A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Analysis Plan
2.3.1. Data Partitioning and Imputation Procedure
2.3.2. Variables and Their Processing
2.3.3. Variable Selection
2.3.4. Predictive Models, Training, and Evaluation
2.3.5. Interpretability of Machine Learning Models
2.3.6. Decision Curve Analysis (DCA)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
ICU | Intensive Care Unit |
WBC | White blood cell count |
NLR | Neutrophil-to-lymphocyte ratio |
PLR | Platelet-to-lymphocyte ratio |
ANC | Absolute neutrophil count |
qRT-PCR | Quantitative reverse transcription real-time polymerase chain reaction |
LIS | Laboratory information system |
PMM | Predictive mean matching |
MAR | Missing at random |
CRP | C-reactive protein |
LASSO | Least absolute shrinkage and selection operator |
RF | Random forest |
LR | Logistic regression |
AUC | Area under the curve |
ROC | Receiver operating characteristic curve |
Sn | Sensitivity |
Sp | Specificity |
PPV | Positive predictive value |
NPV | Negative predictive value |
SHAP | SHapley Additive exPlanations |
DCA | Decision curve analysis |
DM2 | Type 2 diabetes mellitus |
ACE-2 | Angiotensin-converting enzyme 2 |
LDH | Lactate dehydrogenase |
References
- Baloch, S.; Baloch, M.A.; Zheng, T.; Pei, X. The Coronavirus Disease 2019 (COVID-19) Pandemic. Tohoku J. Exp. Med. 2020, 250, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Chadaga, K.; Prabhu, S.; Sampathila, N.; Chadaga, R.; Umakanth, S.; Bhat, D.; Shashi Kumar, G.S. Explainable artificial intelligence approaches for COVID-19 prognosis prediction using clinical markers. Sci. Rep. 2024, 14, 1783. [Google Scholar] [CrossRef] [PubMed]
- Ahrenfeldt, L.J.; Nielsen, C.R.; Moller, S.; Christensen, K.; Lindahl-Jacobsen, R. Burden and prevalence of risk factors for severe COVID-19 in the ageing European population—A SHARE-based analysis. J. Public Health 2022, 30, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- Erman, H.; Boyuk, B.; Sertbas, M.; Ozdemir, A. Relationship between Metabolic Syndrome Components and COVID-19 Disease Severity in Hospitalized Patients: A Pilot Study. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 9682032. [Google Scholar] [CrossRef]
- Sardu, C.; Marfella, R.; Prattichizzo, F.; La Grotta, R.; Paolisso, G.; Ceriello, A. Effect of Hyperglycemia on COVID-19 Outcomes: Vaccination Efficacy, Disease Severity, and Molecular Mechanisms. J. Clin. Med. 2022, 11, 1564. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Estato, V.; Castro-Faria-Neto, H.C.; Tibirica, E. Obesity-Related Inflammation and Endothelial Dysfunction in COVID-19: Impact on Disease Severity. J. Inflamm. Res. 2021, 14, 2267–2276. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, X.; Ye, S.; Lian, H.; Wang, H.; Ye, J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J. Clin. Endocrinol. Metab. 2022, 107, 1799–1811. [Google Scholar] [CrossRef]
- Ali, M.U.; Zafar, A.; Tanveer, J.; Khan, M.A.; Kim, S.H.; Alsulami, M.M.; Lee, S.W. Deep learning network selection and optimized information fusion for enhanced COVID-19 detection. Int. J. Imaging Syst. Technol. 2024, 34, e23001. [Google Scholar] [CrossRef]
- Sarfraz, A.; Sarfraz, Z.; Siddiqui, A.; Totonchian, A.; Bokhari, S.; Hussain, H.; Sarfraz, M.; Patel, G.; Amjad, M.H.; Tebha, S.S.; et al. Hypercoagulopathy in Overweight and Obese COVID-19 Patients: A Single-Center Case Series. J. Crit. Care Med. 2022, 8, 41–48. [Google Scholar] [CrossRef]
