Immunological Avalanches in Renal Immune Diseases
Abstract
:1. Introduction
2. Oscillating Diseases
3. The Framework of Avalanche
- A complex system composed of several interacting parts.
- Non-linear interactions among elements.
- A weak driving mechanism (bias force) applied to select units, which gradually increases the system’s potential energy until reaching a threshold that triggers an avalanche.
- An inhibitory system that stops the avalanche.
- (a)
- Power Law Scaling: The frequency of immune events decreases as a power of the event size, meaning small immune responses are common while large-scale responses (avalanches) are rare but significant. Unlike systems with “characteristic” sizes, immune responses can range from localized cellular activity to massive system-wide engagement, allowing for proportional responses to threats.
- (b)
- Scale-Free Properties: The network exhibits similar statistical patterns at different scales, with most nodes (cells) having few connections while certain hubs (like regulatory T cells or memory cells) are highly connected. This structure makes the system robust against random perturbations but vulnerable to disruptions of hub cells, potentially explaining the emergence of certain immune disorders.
- (c)
- Metastability: The system alternates between periods of relative calm (remission) and abrupt activity bursts (flares), a pattern characteristic of many chronic immune-mediated diseases.
4. Avalanches in Immune Disease: Overview
- -
- Disease management might be more effective by keeping the system slightly away from its critical point rather than attempting complete suppression.
- -
- Network modulation could prove more beneficial than targeting individual molecular pathways.
- -
- Patient response variability to treatments might be explained by their network’s proximity to criticality.
- -
- Early warning signals, similar to seismological precursors, might help predict major flares.
5. Immunological Avalanche in Lupus Nephritis
5.1. Definition and Epidemiology of Systemic Lupus Erythematosus (SLE)
5.2. Pathogenesis of Lupus Nephritis
6. Immunological Avalanches in Kidney Transplant
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Padulo, J.; Di Capua, R.; Viggiano, D. Pedaling time variability is increased in dropped riding position. Eur. J. Appl. Physiol. 2012, 112, 3161–3165. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.S.; Ortuno, S.; Lebrun-Vignes, B.; Johnson, D.B.; Moslehi, J.J.; Hertig, A.; Salem, J.-E. Transplant rejections associated with immune checkpoint inhibitors: A pharmacovigilance study and systematic literature review. Eur. J. Cancer 2021, 148, 36–47. [Google Scholar] [CrossRef]
- Ruperto, N.; Hanrahan, L.; Alarcón, G.; Belmont, H.; Brey, R.; Brunetta, P.; Buyon, J.; Costner, M.; Cronin, M.; Dooley, M.; et al. International consensus for a definition of disease flare in lupus. Lupus 2011, 20, 453–462. [Google Scholar] [CrossRef]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Fanouriakis, A.; Tziolos, N.; Bertsias, G.; Boumpas, D.T. Update οn the diagnosis and management of systemic lupus erythematosus. Ann. Rheum. Dis. 2021, 80, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Steinman, L. Immunology of Relapse and Remission in Multiple Sclerosis. Annu. Rev. Immunol. 2014, 32, 257–281. [Google Scholar] [CrossRef]
- Kuijper, T.M.; Lamers-Karnebeek, F.B.G.; Jacobs, J.W.G.; Hazes, J.M.W.; Luime, J.J. Flare Rate in Patients with Rheumatoid Arthritis in Low Disease Activity or Remission When Tapering or Stopping Synthetic or Biologic DMARD: A Systematic Review. J. Rheumatol. 2015, 42, 2012–2022. [Google Scholar] [CrossRef]
