Corneal Nerve Morphology in Painful Diabetic Neuropathy: A Meta-Analysis of In Vivo Confocal Microscopy Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Inclusion Criteria
- Patients with painful diabetic peripheral neuropathy (pDPN)
- Patients with non-painful diabetic peripheral neuropathy (npDPN)
- Healthy controls (no diabetes)
2.3. Exclusion Criteria
2.4. Study Selection
2.5. Outcome Interest
2.6. Data Extraction
2.7. Risk of Bias
2.8. Synthesis of Results and Statistical Analysis
2.9. Study Heterogeneity
2.10. Certainty of Evidence
3. Results
3.1. Study Selection and Characteristics
3.2. Risk of Bias
3.3. Synthesis of Results
3.3.1. Corneal Nerve Fibre Length
- pDPN vs. npDPN
- pDPN vs. DPN-
- pDPN vs. Controls
3.3.2. Corneal Nerve Fibre Density
- pDPN vs. npDPN
- pDPN vs. DPN-
- pDPN vs. controls
3.3.3. Corneal Nerve Branch Density
- pDPN vs. npDPN
- pDPN vs. DPN-
- pDPN vs. controls
3.4. Certainty of Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCM | Corneal Confocal Microscopy |
IVCM | In vivo Corneal Confocal Microscopy |
DPN | Diabetic Peripheral Neuropathy |
pDPN | Painful Diabetic Peripheral Neuropathy |
npDPN | Non-Painful Diabetic Peripheral Neuropathy |
DPN- | No Diabetic Peripheral Neuropathy |
NDS | Neuropathy Disability Score |
NSS | Neuropathy Symptom Score |
IASP | International Association for the Study of Pain |
IENFD | Intraepidermal Nerve Fiber Density |
CNFL | Corneal Nerve Fibre Length |
CNFD | Corneal Nerve Fibre Density |
CNBD | Corneal Nerve Branch Density |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
DN4 | Douleur Neuropathique en 4 Questions |
VAS | Visual Analogue Scale |
HRTIII | Heidelberg Retina Tomograph III Rostock Corneal Module |
NOS | Newcastle–Ottawa Scale |
T1D | Type 1 Diabetes |
T2D | Type 2 Diabetes |
MD | Mean Deviation |
SMD | Standard Mean Deviation |
CI | Confidence Interval |
Appendix A. MESH Terms
PubMed | |
((diabetic neuropathy) AND (pain OR painful)) AND (confocal microscop* OR CCM OR IVCM) | |
Cochrane | |
1 | MeSH descriptor: [Microscopy, Confocal] explode all trees |
2 | (confocal micrscop* or (confocal and microscopical) or confocal imag* or (confocal and picture*) or ccm):ti,ab,kw |
3 | 1 OR 2 |
4 | MeSH descriptor: [Cornea] explode all trees |
5 | cornea*:ti,ab,kw |
6 | 4 OR 5 |
7 | MeSH descriptor: [Diabetic Neuropathies] explode all trees |
8 | Diabetic Neuropath* |
9 | pain OR painful:ti,ab,kw |
10 | 3 AND 6 |
Embase | |
1 | peripheral AND ‘neuropathy’/exp |
2 | peripheral AND nervous AND system AND disease*:ab,ti,kw |
3 | #1 OR #2 |
4 | confocal AND ‘microscopy’/exp |
5 | ((cornea* NEAR/8 (neuro* OR nerv*)):ab,kw,ti) OR ‘confocal microscop*’ |
6 | 4 OR 5 |
7 | #3 AND #6 |
8 | diabetic AND ‘neuropathy’/exp |
9 | #3 OR #8 |
10 | #6 AND #9 |
11 | ccm:ab,ti,kw OR ivcm:ab,ti,kw |
12 | #6 OR #11 |
13 | #9 AND #12 |
14 | confocal AND ‘microscopy’:ab,ti,kw |
15 | #4 OR #5 OR #11 OR #14 |
16 | #9 AND #15 |
17 | pain*:ab,ti,kw |
18 | #16 AND #17 |
Embase | |
S1 | (MH “Microscopy, Confocal+”) |
S2 | AB (confocal microscopy OR confocal microscopies OR confocal microscope OR confocal microscopic OR confocal images OR confocal imaging OR confocal imagery OR CCM) OR TI (confocal microscopy OR confocal microscopies OR confocal microscope OR confocal microscopic OR confocal images OR confocal imaging OR confocal imagery OR CCM) |
