Kawasaki Disease Diagnosis and Treatment in over 1000 Patients: A Continuum of Dysregulated Inflammatory Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Statistics
2.4. Study Approval
3. Results
3.1. Patient Inclusion
3.2. Kawasaki Disease
3.2.1. Clinical Phenotype of Retrospective and Prospective KD Study Population
3.2.2. Clinical Phenotype of Pre-Pandemic, Pandemic, and Post-Pandemic KD
3.3. Multisystem Inflammatory Syndrome in Children during the SARS-CoV-2 Pandemic
3.3.1. Clinical Phenotype of MIS-C Compared to KD during the MIS-C Pandemic
3.3.2. Longitudinal Changes of the Clinical Phenotype of MIS-C
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawasaki, T.; Kosaki, F.; Okawa, S.; Shigematsu, I.; Yanagawa, H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974, 54, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical Characteristics of 58 Children with a Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2. JAMA 2020, 324, 259–269. [Google Scholar] [CrossRef]
- Singh, S.; Vignesh, P.; Burgner, D. The epidemiology of Kawasaki disease: A global update. Arch. Dis. Child. 2015, 100, 1084–1088. [Google Scholar] [CrossRef]
- Uehara, R.; Belay, E.D. Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J. Epidemiol. 2012, 22, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Sugimura, T.; Akagi, T.; Sato, N.; Hashino, K.; Maeno, Y.; Kazue, T.; Eto, G.; Yamakawa, R. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 1996, 94, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.C.; Glode, M.P. Kawasaki syndrome. Lancet 2004, 364, 533–544. [Google Scholar] [CrossRef]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef]
- Newburger, J.W.; Takahashi, M.; Gerber, M.A.; Gewitz, M.H.; Tani, L.Y.; Burns, J.C.; Shulman, S.T.; Bolger, A.F.; Ferrieri, P.; Baltimore, R.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2004, 110, 2747–2771. [Google Scholar] [CrossRef]
- World Health Organisation. Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19; Scientific brief; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Makino, N.; Nakamura, Y.; Yashiro, M.; Sano, T.; Ae, R.; Kosami, K.; Kojo, T.; Aoyama, Y.; Kotani, K.; Yanagawa, H. Epidemiological observations of Kawasaki disease in Japan, 2013–2014. Pediatr. Int. 2018, 60, 581–587. [Google Scholar] [CrossRef]
- Tacke, C.E.; Breunis, W.B.; Pereira, R.R.; Breur, J.M.; Kuipers, I.M.; Kuijpers, T.W. Five years of Kawasaki disease in the Netherlands: A national surveillance study. Pediatr. Infect. Dis. J. 2014, 33, 793–797. [Google Scholar] [CrossRef]