- Beggs, J.M.; Plenz, D. Neuronal Avalanches in Neocortical Circuits. J. Neurosci. 2003, 23, 11167–11177. [Google Scholar] [CrossRef]
- Needleman, J.P.; Franco, M.E.; Varlotta, L.; Reber-Brodecki, D.; Bauer, N.; Dampier, C.; Allen, J.L. Mechanisms of nocturnal oxyhemoglobin desaturation in children and adolescents with sickle cell disease. Pediatr. Pulmonol. 1999, 28, 418–422. [Google Scholar] [CrossRef]
- Yoong, W.C.; Tuck, S.M. Menstrual pattern in women with sickle cell anaemia and its association with sickling crises. J. Obstet. Gynaecol. 2002, 22, 399–401. [Google Scholar] [CrossRef]
- Moulinet, T.; Moussu, A.; Pierson, L.; Pagliuca, S. The many facets of immune-mediated thrombocytopenia: Principles of immunobiology and immunotherapy. Blood Rev. 2024, 63, 101141. [Google Scholar] [CrossRef] [PubMed]
- Dobó, J.; Kocsis, A.; Farkas, B.; Demeter, F.; Cervenak, L.; Gál, P. The Lectin Pathway of the Complement System—Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int. J. Mol. Sci. 2024, 25, 1566. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, R.A. Paroxysmal nocturnal hemoglobinuria. Blood 2014, 124, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Hall, C.; Marsh, J.C.W.; Elebute, M.; Bombara, M.P.; Petro, B.E.; Cullen, M.J.; Richards, S.J.; Rollins, S.A.; Mojcik, C.F.; et al. Effect of Eculizumab on Hemolysis and Transfusion Requirements in Patients with Paroxysmal Nocturnal Hemoglobinuria. N. Engl. J. Med. 2004, 350, 552–559. [Google Scholar] [CrossRef]
- Fakhouri, F.; Zuber, J.; Frémeaux-Bacchi, V.; Loirat, C. Haemolytic uraemic syndrome. Lancet 2017, 390, 681–696. [Google Scholar] [CrossRef]
- Doyle, A.J.; Stubbs, M.J.; Dutt, T.; Lester, W.; Thomas, W.; van Veen, J.; Hermans, J.; Cranfield, T.; Hill, Q.A.; Clark, A.; et al. Long-term risk of relapse in immune-mediated thrombotic thrombocytopenic purpura and the role of anti-CD20 therapy. Blood 2023, 141, 285–294. [Google Scholar] [CrossRef]
- Steinberg, M.H. Sickle Cell Anemia, the First Molecular Disease: Overview of Molecular Etiology, Pathophysiology, and Therapeutic Approaches. Sci. World J. 2008, 8, 1295–1324. [Google Scholar] [CrossRef]
- Rajabi, F.; Drake, L.A.; Senna, M.M.; Rezaei, N. Alopecia areata: A review of disease pathogenesis. Br. J. Dermatol. 2018, 179, 1033–1048. [Google Scholar] [CrossRef]
- Saceda-Corralo, D.; Grimalt, R.; Fernández-Crehuet, P.; Clemente, A.; Bernárdez, C.; García-Hernandez, M.J.; Arias-Santiago, S.; Rodrigues-Barata, A.R.; Rodríguez-Pichardo, A.; García-Lora, E.; et al. Beard alopecia areata: A multicentre review of 55 patients. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 187–192. [Google Scholar] [CrossRef]
- Pratt, C.H.; King, L.E.; Messenger, A.G.; Christiano, A.M.; Sundberg, J.P. Alopecia areata. Nat. Rev. Dis. Prim. 2017, 3, 17011. [Google Scholar] [CrossRef]
- Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J. Allergy Clin. Immunol. Pract. 2017, 5, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol. 2015, 5, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Kuo, I.-H.; Yoshida, T.; De Benedetto, A.; Beck, L.A. The cutaneous innate immune response in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2013, 131, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Sucher, E.; Sucher, R.; Gradistanac, T.; Brandacher, G.; Schneeberger, S.; Berg, T. Autoimmune Hepatitis—Immunologically Triggered Liver Pathogenesis—Diagnostic and Therapeutic Strategies. J. Immunol. Res. 2019, 2019, 9437043. [Google Scholar] [CrossRef]
- Harrison, L.; Adams-Nye, J.; Lawrence, E.; McFarlane, E.; Hoeroldt, B.; Gleeson, D. PTU-083 Long-Term Follow-Up of Patients with Autoimmune Hepatitis after Withdrawal of Immunosuppressant Therapy. Gut 2016, 65 (Suppl. S1), A95. [Google Scholar] [CrossRef]
