaterra, F.; Bacci, M.; Carenza, C.; Pandolfo, C.; Ferrazzi, P.; Uva, P.; Pagani, M.; Lodigiani, C.; Mavilio, D. Pathologic up-regulation of TNFSF15-TNFRSF25 axis sustains endothelial dysfunction in unprovoked venous thromboembolism. Cardiovasc. Res. 2020, 116, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Mangin, P.H.; Gardiner, E.E.; Nesbitt, W.S.; Kerrigan, S.W.; Korin, N.; Lam, W.A.; Panteleev, M.A.; Subcommittee on Biorheology. In vitro flow based systems to study platelet function and thrombus formation: Recommendations for standardization: Communication from the SSC on Biorheology of the ISTH. J. Thromb. Haemost. 2020, 18, 748–752. [Google Scholar] [CrossRef]
- Binder, N.B.; Depasse, F.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Clinical use of thrombin generation assays. J. Thromb. Haemost. 2021, 19, 2918–2929. [Google Scholar] [CrossRef]
- Lim, H.Y.; Donnan, G.; Nandurkar, H.; Ho, P. Global coagulation assays in hypercoagulable states. J. Thromb. Thrombolysis 2022, 54, 132–144. [Google Scholar] [CrossRef]
- Hemker, H.C.; Giesen, P.; Al Dieri, R.; Regnault, V.; de Smedt, E.; Wagenvoord, R.; Lecompte, T.; Beguin, S. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol. Haemost. Thromb. 2003, 33, 4–15. [Google Scholar] [CrossRef]
- Billoir, P.; Miranda, S.; Damian, L.; Richard, V.; Benhamou, Y.; Le Cam Duchez, V. Development of a thrombin generation test in cultured endothelial cells: Evaluation of the prothrombotic effects of antiphospholipid antibodies. Thromb. Res. 2018, 169, 87–92. [Google Scholar] [CrossRef]
- Calcaterra, F.; Brambilla, L.; Colombo, E.; Tourlaki, A.; Veraldi, S.; Carenza, C.; Mavilio, D.; Della Bella, S. Increased Frequency and Vasculogenic Potential of Endothelial Colony-Forming Cells in Patients with Kaposi’s Sarcoma. J. Investig. Dermatol. 2017, 137, 1533–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, E.; Calcaterra, F.; Cappelletti, M.; Mavilio, D.; Della Bella, S. Comparison of Fibronectin and Collagen in Supporting the Isolation and Expansion of Endothelial Progenitor Cells from Human Adult Peripheral Blood. PLoS ONE 2013, 8, e66734. [Google Scholar] [CrossRef]
- Abdel Hadi, L.; Calcaterra, F.; Brambilla, L.; Carenza, C.; Marfia, G.; Della Bella, S.; Riboni, L. Enhanced phosphorylation of sphingosine and ceramide sustains the exuberant proliferation of endothelial progenitors in Kaposi sarcoma. J. Leukoc. Biol. 2018, 103, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Xiang, C.; Liu, B.; Zhu, Y.; Luan, Y.; Liu, S.T.; Qin, K.R. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Biomed. Eng. Online 2016, 15, 154. [Google Scholar] [CrossRef] [Green Version]
- Conant, C.G.; Nevill, J.T.; Zhou, Z.; Dong, J.F.; Schwartz, M.A.; Ionescu-Zanetti, C. Using well-plate microfluidic devices to conduct shear-based thrombosis assays. J. Lab. Autom. 2011, 16, 148–152. [Google Scholar] [CrossRef]
- van Dommelen, S.M.; Fish, M.; Barendrecht, A.D.; Schiffelers, R.M.; Eniola-Adefeso, O.; Vader, P. Interaction of Extracellular Vesicles with Endothelial Cells Under Physiological Flow Conditions. Methods Mol. Biol. 2017, 1545, 205–213. [Google Scholar] [CrossRef]
- Kamikubo, Y.; Mendolicchio, G.L.; Zampolli, A.; Marchese, P.; Rothmeier, A.S.; Orje, J.N.; Gale, A.J.; Krishnaswamy, S.; Gruber, A.; Ostergaard, H.; et al. Selective factor VIII activation by the tissue factor-factor VIIa-factor Xa complex. Blood 2017, 130, 1661–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Givens, C.; Tzima, E. Endothelial Mechanosignaling: Does One Sensor Fit All? Antioxid. Redox Signal. 2016, 25, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hell. J. Cardiol. 2005, 46, 9–15. [Google Scholar]
- Guglielmini, G.; Appolloni, V.; Momi, S.; De Groot, P.G.; Battiston, M.; De Marco, L.; Falcinelli, E.; Gresele, P. Matrix metalloproteinase-2 enhances platelet deposition on collagen under flow conditions. Thromb. Haemost. 2016, 115, 333–343. [Google Scholar] [CrossRef]
- Machin, M.; Santomaso, A.; Mazzucato, M.; Cozzi, M.R.; Battiston, M.; De Marco, L.; Canu, P. Single particle tracking across sequences of microscopical images: Application to platelet adhesion under flow. Ann. Biomed. Eng. 2006, 34, 833–846. [Google Scholar] [CrossRef]