- Dietz, S.M.; Kuipers, I.M.; Tacke, C.E.A.; Koole, J.C.D.; Hutten, B.A.; Kuijpers, T.W. Giant aneurysms: A gender-specific complication of Kawasaki disease? J. Cardiol. 2017, 70, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Ae, R.; Koshimizu, T.A.; Matsumura, M.; Kosami, K.; Hayashida, K.; Makino, N.; Matsubara, Y.; Sasahara, T.; Nakamura, Y. Epidemiology and Risk Factors for Giant Coronary Artery Aneurysms Identified after Acute Kawasaki Disease. Pediatr. Cardiol. 2021, 42, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Miura, M.; Kobayashi, T.; Kaneko, T.; Fukushima, N.; Suda, K.; Maeda, J.; Shimoyama, S.; Shiono, J.; Hirono, K.; et al. Correction to: Analysis of Coronary Arterial Aneurysm Regression in Patients with Kawasaki Disease by Aneurysm Severity: Factors Associated with Regression. J. Am. Heart Assoc. 2023, 12, e022417. [Google Scholar] [CrossRef]
- Dietz, S.M.; Kuipers, I.M.; Koole, J.C.D.; Breur, J.; Fejzic, Z.; Frerich, S.; Dalinghaus, M.; Roest, A.A.W.; Hutten, B.A.; Kuijpers, T.W. Regression and Complications of z-score-Based Giant Aneurysms in a Dutch Cohort of Kawasaki Disease Patients. Pediatr. Cardiol. 2017, 38, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Ae, R.; Abrams, J.Y.; Maddox, R.A.; Schonberger, L.B.; Nakamura, Y.; Kuwabara, M.; Makino, N.; Matsubara, Y.; Matsubara, D.; Kosami, K.; et al. Outcomes in Kawasaki disease patients with coronary artery abnormalities at admission. Am. Heart J. 2020, 225, 120–128. [Google Scholar] [CrossRef]
- Burns, J.C.; Roberts, S.C.; Tremoulet, A.H.; He, F.; Printz, B.F.; Ashouri, N.; Jain, S.S.; Michalik, D.E.; Sharma, K.; Truong, D.T.; et al. Infliximab versus second intravenous immunoglobulin for treatment of resistant Kawasaki disease in the USA (KIDCARE): A randomised, multicentre comparative effectiveness trial. Lancet Child Adolesc. Health 2021, 5, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Ae, R.; Makino, N.; Kuwabara, M.; Matsubara, Y.; Kosami, K.; Sasahara, T.; Nakamura, Y. Incidence of Kawasaki Disease before and after the COVID-19 Pandemic in Japan: Results of the 26th Nationwide Survey, 2019 to 2020. JAMA Pediatr. 2022, 176, 1217–1224. [Google Scholar] [CrossRef]
- Benezech, S.; Khoryati, L.; Cognard, J.; Netea, S.A.; Khan, T.; Moreews, M.; Saker, K.; De Guillebon, J.-M.; Khaldi-Plassart, S.; Pescarmona, R.; et al. Pre-Covid-19, SARS-CoV-2-Negative Multisystem Inflammatory Syndrome in Children. N. Engl. J. Med. 2023, 389, 2105–2107. [Google Scholar] [CrossRef]
- McArdle, A.J.; Vito, O.; Patel, H.; Seaby, E.G.; Shah, P.; Wilson, C.; Broderick, C.; Nijman, R.; Tremoulet, A.H.; Munblit, D.; et al. Treatment of Multisystem Inflammatory Syndrome in Children. N. Engl. J. Med. 2021, 385, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Son, M.B.F.; Murray, N.; Friedman, K.; Young, C.C.; Newhams, M.M.; Feldstein, L.R.; Loftis, L.L.; Tarquinio, K.M.; Singh, A.R.; Heidemann, S.M.; et al. Multisystem Inflammatory Syndrome in Children—Initial Therapy and Outcomes. N. Engl. J. Med. 2021, 385, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, D.; Kauffman, H.L.; Wang, Y.; Calderon-Anyosa, R.; Nadaraj, S.; Elias, M.D.; White, T.J.; Torowicz, D.L.; Yubbu, P.; Giglia, T.M.; et al. Echocardiographic Findings in Pediatric Multisystem Inflammatory Syndrome Associated with COVID-19 in the United States. J. Am. Coll. Cardiol. 2020, 76, 1947–1961. [Google Scholar] [CrossRef]