- Kirtschig, G.; Middleton, P.; Bennett, C.; Murrell, D.F.; Wojnarowska, F.; Khumalo, N.P. Interventions for bullous pemphigoid. Cochrane Database Syst. Rev. 2010, 2010, CD002292. [Google Scholar] [CrossRef]
- Fischer, K.; Bahlo, J.; Fink, A.M.; Goede, V.; Herling, C.D.; Cramer, P.; Langerbeins, P.; von Tresckow, J.; Engelke, A.; Maurer, C.; et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood 2016, 127, 208–215. [Google Scholar] [CrossRef]
- Dale, D.C.; Bolyard, A.A.; Aprikyan, A. Cyclic neutropenia. Semin. Hematol. 2002, 39, 89–94. [Google Scholar] [CrossRef]
- Aceves, S.S. Eosinophilic Esophagitis. Immunol. Allergy Clin. N. Am. 2015, 35, 145–159. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 2015, 14, 174–180. [Google Scholar] [CrossRef]
- McIver, B.; Morris, J.C. The pathogenesis of graves’ disease. Endocrinol. Metab. Clin. N. Am. 1998, 27, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Kolkhir, P.; Muñoz, M.; Asero, R.; Ferrer, M.; Kocatürk, E.; Metz, M.; Xiang, Y.-K.; Maurer, M. Autoimmune chronic spontaneous urticaria. J. Allergy Clin. Immunol. 2022, 149, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef]
- Bots, S.J.; Kuin, S.; Ponsioen, C.Y.; Gecse, K.B.; Duijvestein, M.; D’Haens, G.R.; Löwenberg, M. Relapse rates and predictors for relapse in a real-life cohort of IBD patients after discontinuation of anti-TNF therapy. Scand. J. Gastroenterol. 2019, 54, 281–288. [Google Scholar] [CrossRef]
- Nigro, M.; Viggiano, D.; Ragone, V.; Trabace, T.; di Palma, A.; Rossini, M.; Capasso, G.; Gesualdo, L.; Gigliotti, G. A cross-sectional study on the relationship between hematological data and quantitative morphological indices from kidney biopsies in different glomerular diseases. BMC Nephrol. 2018, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Prim. 2021, 7, 86. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Tjärnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; Visser, M.d.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann. Rheum. Dis. 2017, 76, 1955–1964. [Google Scholar] [CrossRef]
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal Change Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 332–345. [Google Scholar] [CrossRef]
- Constantinescu, A.R.; Shah, H.B.; Foote, E.F.; Weiss, L.S. Predicting First-Year Relapses in Children With Nephrotic Syndrome. Pediatrics 2000, 105, 492–495. [Google Scholar] [CrossRef]
- Baecher-Allan, C.; Kaskow, B.J.; Weiner, H.L. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018, 97, 742–768. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef]
- Crow, M.K. Pathogenesis of systemic lupus erythematosus: Risks, mechanisms and therapeutic targets. Ann. Rheum. Dis. 2023, 82, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Zlomuzica, A.; Viggiano, D.; Degen, I.; Binder, S.; Ruocco, L.A.; Sadile, A.G.A.; Willecke, K.; Huston, J.J.P.; Dere, E.; Degen, J.; et al. Behavioral alterations and changes in Ca/calmodulin kinase II levels in the striatum of connexin36 deficient mice. Behav. Brain Res. 2012, 226, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Judd, L.L.; Akiskal, H.S.; Schettler, P.J.; Endicott, J.; Maser, J.; Solomon, D.A.; Leon, A.C.; Rice, J.A.; Keller, M.B. The Long-term Natural History of the Weekly Symptomatic Status of Bipolar I Disorder. Arch. Gen. Psychiatry 2002, 59, 530. [Google Scholar] [CrossRef] [PubMed]
- Arron, H.E.; Marsh, B.D.; Kell, D.B.; Khan, M.A.; Jaeger, B.R.; Pretorius, E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The biology of a neglected disease. Front. Immunol. 2024, 15, 1386607. [Google Scholar] [CrossRef]
- Jason, L.A.; Richman, J.A.; Rademaker, A.W.; Jordan, K.M.; Plioplys, A.V.; Taylor, R.R.; McCready, W.; Huang, C.-F.; Plioplys, S. A Community-Based Study of Chronic Fatigue Syndrome. Arch. Intern. Med. 1999, 159, 2129. [Google Scholar] [CrossRef]