- Hemker, H.C.; Al Dieri, R.; De Smedt, E.; Beguin, S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb. Haemost. 2006, 96, 553–561. [Google Scholar]
- Sena, C.M.; Goncalves, L.; Seica, R. Methods to evaluate vascular function: A crucial approach towards predictive, preventive, and personalised medicine. EPMA J. 2022, 13, 209–235. [Google Scholar] [CrossRef]
- Munoz, N.M.; Hamann, K.J.; Rabe, K.F.; Sano, H.; Zhu, X.; Leff, A.R. Augmentation of eosinophil degranulation and LTC(4) secretion by integrin-mediated endothelial cell adhesion. Am. J. Physiol. 1999, 277, L802–L810. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 709–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020, 71, 397–410. [Google Scholar] [CrossRef]
- Jain, A.; van der Meer, A.D.; Papa, A.L.; Barrile, R.; Lai, A.; Schlechter, B.L.; Otieno, M.A.; Louden, C.S.; Hamilton, G.A.; Michelson, A.D.; et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed. Microdevices 2016, 18, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, R.Z.; Moreno-Luna, R.; Li, D.; Jaminet, S.C.; Greene, A.K.; Melero-Martin, J.M. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 10137–10142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, E.; Kauskot, A.; Saller, F.; Frezza, E.; Poirault-Chassac, S.; Lokajczyk, A.; Bourdoncle, P.; Saubamea, B.; Gaussem, P.; Pericacho, M.; et al. Endoglin Is an Endothelial Housekeeper against Inflammation: Insight in ECFC-Related Permeability through LIMK/Cofilin Pathway. Int. J. Mol. Sci. 2021, 22, 8837. [Google Scholar] [CrossRef] [PubMed]
- Parry, G.C.; Mackman, N. Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 612–621. [Google Scholar] [CrossRef]
- Zhang, J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev. Cardiovasc. Med. 2022, 23, 73. [Google Scholar] [CrossRef]
- Mathur, T.; Singh, K.A.; NK, R.P.; Tsai, S.H.; Hein, T.W.; Gaharwar, A.K.; Flanagan, J.M.; Jain, A. Organ-on-chips made of blood: Endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips. Lab Chip 2019, 19, 2500–2511. [Google Scholar] [CrossRef]
- Cuccuini, W.; Poitevin, S.; Poitevin, G.; Dignat-George, F.; Cornillet-Lefebvre, P.; Sabatier, F.; Nguyen, P. Tissue factor up-regulation in proinflammatory conditions confers thrombin generation capacity to endothelial colony-forming cells without influencing non-coagulant properties in vitro. J. Thromb. Haemost. 2010, 8, 2042–2052. [Google Scholar] [CrossRef] [PubMed]
- Billoir, P.; Blandinieres, A.; Gendron, N.; Chocron, R.; Gunther, S.; Philippe, A.; Guerin, C.L.; Israel-Biet, D.; Smadja, D.M. Endothelial Colony-Forming Cells from Idiopathic Pulmonary Fibrosis Patients Have a High Procoagulant Potential. Stem Cell Rev. Rep. 2021, 17, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front. Physiol. 2018, 9, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kintigh, J.; Monagle, P.; Ignjatovic, V. A review of commercially available thrombin generation assays. Res. Pract. Thromb. Haemost. 2018, 2, 42–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacci, M.; Cancellara, A.; Ciceri, R.; Romualdi, E.; Pessi, V.; Tumminello, F.; Fantuzzi, M.; Donadini, M.P.; Lodigiani, C.; Della Bella, S.; et al. Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases. Biomedicines 2023, 11, 1669. https://doi.org/10.3390/biomedicines11061669
Bacci M, Cancellara A, Ciceri R, Romualdi E, Pessi V, Tumminello F, Fantuzzi M, Donadini MP, Lodigiani C, Della Bella S, et al. Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases. Biomedicines. 2023; 11(6):1669. https://doi.org/10.3390/biomedicines11061669
Chicago/Turabian StyleBacci, Monica, Assunta Cancellara, Roberta Ciceri, Erica Romualdi, Valentina Pessi, Fabio Tumminello, Martina Fantuzzi, Marco Paolo Donadini, Corrado Lodigiani, Silvia Della Bella, and et al. 2023. "Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases" Biomedicines 11, no. 6: 1669. https://doi.org/10.3390/biomedicines11061669
APA StyleBacci, M., Cancellara, A., Ciceri, R., Romualdi, E., Pessi, V., Tumminello, F., Fantuzzi, M., Donadini, M. P., Lodigiani, C., Della Bella, S., Calcaterra, F., & Mavilio, D. (2023). Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases. Biomedicines, 11(6), 1669. https://doi.org/10.3390/biomedicines11061669