- Cattalini, M.; Della Paolera, S.; Zunica, F.; Bracaglia, C.; Giangreco, M.; Verdoni, L.; Meini, A.; Sottile, R.; Caorsi, R.; Zuccotti, G.; et al. Defining Kawasaki disease and pediatric inflammatory multisystem syndrome-temporally associated to SARS-CoV-2 infection during SARS-CoV-2 epidemic in Italy: Results from a national, multicenter survey. Pediatr. Rheumatol. Online J. 2021, 19, 29. [Google Scholar] [CrossRef]
- Farooqi, K.M.; Chan, A.; Weller, R.J.; Mi, J.; Jiang, P.; Abrahams, E.; Ferris, A.; Krishnan, U.S.; Pasumarti, N.; Suh, S.; et al. Longitudinal Outcomes for Multisystem Inflammatory Syndrome in Children. Pediatrics 2021, 148, e2021051155. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Sole, A.; Anton, J.; Pino-Ramirez, R.M.; Sanchez-Manubens, J.; Fumado, V.; Fortuny, C.; Rios-Barnes, M.; Sanchez-De-Toledo, J.; Girona-Alarcón, M.; Mosquera, J.M.; et al. Similarities and differences between the immunopathogenesis of COVID-19-related pediatric multisystem inflammatory syndrome and Kawasaki disease. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Netea, S.A.; Biesbroek, G.; van Stijn, D.; Ijspeert, H.; van der Made, C.I.; Jansen, M.H.; Geissler, J.; van den Berg, J.M.; van der Kuip, M.; Gruppen, M.P.; et al. Transient anti-cytokine autoantibodies superimpose the hyperinflammatory response in Kawasaki disease and multisystem inflammatory syndrome in children: A comparative cohort study on correlates of disease. eBioMedicine 2023, 95, 104736. [Google Scholar] [CrossRef]
- Moreews, M.; Le Gouge, K.; Khaldi-Plassart, S.; Pescarmona, R.; Mathieu, A.L.; Malcus, C.; Djebali, S.; Bellomo, A.; Dauwalder, O.; Perret, M.; et al. Polyclonal expansion of TCR Vbeta 21.3(+) CD4(+) and CD8(+) T cells is a hallmark of Multisystem Inflammatory Syndrome in Children. Sci. Immunol. 2021, 6, eabh1516. [Google Scholar] [CrossRef] [PubMed]
- Porritt, R.A.; Binek, A.; Paschold, L.; Rivas, M.N.; McArdle, A.; Yonker, L.M.; Alter, G.; Chandnani, H.K.; Lopez, M.; Fasano, A.; et al. The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Holm, M.; Espenhain, L.; Glenthoj, J.; Schmidt, L.S.; Nordly, S.B.; Hartling, U.B.; Nygaard, U. Risk and Phenotype of Multisystem Inflammatory Syndrome in Vaccinated and Unvaccinated Danish Children before and during the Omicron Wave. JAMA Pediatr. 2022, 176, 821–823. [Google Scholar] [CrossRef]