- Brandt, R.B.; Mulleners, W.; Wilbrink, L.A.; Brandt, P.; van Zwet, E.W.; Huygen, F.J.; Ferrari, M.D.; Fronczek, R. Intra- and interindividual attack frequency variability of chronic cluster headache. Cephalalgia 2023, 43, 03331024221139239. [Google Scholar] [CrossRef]
- Cataldi, M.; Lariccia, V.; Marzaioli, V.; Cavaccini, A.; Curia, G.; Viggiano, D.; Canzoniero, L.M.T.M.T.; Renzo, G.; Avoli, M.; Annunziato, L.; et al. Zn2+ Slows Down CaV 3. 3 Gating Kinetics: Implications for Thalamocortical Activity. J. Neurophysiol. 2007, 98, 2274–2284. [Google Scholar] [CrossRef]
- Charles, A. The pathophysiology of migraine: Implications for clinical management. Lancet Neurol. 2018, 17, 174–182. [Google Scholar] [CrossRef]
- Dent, W.; Stelzhammer, B.; Meindl, M.; Matuja, W.B.P.; Schmutzhard, E.; Winkler, A.S. Migraine Attack Frequency, Duration, and Pain Intensity: Disease Burden Derived From a Community-Based Survey in Northern Tanzania. Headache J. Head Face Pain 2011, 51, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, I.; Zou, J.; Vetkas, N. Changes in symptom pattern in Meniere’s disease by duration: The need for comprehensive management. Front. Neurol. 2024, 15, 1496384. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.L.; Malspeis, S.; Kubzansky, L.D.; Feldman, C.H.; Chang, S.-C.; Koenen, K.C.; Costenbader, K.H. Association of Trauma and Posttraumatic Stress Disorder with Incident Systemic Lupus Erythematosus in a Longitudinal Cohort of Women. Arthritis Rheumatol. 2017, 69, 2162–2169. [Google Scholar] [CrossRef]
- Reefman, E.; Kuiper, H.; Jonkman, M.F.; Limburg, P.C.; Kallenberg, C.G.M.; Bijl, M. Skin sensitivity to UVB irradiation in systemic lupus erythematosus is not related to the level of apoptosis induction in keratinocytes. Rheumatology 2006, 45, 538–544. [Google Scholar] [CrossRef]
- Muñoz, L.E.; Janko, C.; Grossmayer, G.E.; Frey, B.; Voll, R.E.; Kern, P.; Kalden, J.R.; Schett, G.; Fietkau, R.; Herrmann, M.; et al. Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis Rheum. 2009, 60, 1733–1742. [Google Scholar] [CrossRef]
- Hahn, B.H.; Ebling, F.; Singh, R.R.; Singh, R.P.; Karpouzas, G.; La Cava, A. Cellular and molecular mechanisms of regulation of autoantibody production in lupus. Ann. N. Y. Acad. Sci. 2005, 1051, 433–441. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N. The basis of autoimmunity: Part I. Mechanisms of aberrant self-recognition. Immunol. Today 1995, 16, 90–98. [Google Scholar] [CrossRef]
- Kotzin, B.L. Systemic lupus erythematosus. Cell 1996, 85, 303–306. [Google Scholar] [CrossRef]
- von Drathen, S.; Gold, S.M.; Peper, J.; Rahn, A.C.; Ramien, C.; Magyari, M.; Hansen, H.-C.; Friede, T.; Heesen, C. Stress and Multiple Sclerosis—Systematic review and meta-analysis of the association with disease onset, relapse risk and disability progression. Brain Behav. Immun. 2024, 120, 620–629. [Google Scholar] [CrossRef]
- Campmans-Kuijpers, M.J.E.; Dijkstra, G. Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021, 13, 1067. [Google Scholar] [CrossRef]
- Qiu, P.; Ishimoto, T.; Fu, L.; Zhang, J.; Zhang, Z.; Liu, Y. The Gut Microbiota in Inflammatory Bowel Disease. Front. Cell. Infect. Microbiol. 2022, 12, 733992. [Google Scholar] [CrossRef]
- Azzouz, D.F.; Chen, Z.; Izmirly, P.M.; Chen, L.A.; Li, Z.; Zhang, C.; Mieles, D.; Trujillo, K.; Heguy, A.; Pironti, A.; et al. Longitudinal gut microbiome analyses and blooms of pathogenic strains during lupus disease flares. Ann. Rheum. Dis. 2023, 82, 1315–1327. [Google Scholar] [CrossRef]