- Huyut, M.T. Automatic Detection of Severely and Mildly Infected COVID-19 Patients with Supervised Machine Learning Models. Ing. Rech. Biomed. 2023, 44, 100725. [Google Scholar] [CrossRef] [PubMed]
- Letelier, P.; Delgado, H.; Garrido, F.; Quinones, F.; San, M.A.; Hernandez, L.; Garces, P.; Guzman-Oyarzo, D.; Boguen, R.; Hernandez, A.; et al. Dynamic changes of hematological and hemostatic parameters in COVID-19 hospitalized patients: Potential role as severity biomarkers for the Chilean population. J. Med. Biochem. 2024, 43, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Huyut, M.T.; Ustundag, H. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: A retrospective observational study. Med. Gas Res. 2022, 12, 60–66. [Google Scholar] [CrossRef]
- Villagrana-Banuelos, K.E.; Maeda-Gutierrez, V.; Alcala-Rmz, V.; Oropeza-Valdez, J.J.; Herrera-Van Oostdam, A.S.; Castaneda-Delgado, J.E.; Lopez, J.A.; Borrego Moreno, J.C.; Galvan-Tejada, C.E.; Galvan-Tejeda, J.I.; et al. COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms. Rev. Investig. Clin. 2022, 74, 314–327. [Google Scholar] [CrossRef]
- Altini, N.; Brunetti, A.; Mazzoleni, S.; Moncelli, F.; Zagaria, I.; Prencipe, B.; Lorusso, E.; Buonamico, E.; Carpagnano, G.E.; Bavaro, D.F.; et al. Predictive Machine Learning Models and Survival Analysis for COVID-19 Prognosis Based on Hematochemical Parameters. Sensors 2021, 21, 8503. [Google Scholar] [CrossRef]
- Buttia, C.; Llanaj, E.; Raeisi-Dehkordi, H.; Kastrati, L.; Amiri, M.; Mecani, R.; Taneri, P.E.; Ochoa, S.A.G.; Raguindin, P.F.; Wehrli, F.; et al. Prognostic models in COVID-19 infection that predict severity: A systematic review. Eur. J. Epidemiol. 2023, 38, 355–372. [Google Scholar] [CrossRef]
- Calvillo-Batlles, P.; Cerda-Alberich, L.; Fonfria-Esparcia, C.; Carreres-Ortega, A.; Munoz-Nunez, C.F.; Trilles-Olaso, L.; Marti-Bonmati, L. Development of severity and mortality prediction models for COVID-19 patients at emergency department including the chest x-ray. Radiologia (Engl. Ed.) 2022, 64, 214–227. [Google Scholar] [CrossRef]
- Queipo, M.; Barbado, J.; Torres, A.M.; Mateo, J. Approaching Personalized Medicine: The Use of Machine Learning to Determine Predictors of Mortality in a Population with SARS-CoV-2 Infection. Biomedicines 2024, 12, 409. [Google Scholar] [CrossRef]
- Kogan, Y.; Robinson, A.; Itelman, E.; Bar-Nur, Y.; Jakobson, D.J.; Segal, G.; Agur, Z. Developing and validating a machine learning prognostic model for alerting to imminent deterioration of hospitalized patients with COVID-19. Sci. Rep. 2022, 12, 19220. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Naqvi, R.A.; Alizadehsani, R.; Hussain, S.; Moqurrab, S.A.; Lee, S.W. An adaptive ensemble deep learning framework for reliable detection of pandemic patients. Comput. Biol. Med. 2024, 168, 107836. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients with COVID-19. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef] [PubMed]
- Bailey, B.E.; Andridge, R.; Shoben, A.B. Multiple imputation by predictive mean matching in cluster-randomized trials. BMC Med. Res. Methodol. 2020, 20, 72. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO regression. Br. J. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Vetter, T.R.; Schober, P. Regression: The Apple Does Not Fall Far From the Tree. Anesth. Analg. 2018, 127, 277–283. [Google Scholar] [CrossRef]