- Beaudoin, C.A.; Pandurangan, A.P.; Kim, S.Y.; Hamaia, S.W.; Huang, C.L.; Blundell, T.L.; Vedithi, S.C.; Jackson, A.P. In silico analysis of mutations near S1/S2 cleavage site in SARS-CoV-2 spike protein reveals increased propensity of glycosylation in Omicron strain. J. Med. Virol. 2022, 94, 4181–4192. [Google Scholar] [CrossRef]
Retrospective KD a-Group <2012 (n = 562) | Prospective KD a-Group ≥2012 (n = 440) | Significance (p Value) b | |
---|---|---|---|
Age at diagnosis (years) | 2.3 (0.9–4.5) | 3.1 (1.5–5.1) | <0.001 |
Male | 340 (60.5%) | 254 (57.9%) | 0.4 |
Symptoms a | |||
Fever c | 562 (100%) | 440 (100%) | N/A |
Rash | 484 (89.5%) | 354 (86.3%) | 0.2 |
Conjunctivitis | 453 (83.7%) | 359 (87.3%) | 0.1 |
Oral changes | 468 (86.2%) | 359 (88.4%) | 0.3 |
Cervical lymphadenopathy | 422 (79.2%) | 298 (75.8%) | 0.2 |
Changes of the extremities a | 451 (83.4%) | 311 (77.8%) | 0.04 |
Arthritis | 68 (13.3%) | 45 (10.2%) | 0.2 |
Abdominal symptoms | N/A | N/A | N/A |
Complete KD | 452 (81.3%) | 314 (75.5%) | 0.03 |
Complications | |||
Shock d | 2 (0.4%) | 8 (1.8%) | 0.02 |
Respiratory failure | 1 (0.2%) | 3 (0.7%) | 0.3 |
Acute kidney injury | 1 (0.2%) | 3 (0.7%) | 0.3 |
Laboratory findings e | |||
CRP, mg/L | 115.0 (68.0–184.8) | 125.0 (66.0–194.5) | 0.8 |
Leukocytes, 109/L | 15.8 (12.0–19.9) | 15.5 (11.8–19.5) | 0.8 |
Thrombocytes, 109/L | 384.5 (309.3–513.0) | 424.0 (308.0–552.5) | 0.08 |
Hemoglobin, mmol/L | 6.8 (6.3–7.3) | 6.7 (6.2–7.4) | 0.7 |
Albumin, g/L | 32.5 (29.8–38.8) | 32.0 (25.0–37.3) | 0.4 |
Treatment | |||
IVIG | 508 (90.9%) | 404 (92.2%) | 0.5 |
1st IVIG dose < 10 days | 382 (80.6%) | 296 (80.9%) | 0.9 |
2nd IVIG dose administered | 104 (21.0%) | 112 (28.9%) | 0.007 |
Corticosteroids | 30 (5.5%) | 61 (14.8%) | <0.001 |
Milrinone | 1 (0.4%) | 2 (0.5%) | 1.0 |
Noradrenaline | 2 (0.4%) | 4 (0.9%) | 0.3 |
ICU admission | 19 (3.5%) | 10 (2.5%) | 0.4 |
Coronary artery aneurysms | |||
None | 400 (77.5%) | 330 (79.9%) | |
Z score ≥ 2.5 to <5.0 | 52 (10.1%) | 43 (10.4%) | |
Z score ≥ 5 to <10 | 29 (5.6%) | 14 (3.4%) | |
Z score ≥ 10 | 35 (6.8%) | 26 (6.3%) | 0.3 |
Second KD-episode | 2 (0.4%) | 5 (1.2%) | 0.1 |
Data are n (%) or median (interquartile range) |
(A) | |||
Clinical Characteristic | Odds Ratio | 95% Confidence Interval | p Value |
Male sex | 2.2 | 1.3–3.8 | 0.002 |
Age < 1 year old | 2.6 | 1.9–4.4 | <0.001 |
Incomplete presentation | 1.0 | 0.5–1.7 | 0.8 |
1st IVIG dose >10 days | 2.7 | 1.5–4.9 | 0.001 |
IVIG resistance | 2.2 | 1.3–3.7 | 0.002 |
CRP ≥ 188.0 mg/L | 1.5 | 0.9–2.5 | 0.09 |
Leukocytes ≥ 16.5 × 109/L | 1.6 | 1.0–2.6 | 0.06 |
Thrombocytes ≤ 400.0 × 109/L | 1.5 | 0.9–2.5 | 0.1 |
(B) | |||
Clinical Characteristic | Odds Ratio | 95% Confidence Interval | p Value |
Male sex | 2.6 | 1.6–4.2 | <0.001 |
Age < 1 year old | 3.1 | 1.9–4.9 | 0.001 |
1st IVIG dose >10 days | 2.8 | 1.7–4.9 | <0.001 |
IVIG resistance | 2.2 | 1.4–3.6 | 0.001 |
