Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias
2.6. Synthesis Methods and Meta-Analysis
3. Results
3.1. Prisma Flowchart
3.2. Risk of Bias Assessment
3.3. Meta-Analysis
3.4. Results at 6 Months
3.5. Results at 12 Months
3.6. Results at 24 Months
4. Discussion
Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Knight, S.; Aujla, R.; Biswas, S. Total Hip Arthroplasty—Over 100 Years of Operative History. Orthop. Rev. 2011, 3, e16. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Culliford, D.; Maskell, J.; Judge, A.; Cooper, C.; Prieto-Alhambra, D.; Arden, N.K. Future Projections of Total Hip and Knee Arthroplasty in the UK: Results from the UK Clinical Practice Research Datalink. Osteoarthr. Cartil. 2015, 23, 594–600. [Google Scholar] [CrossRef]
- Sharif, B.; Kopec, J.; Bansback, N.; Rahman, M.M.; Flanagan, W.M.; Wong, H.; Fines, P.; Anis, A. Projecting the Direct Cost Burden of Osteoarthritis in Canada Using a Microsimulation Model. Osteoarthr. Cartil. 2015, 23, 1654–1663. [Google Scholar] [CrossRef]
- Nemes, S.; Gordon, M.; Rogmark, C.; Rolfson, O. Projections of Total Hip Replacement in Sweden from 2013 to 2030. Acta Orthop. 2014, 85, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, I.N.; Bohensky, M.A.; Zomer, E.; Tacey, M.; Gorelik, A.; Brand, C.A.; de Steiger, R. The Projected Burden of Primary Total Knee and Hip Replacement for Osteoarthritis in Australia to the Year 2030. BMC Musculoskelet. Disord. 2019, 20, 90. [Google Scholar] [CrossRef]
- Karachalios, T.; Komnos, G.; Koutalos, A. Total Hip Arthroplasty. EFORT Open Rev. 2018, 3, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Brunello, M.; Bordini, B.; Rossomando, V.; Tassinari, L.; D’Agostino, C.; Ruta, F.; Faldini, C. Unstable Total Hip Arthroplasty: Should It Be Revised Using Dual Mobility Implants? A Retrospective Analysis from the R.I.P.O. Registry J. Clin. Med. 2023, 12, 440. [Google Scholar] [CrossRef]
- Perez Alamino, R.; Casellini, C.; Baňos, A.; Schneeberger, E.E.; Gagliardi, S.A.; Maldonado Cocco, J.A.; Citera, G. Prevalence of Periprosthetic Osteolysis after Total Hip Replacement in Patients with Rheumatic Diseases. Open Access Rheumatol. 2012, 2012, 57–62. [Google Scholar] [CrossRef]
- Di Martino, A.; Brunello, M.; Pederiva, D.; Schilardi, F.; Rossomando, V.; Cataldi, P.; D’Agostino, C.; Genco, R.; Faldini, C. Fast Track Protocols and Early Rehabilitation after Surgery in Total Hip Arthroplasty: A Narrative Review. Clin. Pract. 2023, 13, 569–582. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Hamer, A.J.; Stockley, I.; Eastell, R. Polyethylene Wear Rate and Osteolysis: Critical Threshold versus Continuous Dose-Response Relationship. J. Orthop. Res. 2005, 23, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Claus, A.M.; Sychterz, C.J.; Engh, C.A. Relationship between Polyethylene Wear and Osteolysis in Hips with a Second-Generation Porous-Coated Cementless Cup after Seven Years of Follow-Up. J. Bone Jt. Surg.-Am. 2003, 85, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Jagga, S.; Sharma, A.R.; Bhattacharya, M.; Chakraborty, C.; Lee, S.-S. Influence of Single Nucleotide Polymorphisms (SNPs) in Genetic Susceptibility towards Periprosthetic Osteolysis. Genes Genom. 2019, 41, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Sukur, E.; Akman, Y.E.; Ozturkmen, Y.; Kucukdurmaz, F. Particle Disease: A Current Review of the Biological Mechanisms in Periprosthetic Osteolysis After Hip Arthroplasty. Open Orthop. J. 2016, 10, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Brunello, M.; Di Martino, A.; Ruta, F.; Ferri, R.; Rossomando, V.; D’Agostino, C.; Pederiva, D.; Schilardi, F.; Faldini, C. Which Patient Benefit Most from Minimally Invasive Direct Anterior Approach Total Hip Arthroplasty in Terms of Perioperative Blood Loss? A Retrospective Comparative Study from a Cohort of Patients with Primary Degenerative Hips. Musculoskelet. Surg. 2023, 107, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Mjöberg, B. Hip Prosthetic Loosening and Periprosthetic Osteolysis: A Commentary. World J. Orthop. 2022, 13, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Gallo, J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Ferri, R.; Bordini, B.; Brunello, M.; Rossomando, V.; Digennaro, V.; Traina, F.; Faldini, C. Long-Term Survival and Complication Rate of Cementless Prosthetic Stems in Primary Total Hip Arthroplasty Categorized by Types According to Mont Classification: A Regional Registry-Based Study on 53,626 Implants. Arch. Orthop. Trauma Surg. 2024, 144, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Papapoulos, S.E. Bisphosphonates: How Do They Work? Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 831–847. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Available online: https://www.prisma-statement.org/ (accessed on 14 May 2024).