- Slight-Webb, S.; Lu, R.; Ritterhouse, L.L.; Munroe, M.E.; Maecker, H.T.; Fathman, C.G.; Utz, P.J.; Merrill, J.T.; Guthridge, J.M.; James, J.A. Autoantibody-Positive Healthy Individuals Display Unique Immune Profiles That May Regulate Autoimmunity. Arthritis Rheumatol. 2016, 68, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Munroe, M.E.; Guthridge, J.M.; Bean, K.M.; Fife, D.A.; Chen, H.; Slight-Webb, S.R.; Keith, M.P.; Harley, J.B.; James, J.A. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 2016, 74, 182–193. [Google Scholar] [CrossRef] [PubMed]
- MacGillivray, D.M.; Kollmann, T.R. The Role of Environmental Factors in Modulating Immune Responses in Early Life. Front. Immunol. 2014, 5, 434. [Google Scholar] [CrossRef] [PubMed]
- Wautier, J.-L.; Wautier, M.-P. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int. J. Mol. Sci. 2023, 24, 9647. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C. Genomic modulators of the immune response. Trends Genet. 2013, 29, 74–83. [Google Scholar] [CrossRef]
- Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef]
- Tarasova, O.; Petrou, A.; Ivanov, S.M.; Geronikaki, A.; Poroikov, V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 9408. [Google Scholar] [CrossRef]
- Rosser, E.C.; Mauri, C. Regulatory B Cells: Origin, Phenotype, and Function. Immunity 2015, 42, 607–612. [Google Scholar] [CrossRef]
- de Bernard, M.; Kaparakis-Liaskos, M.; D’Elios, M.M. Editorial: Modulation of the immune system by bacteria: From evasion to therapy. Front. Immunol. 2023, 13, 1112427. [Google Scholar] [CrossRef]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocińska, M.K.; Majka, M. Immunomodulation—A general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef]
- Lange, T.; Kasper, L.; Gresnigt, M.S.; Brunke, S.; Hube, B. “Under Pressure”—How fungi evade, exploit, and modulate cells of the innate immune system. Semin. Immunol. 2023, 66, 101738. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Tracey, K.J. The vagus nerve and the inflammatory reflex—Linking immunity and metabolism. Nat. Rev. Endocrinol. 2012, 8, 743–754. [Google Scholar] [CrossRef]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Milling, S. Beyond cytokines: Influences of the endocrine system on human immune homeostasis. Immunology 2021, 163, 113–114. [Google Scholar] [CrossRef]
- Farré, R.; Fiorani, M.; Abdu Rahiman, S.; Matteoli, G. Intestinal Permeability, Inflammation and the Role of Nutrients. Nutrients 2020, 12, 1185. [Google Scholar] [CrossRef]
- Gigliotti, G.; Joshi, R.; Khalid, A.; Widmer, D.; Boccellino, M.; Viggiano, D. Epigenetics, Microbiome and Personalized Medicine: Focus on Kidney Disease. Int. J. Mol. Sci. 2024, 25, 8592. [Google Scholar] [CrossRef]
- Fukuda, D.; Pham, P.T.; Sata, M. Emerging Roles of the Innate Immune System Regulated by DNA Sensors in the Development of Vascular and Metabolic Diseases. J. Atheroscler. Thromb. 2022, 29, RV17059. [Google Scholar] [CrossRef]
- Flierl, M.A.; Rittirsch, D.; Huber-Lang, M.; Sarma, J.V.; Ward, P.A. Catecholamines—Crafty Weapons in the Inflammatory Arsenal of Immune/Inflammatory Cells or Opening Pandora’s Box? Mol. Med. 2008, 14, 195–204. [Google Scholar] [CrossRef]
- Danila, M.I.; Pons-Estel, G.J.; Zhang, J.; Vilá, L.M.; Reveille, J.D.; Alarcón, G.S. Renal damage is the most important predictor of mortality within the damage index: Data from LUMINA LXIV, a multiethnic US cohort. Rheumatology 2009, 48, 542–545. [Google Scholar] [CrossRef]
- Kazi, A.M.; Hashmi, M.F. Glomerulonephritis; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Malamud, B.D.; Morein, G.; Turcotte, D.L. Forest Fires: An Example of Self-Organized Critical Behavior. Science 1998, 281, 1840–1842. [Google Scholar] [CrossRef]
- Ben-Menachem, E. Review article: Systemic lupus erythematosus: A review for anesthesiologists. Anesth. Analg. 2010, 111, 665–676. [Google Scholar] [CrossRef]