CRP ≥ 188.0 mg/L | 1.8 | 1.1–2.9 | 0.01 |
Pre-Pandemic KD between 2012 and <2016 (n = 169) | Pre-Pandemic KD between 2016 and <2020 (n = 160) | Pandemic KD between 2020 and <2022 (n = 60) | Post-Pandemic KD between 2022 and <2024 (n = 51) | Significance (p Value) b | |
---|---|---|---|---|---|
Age at diagnosis (years) | 2.8 (1.3–4.9) | 3.2 (1.8–5.1) | 3.3 (1.8–5.9) | 3.2 (2.1–5.1) | 0.5 |
Sex | |||||
Female | 57 (33.7%) | 71 (44.7%) | 32 (53.3%) | 25 (48.0%) | |
Male | 112 (66.3%) | 88 (55.3%) | 28 (46.7%) | 26 (51.0%) | 0.02 |
Grandparents’ country of birth | |||||
All in The Netherlands | 78 (62.9%) | 66 (52.0%) | 17 (37.8%) | 9 (28.1%) | |
None in The Netherlands | 24 (19.4%) | 34 (26.8%) | 18 (40.0%) | 15 (46.9%) | 0.004 |
Symptoms a | |||||
Fever c | 169 (100%) | 160 (100%) | 60 (100%) | 51 (100%) | N/A |
Rash | 128 (83.1%) | 132 (88.0%) | 49 (86.0%) | 45 (91.8%) | 0.4 |
Conjunctivitis | 135 (87.1%) | 136 (90.1%) | 47 (82.5%) | 41 (85.4%) | 0.5 |
Oral changes | 130 (86.7%) | 135 (90.0%) | 51 (87.9%) | 43 (89.6%) | 0.8 |
Cervical lymphadenopathy | 115 (76.2%) | 117 (81.8%) | 34 (63.0%) | 32 (71.1%) | 0.04 |
Changes of the extremities | 110 (72.4%) | 127 (87.0%) | 38 (67.9%) | 36 (78.3%) | 0.005 |
Complete KD | 113 (72.0%) | 131 (86.2%) | 36 (62.1%) | 34 (69.4%) | <0.001 |
Complications | |||||
Shock d | 2 (1.2%) | 1 (0.6%) | 4 (6.7%) | 1 (2.0%) | 0.02 |
Respiratory failure | 1 (0.6%) | 0 (0.0%) | 1 (1.7%) | 1 (2.0%) | 0.4 |
Acute kidney injury | 1 (0.6%) | 1 (0.6%) | 0 (0.0%) | 1 (2.0%) | 0.6 |
Laboratory findings e | |||||
CRP, mg/L | 117.0 (54.5–171.5) | 167.5 (86.8–246.3) | 97.0 (67.0–169.0) | 103.0 (53.3–170.3) | 0.003 |
Leukocytes, 109/L | 15.1 (11.5–19.0) | 16.7 (11.7–20.3) | 14.3 (11.8–18.4) | 15.9 (13.3–19.6) | 0.4 |
Thrombocytes, 109/L | 401.0 (293.0–493.0) | 435.0 (309.5–574.5) | 472.0 (326.0–587.0) | 455.0 (355.8–639.0) | 0.04 |
Hemoglobin, mmol/L | 7.1 (6.5–7.6) | 6.6 (6.2–7.4) | 6.4 (6.0–7.2) | 6.5 (5.8–7.0) | <0.001 |
Albumin, g/L | 36.0 (26.0–40.0) | 32.0 (24.8–38.0) | 32.0 (27.0–37.0) | 28.5 (24.0–36.5) | 0.3 |
Treatment | |||||
IVIG | 157 (92.9%) | 147 (91.9%) | 52 (88.1%) | 48 (96.0%) | 0.5 |
1st IVIG dose <10 days | 112 (81.2%) | 113 (83.1%) | 39 (79.6%) | 32 (74.4%) | 0.7 |
2nd IVIG dose administered | 44 (29.5%) | 47 (33.3%) | 12 (23.1%) | 9 (20.0%) | 0.3 |
Corticosteroids | 16 (10.4%) | 22 (14.6%) | 14 (23.7%) | 9 (19.1%) | 0.08 |
ICU admission | 4 (2.7%) | 2 (1.4%) | 3 (5.1%) | 1 (2.1%) | 0.4 |
Coronary artery aneurysms | |||||
None | 124 (78.0%) | 124 (81.0%) | 46 (86.8%) | 34 (73.9%) | |
Z score ≥ 2.5 to <5.0 | 20 (12.6%) | 13 (8.5%) | 2 (3.8%) | 8 (17.4%) | |
Z score ≥ 5 to <10 | 3 (1.9%) | 6 (3.9%) | 4 (7.5%) | 1 (2.2%) | |
Z score ≥ 10 | 12 (7.5%) | 10 (6.6%) | 1 (1.9%) | 3 (6.5%) | N/A |
Second KD-episode | 2 (1.2%) | 3 (2.2%) | 0 (0%) | 0 (0%) | 0.7 |