- Arabmotlagh, M.; Pilz, M.; Warzecha, J.; Rauschmann, M. Changes of Femoral Periprosthetic Bone Mineral Density 6 Years after Treatment with Alendronate Following Total Hip Arthroplasty. J. Orthop. Res. 2009, 27, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Masuhara, K.; Yamasaki, S.; Fuji, T.; Seino, Y. Effects of Discontinuation as Well as Intervention of Cyclic Therapy with Etidronate on Bone Remodeling after Cementless Total Hip Arthroplasty. Bone 2004, 35, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Fokter, S.K.; Komadina, R.; Repše-Fokter, A. Effect of Etidronate in Preventing Periprosthetic Bone Loss Following Cemented Hip Arthroplasty: A Randomized, Double Blind, Controlled Trial. Wien. Klin. Wochenschr. 2006, 118, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Morita, A.; Kobayashi, N.; Choe, H.; Ike, H.; Tezuka, T.; Higashihira, S.; Inaba, Y. Effect of Switching Administration of Alendronate after Teriparatide for the Prevention of BMD Loss around the Implant after Total Hip Arthroplasty, 2-Year Follow-Up. A Randomized Controlled Trial. J. Orthop. Surg. Res. 2020, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.F.; Woltz, J.N.; Smith, R.R. Effect of Zoledronic Acid on Reducing Femoral Bone Mineral Density Loss Following Total Hip Arthroplasty. J. Arthroplast. 2013, 28, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Masuhara, K.; Yamasaki, S.; Nakai, T.; Fuji, T. Cyclic Therapy with Etidronate Has a Therapeutic Effect against Local Osteoporosis after Cementless Total Hip Arthroplasty. Bone 2003, 33, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, Y.; Guo, X.; Yang, H.; Xu, Y.; Geng, D. Effects of Zoledronic Acid on Bone Mineral Density around Prostheses and Bone Metabolism Markers after Primary Total Hip Arthroplasty in Females with Postmenopausal Osteoporosis. Osteoporos. Int. 2019, 30, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. “Modes of Failure” of Cemented Stem-Type Femoral Components: A Radiographic Analysis of Loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Kuźnik, A.; Październiok-Holewa, A.; Jewula, P.; Kuźnik, N. Bisphosphonates—Much More than Only Drugs for Bone Diseases. Eur. J. Pharmacol. 2020, 866, 172773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, J.-W.; Li, M.-Y.; Wu, L.-M.; Zeng, Y.; Shen, B. Zoledronic Acid for Periprosthetic Bone Mineral Density Changes in Patients with Osteoporosis After Hip Arthroplasty—An Updated Meta-Analysis of Six Randomized Controlled Trials. Front. Med. 2021, 8, 801282. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gao, C.; Li, H.; Wang, G.; Xu, C.; Ran, J. Effect of Zoledronic Acid on Reducing Femoral Bone Mineral Density Loss Following Total Hip Arthroplasty: A Meta-Analysis from Randomized Controlled Trails. Int. J. Surg. 2017, 47, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, Y.; Ye, C.; Mumingjiang, Y.; Lu, J.; Yu, Y. Prophylactic Efficacy on Periprosthetic Bone Loss in Calcar Region after Total Hip Arthroplasty of Antiosteoporotic Drugs: A Network Meta-Analysis of Randomised Controlled Studies. Postgrad. Med. J. 2021, 97, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Sköldenberg, O.G.; Salemyr, M.O.; Bodén, H.S.; Ahl, T.E.; Adolphson, P.Y. The Effect of Weekly Risedronate on Periprosthetic Bone Resorption Following Total Hip Arthroplasty. J. Bone Jt. Surg. 2011, 93, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Nyström, A.; Kiritopoulos, D.; Ullmark, G.; Sörensen, J.; Petrén-Mallmin, M.; Milbrink, J.; Hailer, N.P.; Mallmin, H. Denosumab Prevents Early Periprosthetic Bone Loss After Uncemented Total Hip Arthroplasty: Results from a Randomized Placebo-Controlled Clinical Trial. J. Bone Miner. Res. 2019, 35, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.-Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K. Effect of Parathyroid Hormone (1–34) on Fractures and Bone Mineral Density in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2001, 344, 1434–1441. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Yang, N.; Qian, H.; Zhang, L.; Tan, M. Raloxifene Prevents Early Periprosthetic Bone Loss for Postmenopausal Women after Uncemented Total Hip Arthroplasty: A Randomized Placebo-Controlled Clinical Trial. Orthop. Surg. 2020, 12, 1074–1083. [Google Scholar] [CrossRef]
Author | Year | Bis. Dose | Cont. dose | Bis. n | Cont. n. | Follow-Up (Months) |
---|---|---|---|---|---|---|
Arabmotlagh et al. [23] | 2009 | 10 mg/day alendronate for 5 weeks | No treatment | 14 | 20 | 12 months |
Yamaguchi et al. [24] | 2003 | 400 mg/day etidronate was given in a 2-week cycle followed by 12 weeks of 500 mg/day calcium supplementation | No treatment | 22 | 30 | 12 months |
Fokter et al. [25] | 2006 | 400 mg etidronate/day, given in a 2-week cycle followed by 12 weeks of 260/mg/day calcium supplementation | Placebo | 18 | 13 | 12 months |
Morita et al. [26] | 2020 | 20 μg/day teriparatide for 1 year. Patients then switched to 35/mg/week alendronate for 1 year | No treatment | 14 | 15 | 24 months |
Scott et al. [27] | 2013 | IV infusion of 5 mg zoledronic (+received oral calcium carbonate 1200 mg/day and calcitriol 0.50 μg/day) | Oral calcium carbonate 1200 mg/day and calcitriol 0.50 μg/day | 21 | 21 | 24 months |
Yamaguchi et al. [28] | 2004 | Received 400 mg/day of etidronate for 2 weeks, followed by 500 mg/day of calcium for 12 weeks. Cycle was repeated every 14 weeks for four cycles for a total of 12 months | Placebo | 16 | 24 | 24 months |
Zhou et al. [29] | 2019 | Received an intravenous infusion of 5 mg zoledronic acid (+1200 mg/day calcium carbonate and 0.50 μg/day calcitriol). | 1200 mg/day calcium carbonate and 0.50 μg/day calcitriol | 21 | 21 | 24 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, A.; Valtetsiotis, K.; Rossomando, V.; Brunello, M.; Bordini, B.; D’Agostino, C.; Ruta, F.; Traina, F.; Faldini, C. Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines 2024, 12, 1778. https://doi.org/10.3390/biomedicines12081778
Di Martino A, Valtetsiotis K, Rossomando V, Brunello M, Bordini B, D’Agostino C, Ruta F, Traina F, Faldini C. Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines. 2024; 12(8):1778. https://doi.org/10.3390/biomedicines12081778
Chicago/Turabian StyleDi Martino, Alberto, Konstantinos Valtetsiotis, Valentino Rossomando, Matteo Brunello, Barbara Bordini, Claudio D’Agostino, Federico Ruta, Francesco Traina, and Cesare Faldini. 2024. "Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis" Biomedicines 12, no. 8: 1778. https://doi.org/10.3390/biomedicines12081778
APA StyleDi Martino, A., Valtetsiotis, K., Rossomando, V., Brunello, M., Bordini, B., D’Agostino, C., Ruta, F., Traina, F., & Faldini, C. (2024). Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines, 12(8), 1778. https://doi.org/10.3390/biomedicines12081778