- Smith, C.D.; Cyr, M. The history of lupus erythematosus. From Hippocrates to Osler. Rheum. Dis. Clin. N. Am. 1988, 14, 1–14. [Google Scholar] [CrossRef]
- Holubar, K. History of lupus erythematosus. Acta Dermatovenerol. Alp. Pannonica Adriat. 2006, 15, 191–194. [Google Scholar]
- Manson, J.J.; Rahman, A. Systemic lupus erythematosus. Orphanet J. Rare Dis. 2006, 1, 6. [Google Scholar] [CrossRef]
- Anders, H.-J.; Saxena, R.; Zhao, M.-H.; Parodis, I.; Salmon, J.E.; Mohan, C. Lupus nephritis. Nat. Rev. Dis. Prim. 2020, 6, 7. [Google Scholar] [CrossRef]
- Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the epidemiology and progression of systemic lupus erythematosus. Semin. Arthritis Rheum. 2010, 39, 257–268. [Google Scholar] [CrossRef]
- Tamirou, F.; Houssiau, F.A. Management of Lupus Nephritis. J. Clin. Med. 2021, 10, 670. [Google Scholar] [CrossRef]
- Rovin, B.H.; Parikh, S.V.; Alvarado, A. The kidney biopsy in lupus nephritis: Is it still relevant? Rheum. Dis. Clin. N. Am. 2014, 40, 537–552. [Google Scholar] [CrossRef]
- Rush, D.; Nickerson, P.; Gough, J.; McKenna, R.; Grimm, P.; Cheang, M.; Trpkov, K.; Solez, K.; Jeffery, J. Beneficial effects of treatment of early subclinical rejection. J. Am. Soc. Nephrol. 1998, 9, 2129–2134. [Google Scholar] [CrossRef]
- Parajuli, S.; Zhong, W.; Pantha, M.; Sokup, M.; Aziz, F.; Garg, N.; Mohamed, M.; Mandelbrot, D. The Trend of Serum Creatinine Does Not Predict Follow-Up Biopsy Findings Among Kidney Transplant Recipients with Antibody-Mediated Rejection. Transplant. Direct 2023, 9, e1489. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Marconi, U.; Puglisi, A.; Rondoni, L.; Vulpiani, A. Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep. 2008, 461, 111–195. [Google Scholar] [CrossRef]
- Lippiello, E.; Corberi, F.; Zannetti, M. Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Phys. Rev. E 2005, 71, 036104. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef]
- Sarracino, A.; Arviv, O.; Shriki, O.; de Arcangelis, L. Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity. Phys. Rev. Res. 2020, 2, 033355. [Google Scholar] [CrossRef]
- Nandi, M.K.; de Candia, A.; Sarracino, A.; Herrmann, H.J.; de Arcangelis, L. Fluctuation-dissipation relations in the imbalanced Wilson-Cowan model. Phys. Rev. E 2023, 107, 064307. [Google Scholar] [CrossRef]
Name | Periodicity of Flares | Type of System (Particles) Involved |
---|---|---|
Paroxysmal nocturnal hemoglobinuria [13] | Weeks [14] | Complement |
Thrombotic microangiopathies [15] (hemolitic uremic syndrome, purpura thrombotic thrombocytopenic) | 1.7 Years [16] | Complement |
Sickle cell crisis | Weeks [10,17] | Erythrocytes |
Alopecia areata [18] | Months [19,20] | Immune |
Asthma [21] | Days to weeks [22] | Immune |
Atopic dermatitis (eczema) | Days to weeks [23] | Immune |
Autoimmune hepatitis [24] | Months [25] | Immune |
Bulloid pemphygous | Weeks to years [26] | Immune |
Chronic lymphocytic leukemia (CLL) | Years [27] | Immune |
Cyclic neutropenia | 21 days [28] | Immune |
Eosinophilic esophagitis [29] | Months | Immune |
Graves’ disease [30] | Months to years [31] | Immune |
Hives (urticaria) | Hours to days [32] | Immune |
IBD (Crohn’s disease and ulcerative colitis) [33] | 18–32 months [34] | Immune |
IgA nephropathy [35] | Months [36] | Immune |
Inflammatory myopathies (e.g., dermatomyositis, polymyositis) [37] | Months [38] | Immune |
Minimal change disease [39] | Months [40] | Immune |
Multiple sclerosis (MS) [41] | Weeks to months [42] | Immune |
Polymyalgia rheumatica (PMR) | Weeks to months | Immune |
Rheumatoid arthritis (RA) | Weeks to months [7] | Immune |
SLE [43] | Weeks to months | Immune |