Data are n (%) or median (interquartile range) |
Diagnosis in 2020 (n = 28) | Diagnosis in 2021 (n = 25) | Diagnosis in 2022 (n = 30) | Diagnosis in 2023 (n = 27) | Significance (p Value) b | |
---|---|---|---|---|---|
Age at diagnosis (years) | 4.3 (2.1–8.3) | 2.9 (1.2–4.0) | 3.5 (2.7–5.5) | 2.5 (0.7–3.9) | 0.05 |
Sex | |||||
Female | 14 (50%) | 13 (52.0%) | 15 (50%) | 15 (55.6%) | |
Male | 14 (50%) | 12 (48.0%) | 15 (50%) | 12 (44.4%) | 0.9 |
Grandparents’ country of birth | |||||
All in The Netherlands | 7 (38.9%) | 6 (28.6%) | 9 (47.4%) | 4 (21.1%) | |
None in The Netherlands | 6 (33.3%) | 11 (52.4%) | 7 (36.8%) | 9 (47.4%) | 0.6 |
Symptoms a | |||||
Fever c | 28 (100%) | 25 (100%) | 30 (100%) | 27 (100%) | N/A |
Rash | 26 (92.9%) | 17 (73.9%) | 26 (96.3%) | 24 (88.9%) | 0.1 |
Conjunctivitis | 23 (82.1%) | 20 (87.0%) | 22 (81.5%) | 22 (84.6%) | 1.0 |
Oral changes | 24 (88.9%) | 20 (83.3%) | 26 (92.9%) | 23 (88.5%) | 0.7 |
Cervical lymphadenopathy | 13 (50%) | 17 (77.3%) | 17 (65.4%) | 19 (79.2%) | 0.1 |
Changes of the extremities | 20 (74.1%) | 14 (60.9%) | 19 (73.1%) | 21 (84.0%) | 0.4 |
Complete KD | 18 (64.3%) | 14 (60.9%) | 19 (67.9%) | 19 (70.4%) | 0.9 |
Complications | |||||
Shock d | 2 (7.1%) | 1 (4.0%) | 2 (6.7%) | 0 (0%) | 0.7 |
Respiratory failure | 1 (3.6%) | 0 (0%) | 1 (3.3%) | 0 (0%) | 1.0 |
Acute kidney injury | 0 (0%) | 0 (0%) | 1 (3.3%) | 0 (0%) | 1.0 |
Treatment | |||||
IVIG | 22 (81.5%) | 23 (92.0%) | 29 (96.7%) | 25 (96.2%) | 0.2 |
1st IVIG dose <10 days | 18 (81.8%) | 16 (76.2%) | 20 (76.9%) | 16 (72.7%) | 0.9 |
2nd IVIG dose administered | 7 (31.8%) | 4 (17.4%) | 3 (11.1%) | 7 (29.2%) | 0.2 |
Corticosteroids | 8 (29.6%) | 4 (16.0%) | 6 (21.4%) | 4 (16.0%) | 0.6 |
ICU admission | 3 (11.1%) | 0 (0%) | 1 (3.5%) | 0 (0%) | 0.1 |
Coronary artery aneurysms | |||||
None | 21 (87.5%) | 19 (86.5%) | 24 (80.0%) | 18 (75.0%) | |
Z score ≥ 2.5 to <5.0 | 0 (0%) | 1 (4.5%%) | 3 (10.0%) | 5 (20.8%) | |
Z score ≥ 5 to <10 | 3 (12.5%) | 1 (4.5%) | 1 (3.3%) | 0 (0%) | |
Z score ≥ 10 | 0 (0%) | 1 (4.5%) | 2 (6.7%) | 1 (4.2%) | 0.1 |
Second KD-episode | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | N/A |
Data are n (%) or median (interquartile range) |
Pandemic KD a between 2020 and <2022 (n = 60) | MIS-C b (n = 73) | Significance Pandemic KD vs. MIS-C (p Value) c | |
---|---|---|---|
Age at diagnosis (years) | 3.3 (1.8–5.9) | 11.3 (6.0–13.8) | <0.001 |
Male | 28 (46.7%) | 48 (65.8%) | 0.02 |
Grandparents’ country of birth | |||
All in The Netherlands | 17 (37.8%) | 28 (44.4%) | |
None in The Netherlands | 18 (40.0%) | 25 (39.7%) | 0.6 |
Symptoms a | |||
Fever d | 60 (100%) | 73 (100%) | N/A |
Rash | 49 (86.0%) | 43 (60.6%) | 0.002 |
Conjunctivitis | 47 (82.5%) | 52 (73.2%) | 0.3 |
Oral changes | 51 (87.9%) | 47 (66.2%) | 0.006 |