- Chen, Z.; He, N.; Huang, Y.; Qin, W.T.; Liu, X.; Li, L. Integration of a Deep Learning Classifier with a Random Forest Approach for Predicting Malonylation Sites. Genom. Proteom. Bioinform. 2018, 16, 451–459. [Google Scholar] [CrossRef]
- Ma, B.; Yan, G.; Chai, B.; Hou, X. XGBLC: An improved survival prediction model based on XGBoost. Bioinformatics 2022, 38, 410–418. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, Y.; Hou, D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab. Syndr. Obes. 2023, 16, 4147–4156. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Yang, J.; Shi, J.; Zhang, P.; Wang, X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: A systematic review and meta-analysis. Eur. J. Med. Res. 2020, 25, 64. [Google Scholar] [CrossRef]
- Singh, R.; Rathore, S.S.; Khan, H.; Karale, S.; Chawla, Y.; Iqbal, K.; Bhurwal, A.; Tekin, A.; Jain, N.; Mehra, I.; et al. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front. Endocrinol. 2022, 13, 780872. [Google Scholar] [CrossRef]
- Viscardi, S.; Marileo, L.; Delgado, H.; San Martin, A.; Hernandez, L.; Garces, P.; Guzman-Oyarzo, D.; Boguen, R.; Medina, G.; Letelier, P.; et al. Obesity Is Associated with Changes in Laboratory Biomarkers in Chilean Patients Hospitalized with COVID-19. J. Clin. Med. 2023, 12, 3392. [Google Scholar] [CrossRef]
- Caci, G.; Albini, A.; Malerba, M.; Noonan, D.M.; Pochetti, P.; Polosa, R. COVID-19 and Obesity: Dangerous Liaisons. J. Clin. Med. 2020, 9, 2511. [Google Scholar] [CrossRef]
- Kruglikov, I.L.; Scherer, P.E. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections. Obesity 2020, 28, 1187–1190. [Google Scholar] [CrossRef]
- Miossec, P. Understanding the cytokine storm during COVID-19: Contribution of preexisting chronic inflammation. Eur. J. Rheumatol. 2020, 7, S97–S98. [Google Scholar] [CrossRef]
- Rodrigues, R.; Costa de Oliveira, S. The Impact of Angiotensin-Converting Enzyme 2 (ACE2) Expression Levels in Patients with Comorbidities on COVID-19 Severity: A Comprehensive Review. Microorganisms 2021, 9, 1692. [Google Scholar] [CrossRef]
- Aburto, S.; Cisterna, M.; Acuña, J.; Ruíz, C.; Viscardi, S.; Márquez, J.L.; Villano, I.; Letelier, P.; Guzmán, N. Obesity as a Risk Factor for Severe COVID-19 in Hospitalized Patients: Epidemiology and Potential Mechanisms. Healthcare 2022, 10, 1838. [Google Scholar] [CrossRef] [PubMed]
- Rey-Renones, C.; Martinez-Torres, S.; Martin-Lujan, F.M.; Pericas, C.; Redondo, A.; Vilaplana-Carnerero, C.; Dominguez, A.; Grau, M. Type 2 Diabetes Mellitus and COVID-19: A Narrative Review. Biomedicines 2022, 10, 2089. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Pritchard, A.L.; Treweeke, A.T.; Rossi, A.G.; Brace, N.; Cahill, P.; MacRury, S.M.; Wei, J.; Megson, I.L. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Front. Cardiovasc. Med. 2020, 7, 629933. [Google Scholar] [CrossRef]
- Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nature reviews. Endocrinology 2021, 17, 11–30. [Google Scholar] [CrossRef]
- Jafar, N.; Edriss, H.; Nugent, K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am. J. Med. Sci. 2016, 351, 201–211. [Google Scholar] [CrossRef]
- Liu, J.W.; Huang, X.; Wang, M.K.; Yang, J.S. Diabetes and susceptibility to COVID-19: Risk factors and preventive and therapeutic strategies. World J. Diabetes 2024, 15, 1663–1671. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef]