S3 | S1 OR S2 |
S4 | (MH “Peripheral Nervous System Diseases+”) |
S5 | AB (“peripheral neuropathy” OR “peripheral neuropathies”) OR TI (“peripheral neuropathy” OR “peripheral neuropathies”) |
S6 | S4 OR S5 |
S7 | S3 AND S6 |
S8 | AB pain OR TI pain |
S9 | S7 AND S8 |
WoS SCI-Expanded 1900-present | |
confocal microscopy OR confocal microscopies OR confocal microscope OR (confocal AND microscopic*) OR confocal image OR confocal images OR confocal imagery OR confocal imaging OR (confocal AND picture*) OR CCM cornea* diabetic neuropathy OR diabetic neuropathies OR peripheral neuropath* pain OR painful |
References
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.; Kulkarni, J.; Boulton, A.J. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I. Diabetic Neuropathies. In Atlas of Diabetes, 4th ed.; Skyler, J., Ed.; Springer: Boston, MA, USA, 2012; pp. 295–312. [Google Scholar]
- Illa, I. Diagnosis and Management of Diabetic Peripheral Neuropathy. Eur. Neurol. 1999, 41, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Atmaca, A.; Ketenci, A.; Sahin, I.; Sengun, I.S.; Oner, R.I.; Erdem Tilki, H.; Adas, M.; Soyleli, H.; Demir, T. Expert opinion on screening, diagnosis and management of diabetic peripheral neuropathy: A multidisciplinary approach. Front. Endocrinol. 2024, 15, 1380929. [Google Scholar] [CrossRef]
- Tesfaye, S.; Vileikyte, L.; Rayman, G.; Sindrup, S.H.; Perkins, B.A.; Baconja, M.; Vinik, A.I.; Boulton, A.J.M.; on behalf of The Toronto Expert Panel on Diabetic Neuropathy. Painful diabetic peripheral neuropathy: Consensus recommendations on diagnosis, assessment and management. Diabetes/Metab. Res. Rev. 2011, 27, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Ang, L.; Boulton, A.J.M.; Feldman, E.L.; Marcus, R.L.; Mizokami-Stout, K.; Singleton, J.R.; Ziegler, D. Diagnosis and Treatment of Painful Diabetic Peripheral Neuropathy; American Diabetes Association: Arlington, VA, USA, 2022. [Google Scholar]
- Sadosky, A.; Schaefer, C.; Mann, R.; Bergstrom, F.; Baik, R.; Parsons, B.; Nalamachu, S.; Nieshoff, E.; Stacey, B.R.; Tuchman, M.; et al. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: Results from a retrospective chart review and cross-sectional survey. Diabetes. Metab. Syndr. Obes. 2013, 6, 79–92. [Google Scholar] [CrossRef]
- Maier, C.; Baron, R.; Tölle, T.R.; Binder, A.; Birbaumer, N.; Birklein, F.; Gierthmühlen, J.; Flor, H.; Geber, C.; Huge, V.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010, 150, 439–450. [Google Scholar] [CrossRef]
- Forstenpointner, J.; Ruscheweyh, R.; Attal, N.; Baron, R.; Bouhassira, D.; Enax-Krumova, E.K.; Finnerup, N.B.; Freynhagen, R.; Gierthmühlen, J.; Hansson, P.; et al. No pain, still gain (of function): The relation between sensory profiles and the presence or absence of self-reported pain in a large multicenter cohort of patients with neuropathy. Pain 2021, 162, 718–727. [Google Scholar] [CrossRef]
- Chen, X.; Graham, J.; Dabbah, M.A.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Fadavi, H.; Ferdousi, M.; et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: Comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015, 38, 1138–1144. [Google Scholar] [CrossRef]