Cervical lymphadenopathy | 34 (63.0%) | 34 (50.0%) | 0.2 |
Changes of the extremities a | 38 (67.9%) | 25 (36.8%) | <0.001 |
Arthritis | 4 (13.3%) | 7 (9.6%) | 1.0 |
Abdominal symptoms | N/A | 66 (94.3%) | N/A |
Complete KD | 36 (62.1%) | 22 (31.0%) | <0.001 |
Complications | |||
Shock e | 4 (6.7%) | 33 (45.2%) | <0.001 |
Respiratory failure | 1 (1.7%) | 19 (26.0%) | <0.001 |
Acute kidney injury | 0 (0.0%) | 14 (19.2%) | <0.001 |
Laboratory findings f | |||
CRP, mg/L | 97.0 (67.0–169.0) | 188.0 (129.0–283.0) | <0.001 |
Leukocytes, 109/L | 14.3 (11.8–18.4) | 14.1 (9.8–21.2) | 0.9 |
Thrombocytes, 109/L | 472.0 (326.0–587.0) | 350.0 (203.0–523.5) | 0.02 |
Hemoglobin, mmol/L | 6.4 (6.0–7.2) | 6.6 (5.9–7.2) | 0.9 |
Albumin, g/L | 32.0 (27.0–37.0) | 30.0 (26.0–36.0) | 0.7 |
Treatment | |||
IVIG | 52 (88.1%) | 66 (91.7%) | 0.6 |
1st IVIG dose <10 days | 39 (79.6%) | 62 (95.4%) | 0.02 |
2nd IVIG dose administered | 12 (23.1%) | 17 (25.8%) | 0.8 |
Corticosteroids | 14 (23.7%) | 55 (75.3%) | <0.001 |
Milrinone | 1 (1.7%) | 17 (23.3%) | <0.001 |
Noradrenaline | 1 (1.7%) | 17 (23.3%) | <0.001 |
ICU admission | 3 (5.1%) | 28 (38.4%) | <0.001 |
Coronary artery aneurysms | |||
None | 46 (86.8%) | 65 (90.3%) | |
Z score ≥ 2.5 to <5.0 | 2 (3.8%) | 6 (8.3%) | |
Z score ≥ 5 to <10 | 4 (7.5%) | 1 (1.4%) | |
Z score ≥ 10 | 1 (1.9%) | 0 (0%) | 0.01 |
Cardiac dysfunction g | 0 (0.0%) | 39 (81.3%) | N/A |
Second KD-episode | 0 (0.0%) | 0 (0%) | N/A |
Data are n (%) or median (interquartile range) |
Diagnosis in 2020 (n = 21) | Diagnosis in 2021 (n = 29) | Diagnosis in 2022 (n = 23) | Significance (p Value) b | |
---|---|---|---|---|
Age at diagnosis (years) | 11.8 (6.9–16.3) | 11.3 (5.4–13.0) | 10.8 (6.3–12.7) | 0.4 |
Sex | ||||
Female | 9 (42.9%) | 11 (37.9%) | 5 (21.7%) | |
Male | 12 (57.1%) | 18 (62.1%) | 18 (78.3%) | 0.3 |
Grandparents’ country of birth | ||||
All in The Netherlands | 6 (31.6%) | 8 (36.4%) | 14 (63.6%) | |
None in The Netherlands | 10 (52.6%) | 8 (36.4%) | 7 (31.8%) | 0.1 |
Symptoms a | ||||
Fever c | 20 (100%) | 29 (100%) | 22 (100%) | N/A |
Rash | 14 (66.7%) | 15 (51.7%) | 14 (66.7%) | 0.4 |
Conjunctivitis | 13 (61.9%) | 22 (75.9%) | 17 (81.0%) | 0.3 |
Oral changes | 12 (57.1%) | 20 (69.0%) | 15 (71.4%) | 0.7 |
Cervical lymphadenopathy | 14 (66.7%) | 11 (39.3%) | 9 (47.4%) | 0.2 |
Changes of the extremities | 8 (38.1%) | 14 (50.0%) | 3 (15.8%) | 0.05 |
Abdominal symptoms | 20 (95.2%) | 28 (96.6%) | 18 (90.0%) | 0.6 |
Complete KD | 9 (42.9%) | 8 (27.6%) | 5 (23.8%) | 0.5 |
Complications | ||||
Shock d | 9 (42.9%) | 17 (58.6%) | 7 (30.4%) | 0.1 |
Respiratory failure | 9 (42.9%) | 9 (31.0%) | 1 (4.3%) | 0.007 |
Acute kidney injury | 6 (28.6%) | 8 (27.6%) | 0 (0.0%) | 0.009 |
Laboratory findings e | ||||
CRP, mg/L | 254.5 (117.0–323.3) | 212.0 (129.0–264.0) | 154.0 (124.5–196.0) | 0.2 |