- Vial, M.R.; Peters, A.; Perez, I.; Spencer-Sandino, M.; Barbe, M.; Porte, L.; Weitzel, T.; Aylwin, M.; Vial, P.; Araos, R.; et al. COVID-19 in South America: Clinical and epidemiological characteristics among 381 patients during the early phase of the pandemic in Santiago, Chile. BMC Infect. Dis. 2020, 20, 955. [Google Scholar] [CrossRef]
- Estenssoro, E.; Loudet, C.I.; Rios, F.G.; Kanoore Edul, V.S.; Plotnikow, G.; Andrian, M.; Romero, I.; Piezny, D.; Bezzi, M.; Mandich, V.; et al. Clinical characteristics and outcomes of invasively ventilated patients with COVID-19 in Argentina (SATICOVID): A prospective, multicentre cohort study. Lancet Respir. Med. 2021, 9, 989–998. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Ivan Salas-Tello, W.; Al-Kassab-Cordova, A.; Alarcon-Braga, E.A.; Benites-Zapata, V.A.; Maguina, J.L.; Hernandez, A.V. Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 patients: A systematic review and meta-analysis. Int. J. Clin. Pract. 2021, 75, e14596. [Google Scholar] [CrossRef]
- Hajifathalian, K.; Kumar, S.; Newberry, C.; Shah, S.; Fortune, B.; Krisko, T.; Ortiz-Pujols, S.; Zhou, X.K.; Dannenberg, A.J.; Kumar, R.; et al. Obesity is Associated with Worse Outcomes in COVID-19: Analysis of Early Data from New York City. Obesity 2020, 28, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Kassir, R. Risk of COVID-19 for patients with obesity. Obes. Rev. 2020, 21, e13034. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef]
- Moore, A.; Bell, M. XGBoost, A Novel Explainable AI Technique, in the Prediction of Myocardial Infarction: A UK Biobank Cohort Study. Clin. Med. Insights Cardiol. 2022, 16, 11795468221133611. [Google Scholar] [CrossRef]
- Hilal, W.; Chislett, M.G.; Snider, B.; McBean, E.A.; Yawney, J.; Gadsden, S.A. Use of AI to assess COVID-19 variant impacts on hospitalization, ICU, and death. Front. Artif. Intell. 2022, 5, 927203. [Google Scholar] [CrossRef]
- Montomoli, J.; Romeo, L.; Moccia, S.; Bernardini, M.; Migliorelli, L.; Berardini, D.; Donati, A.; Carsetti, A.; Bocci, M.G.; Wendel Garcia, P.D.; et al. Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients. J. Intensive Med. 2021, 1, 110–116. [Google Scholar] [CrossRef]
- Lazzarini, N.; Filippoupolitis, A.; Manzione, P.; Eleftherohorinou, H. A machine learning model on Real World Data for predicting progression to Acute Respiratory Distress Syndrome (ARDS) among COVID-19 patients. PLoS ONE 2022, 17, e0271227. [Google Scholar] [CrossRef]
- Riyadi, S.; Pramudya, E.N.; Damarjati, C.; Molina Lopez, J.M.; Herrero, J.G. Explainable optimization of deep learning model for COVID-19 detection using chest images. Inform. Med. Unlocked 2024, 49, 101559. [Google Scholar] [CrossRef]
- Moraga, M.L.; Rocco, P.; Miquel, J.F.; Nervi, F.; Llop, E.; Chakraborty, R.; Rothhammer, F.; Carvallo, P. Mitochondrial DNA polymorphisms in Chilean aboriginal populations: Implications for the peopling of the southern cone of the continent. Am. J. Phys. Anthropol. 2000, 113, 19–29. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.; Yu, F.; Cox, D.R.; Waliszewska, A.; McDonald, G.J.; Tandon, A.; Schirmer, C.; Neubauer, J.; Bedoya, G.; et al. A genomewide admixture map for Latino populations. Am. J. Hum. Genet. 2007, 80, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Encuesta Casen 2017: Pueblos Indígenas. 2018.