Bipolar disorder, anxiety [44] | About one year [45] | Nervous system |
Chronic fatigue syndrome/myalgic encephalomyelitis [46] | Weeks to months [47] | Nervous system |
Cluster headache | Weeks to months [48] | Nervous system |
Epilepsy [49] | Hours to months | Nervous system |
Migraine [50] | Weeks [51] | Nervous system |
Parkinson’s disease [52] | Weeks to months | Nervous system |
Meniere’s disease | Weeks [53] | Otoliths (?) |
Disease | Trigger/Initiating Factor | Immunological Dynamics | Impact |
---|---|---|---|
Systemic Lupus Erythematosus (SLE) | UV light, infections, and stress | Autoantibodies trigger immune complex formation, leading to complement activation and tissue inflammation. | Kidney, skin, and CNS damage; systemic flares. |
Multiple Sclerosis (MS) | Infection, stress, and environmental factors [60] | T cell-mediated attack on myelin sheaths, alternating between remission and inflammatory flares. | Neurodegeneration and disability. |
Asthma | Allergens and pollutants | Mast cells and eosinophils initiate acute inflammatory responses during exacerbations. | Airway constriction and inflammation. |
Ulcerative Colitis (UC) | Gut microbiota imbalance [33] and dietary factors [61] | T cell activation and cytokine release create cycles of calm and severe inflammation in the colon. | Chronic inflammation, tissue damage, and increased cancer risk. |
Crohn’s Disease | Gut microbiota imbalance [62] and genetic predisposition | Transmural inflammation with flares driven by dysregulated T cell responses. | Fibrosis, obstruction, and fistulas. |
Triggers | Inhibitors |
---|---|
Environmental factors: allergens, toxins, and stress, exposure to chemicals, pollutants, or UV radiation [66] | Anti-inflammatory cytokines: IL-10 and TGF-β, IL-37 [67] |
Genetic predispositions [68] | Regulatory T cells (Tregs) [69] |
Viruses: EBV, CMV, and HSV [70] | B regulatory cells (Bregs) [71] |
Bacteria: Mycobacterium, Streptococcus, and Helicobacter pylori [72] | Immunosuppressive drugs [73] |
Fungi/parasites: Candida, Toxoplasma [74] | Vagal–immune mechanisms [75] |
Pro-inflammatory microbiota (e.g., Proteobacteria) [76] | Endocrine homeostasis: cortisol and estrogens [77] |
Dietary antigens: gluten, lactose, and undigested animal proteins [78] | Protective microbiota, e.g., Lactobacillus and Faecalibacterium [79] |
Proteins exposed during cellular damage (e.g., DNA, nuclear proteins) [80] | |
Persistent elevation of catecholamines [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viggiano, D.; Iulianiello, P.; Mancini, A.; Iacuzzo, C.; Apicella, L.; Di Pietro, R.A.; Hamzeh, S.; Cacciola, G.; Lippiello, E.; Gigliotti, A.; et al. Immunological Avalanches in Renal Immune Diseases. Biomedicines 2025, 13, 1003. https://doi.org/10.3390/biomedicines13041003
Viggiano D, Iulianiello P, Mancini A, Iacuzzo C, Apicella L, Di Pietro RA, Hamzeh S, Cacciola G, Lippiello E, Gigliotti A, et al. Immunological Avalanches in Renal Immune Diseases. Biomedicines. 2025; 13(4):1003. https://doi.org/10.3390/biomedicines13041003
Chicago/Turabian StyleViggiano, Davide, Pietro Iulianiello, Antonio Mancini, Candida Iacuzzo, Luca Apicella, Renata Angela Di Pietro, Sarah Hamzeh, Giovanna Cacciola, Eugenio Lippiello, Andrea Gigliotti, and et al. 2025. "Immunological Avalanches in Renal Immune Diseases" Biomedicines 13, no. 4: 1003. https://doi.org/10.3390/biomedicines13041003
APA StyleViggiano, D., Iulianiello, P., Mancini, A., Iacuzzo, C., Apicella, L., Di Pietro, R. A., Hamzeh, S., Cacciola, G., Lippiello, E., Gigliotti, A., Secondulfo, C., Bilancio, G., & Gigliotti, G. (2025). Immunological Avalanches in Renal Immune Diseases. Biomedicines, 13(4), 1003. https://doi.org/10.3390/biomedicines13041003