Leukocytes, 109/L | 16.0 (9.6–22.9) | 16.3 (10.1–22.6) | 13.2 (9.1–14.9) | 0.08 |
Thrombocytes, 109/L | 473.0 (214.5–639.5) | 404.0 (239.5–552.5) | 277.5 (150.3–371.0) | 0.1 |
Hemoglobin, mmol/L | 6.5 (5.6–7.3) | 6.3 (5.9–6.9) | 6.9 (6.4–7.3) | 0.2 |
Albumin, g/L | 30.0 (25.0–35.0) | 27.0 (24.5–30.0) | 39.0 (34.0–41.0) | <0.001 |
NT-pro-BNP, ng/L | 4414.5 (1975.0–12,364.0) | 4301.0 (1682.0–15,710.0) | 2238.0 (697.5–5763.5) | 0.1 |
Troponin T, ng/L | 46.0 (12.0–65.0) | 48.5 (15.0–120.0) | 35.0 (10.5–106.8) | 0.7 |
Treatment | ||||
IVIG | 18 (85.7%) | 27 (93.1%) | 21 (95.5%) | 0.6 |
1st IVIG dose <10 days | 17 (94.4%) | 26 (96.3%) | 19 (95.0%) | 1.0 |
2nd IVIG dose administered | 6 (33.3%) | 6 (22.2%) | 5 (23.8%) | 0.7 |
Corticosteroids | 11 (52.4%) | 26 (89.7%) | 18 (78.3%) | 0.01 |
Milrinone | 7 (33.3%) | 10 (34.5%) | 0 (0.0%) | 0.006 |
Noradrenaline | 8 (38.1%) | 12 (41.4%) | 0 (0.0%) | 0.002 |
ICU admission | 11 (52.4%) | 13 (44.8%) | 4 (17.4%) | 0.04 |
Coronary artery aneurysms | ||||
None | 15 (75.0%) | 27 (93.1%) | 23 (100%) | |
Z score ≥ 2.5 to <5.0 | 4 (20.0%) | 2 (6.9%) | 0 (0.0%) | |
Z score ≥ 5 to <10 | 1 (5.0%) | 0 (0.0%) | 0 (0.0%) | |
Z score ≥ 10 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0.02 |
Second KD-episode | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | N/A |
Data are n (%) or median (interquartile range) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netea, S.A.; Biesbroek, G.; van Stijn, D.; Nagelkerke, S.Q.; Kawasaki Study Group; CAHAL Group; KIRI Group; Kuipers, I.M.; Kuijpers, T.W. Kawasaki Disease Diagnosis and Treatment in over 1000 Patients: A Continuum of Dysregulated Inflammatory Responses. Biomedicines 2024, 12, 2014. https://doi.org/10.3390/biomedicines12092014
Netea SA, Biesbroek G, van Stijn D, Nagelkerke SQ, Kawasaki Study Group, CAHAL Group, KIRI Group, Kuipers IM, Kuijpers TW. Kawasaki Disease Diagnosis and Treatment in over 1000 Patients: A Continuum of Dysregulated Inflammatory Responses. Biomedicines. 2024; 12(9):2014. https://doi.org/10.3390/biomedicines12092014
Chicago/Turabian StyleNetea, Stejara A., Giske Biesbroek, Diana van Stijn, Sietse Q. Nagelkerke, Kawasaki Study Group, CAHAL Group, KIRI Group, Irene M. Kuipers, and Taco W. Kuijpers. 2024. "Kawasaki Disease Diagnosis and Treatment in over 1000 Patients: A Continuum of Dysregulated Inflammatory Responses" Biomedicines 12, no. 9: 2014. https://doi.org/10.3390/biomedicines12092014
APA StyleNetea, S. A., Biesbroek, G., van Stijn, D., Nagelkerke, S. Q., Kawasaki Study Group, CAHAL Group, KIRI Group, Kuipers, I. M., & Kuijpers, T. W. (2024). Kawasaki Disease Diagnosis and Treatment in over 1000 Patients: A Continuum of Dysregulated Inflammatory Responses. Biomedicines, 12(9), 2014. https://doi.org/10.3390/biomedicines12092014