- Celis-Morales, C.A.; Perez-Bravo, F.; Ibanes, L.; Sanzana, R.; Hormazabal, E.; Ulloa, N.; Calvo, C.; Bailey, M.E.; Gill, J.M. Insulin resistance in Chileans of European and indigenous descent: Evidence for an ethnicity x environment interaction. PLoS ONE 2011, 6, e24690. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Rivera, M.J.; Salinas-Onate, N.; Gomez-Perez, D.; Diaz-Loving, R.; Ortiz, M.S. Model to Predict Healthcare Behaviors: Comparison of a Chilean and Mexican Sample. Int. J. Environ. Res. Public Health 2022, 19, 10067. [Google Scholar] [CrossRef] [PubMed]
Variable | ICU Admission | p-Value * | |
---|---|---|---|
Yes, n = 108 | No, n = 93 | ||
Age, p50. (iqr) | 61 (54, 70) | 64 (49, 72) | 0.589 |
Sex, n (%) | 0.787 | ||
Male | 52 (48%) | 43 (46%) | |
Female | 56 (52%) | 50 (54%) | |
Geographic zone, n (%) | 0.501 | ||
Rural | 17 (16%) | 18 (19%) | |
Urban | 91 (84%) | 75 (81%) | |
Severity n (%) | 0.025 | ||
Moderate | 85 (79%) | 84 (90%) | |
Severe | 23 (21%) | 9 (9.7%) | |
Mortality caused by COVID-19, n (%) | 0.017 | ||
Yes | 89 (82%) | 87 (94%) | |
No | 19 (18%) | 6 (6.5%) | |
Obesity, n (%) | 0.001 | ||
Yes | 49 (45%) | 22 (24%) | |
No | 59 (55%) | 71 (76%) | |
Cardiovascular disease, n (%) | 0.657 | ||
Yes | 15 (14%) | 15 (16%) | |
No | 93 (86%) | 78 (84%) | |
Arterial hypertension, n (%) | 68 (63%) | 48 (52%) | 0.104 |
Type 2 Diabetes, n (%) | 45 (42%) | 25 (27%) | 0.028 |
WBC (109/L), p50. (iqr) | 7.7 (6.1, 11.3) | 6.9 (5.7, 8.9) | 0.008 |
NLR, p50. (iqr) | 7 (4, 13) | 4 (3, 6) | 0.001 |
PLR, p50. (iqr) | 219 (139, 406) | 189 (119, 257) | 0.010 |
Neutrophils (109/L), p50. (iqr) | 6.28 (4.68, 9.29) | 5.12 (3.76, 6.30) | 0.001 |
D-dimer (μg/L), p50. (iqr) | 1.70 (0.90, 3.66) | 0.90 (0.58, 1.45) | 0.001 |
CRP (μg/L), p50. (iqr) | 99 (47, 150) | 66 (23, 127) | 0.005 |
Ferritin (ng/L), p50. (iqr) | 1343 (458, 2190) | 825 (289, 1654) | 0.011 |
Parameter | Logistic Regression | Random Forest | XGBoosting |
---|---|---|---|
Area under the curve (AUC) | 0.74 | 0.95 | 0.95 |
Precision (IC95%) | 0.66 (0.59, 0.72) | 0.85 (0.79, 0.90) | 0.86 (0.80, 0.91) |
Kappa | 0.31 | 0.70 | 0.73 |
McNemar test p-value | 0.81 | 0.85 | 1 |
Sensitivity | 0.67 | 0.87 | 0.87 |
Specificity | 0.65 | 0.83 | 0.85 |
Positive predictive value | 0.69 | 0.85 | 0.87 |
Negative predictive value | 0.63 | 0.85 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Monsalves, A.H.; Letelier, P.; Morales, C.; Rojas, E.; Saez, M.A.; Coña, N.; Díaz, J.; San Martín, A.; Garcés, P.; Espinal-Enriquez, J.; et al. A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers. Biomedicines 2025, 13, 1025. https://doi.org/10.3390/biomedicines13051025
Hernández-Monsalves AH, Letelier P, Morales C, Rojas E, Saez MA, Coña N, Díaz J, San Martín A, Garcés P, Espinal-Enriquez J, et al. A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers. Biomedicines. 2025; 13(5):1025. https://doi.org/10.3390/biomedicines13051025
Chicago/Turabian StyleHernández-Monsalves, Alfonso Heriberto, Pablo Letelier, Camilo Morales, Eduardo Rojas, Mauricio Alejandro Saez, Nicolás Coña, Javiera Díaz, Andrés San Martín, Paola Garcés, Jesús Espinal-Enriquez, and et al. 2025. "A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers" Biomedicines 13, no. 5: 1025. https://doi.org/10.3390/biomedicines13051025
APA StyleHernández-Monsalves, A. H., Letelier, P., Morales, C., Rojas, E., Saez, M. A., Coña, N., Díaz, J., San Martín, A., Garcés, P., Espinal-Enriquez, J., & Guzmán, N. (2025). A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers. Biomedicines, 13(5), 1025. https://doi.org/10.3390/biomedicines13051025