- Jensen, T.S.; Karlsson, P.; Gylfadottir, S.S.; Andersen, S.T.; Bennett, D.L.; Tankisi, H.; Finnerup, N.B.; Terkelsen, A.J.; Khan, K.; Themistocleous, A.C.; et al. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain 2021, 144, 1632–1645. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef]
- Kalteniece, A.; Ferdousi, M.; Azmi, S.; Mubita, W.M.; Marshall, A.; Lauria, G.; Faber, C.G.; Soran, H.; Malik, R.A. Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. Sci. Rep. 2020, 10, 3371. [Google Scholar] [CrossRef] [PubMed]
- Schaible, H.G. Peripheral and central mechanisms of pain generation. Handb. Exp. Pharmacol. 2007, 177, 3–28. [Google Scholar] [CrossRef]
- Burgess, J.; Frank, B.; Marshall, A.; Khalil, R.S.; Ponirakis, G.; Petropoulos, I.N.; Cuthbertson, D.J.; Malik, R.A.; Alam, U. Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics 2021, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Fadavi, H.; Tavakoli, M.; Foden, P.; Ferdousi, M.; Petropoulos, I.N.; Jeziorska, M.; Chaturvedi, N.; Boulton, A.J.M.; Malik, R.A.; Abbott, C.A. Explanations for less small fibre neuropathy in South Asian versus European subjects with type 2 diabetes in the UK. Diabetes Metab. Res. Rev. 2018, 34, e3044. [Google Scholar] [CrossRef]
- Yan, A.; Issar, T.; Tummanapalli, S.S.; Markoulli, M.; Kwai, N.C.G.; Poynten, A.M.; Krishnan, A.V. Relationship between corneal confocal microscopy and markers of peripheral nerve structure and function in Type 2 diabetes. Diabet. Med. 2020, 37, 326–334. [Google Scholar] [CrossRef]
- Ferdousi, M.; Romanchuk, K.; Mah, J.K.; Virtanen, H.; Millar, C.; Malik, R.A.; Pacaud, D. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci. Rep. 2019, 9, 8758. [Google Scholar] [CrossRef]
- Hertz, P.; Bril, V.; Orszag, A.; Ahmed, A.; Ng, E.; Nwe, P.; Ngo, M.; Perkins, B.A. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet. Med. 2011, 28, 1253–1260. [Google Scholar] [CrossRef]
- Zhivov, A.; Peschel, S.; Schober, H.C.; Stachs, O.; Baltrusch, S.; Bambi, M.T.; Kilangalanga, J.; Winter, K.; Kundt, G.; Guthoff, R.F. Diabetic foot syndrome and corneal subbasal nerve plexus changes in congolese patients with type 2 diabetes. PLoS ONE 2015, 10, e0119842. [Google Scholar] [CrossRef]
- So, W.Z.; Qi Wong, N.S.; Tan, H.C.; Yu Lin, M.T.; Yu Lee, I.X.; Mehta, J.S.; Liu, Y.C. Diabetic corneal neuropathy as a surrogate marker for diabetic peripheral neuropathy. Neural Regen. Res. 2022, 17, 2172–2178. [Google Scholar] [CrossRef]
- Alam, U.; Jeziorska, M.; Petropoulos, I.N.; Asghar, O.; Fadavi, H.; Ponirakis, G.; Marshall, A.; Tavakoli, M.; Boulton, A.J.M.; Efron, N.; et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS ONE 2017, 12, e0180175. [Google Scholar] [CrossRef]
- Badian, R.A.; Ekman, L.; Pripp, A.H.; Utheim, T.P.; Englund, E.; Dahlin, L.B.; Rolandsson, O.; Lagali, N. Comparison of Novel Wide-Field In Vivo Corneal Confocal Microscopy With Skin Biopsy for Assessing Peripheral Neuropathy in Type 2 Diabetes. Diabetes 2023, 72, 908–917. [Google Scholar] [CrossRef]
- Bjørnkaer, A.; Gaist, L.M.; Holbech, J.V.; Gaist, D.; Wirenfeldt, M.; Sindrup, S.H.; Krøigård, T. Corneal confocal microscopy in small and mixed fiber neuropathy-Comparison with skin biopsy and cold detection in a large prospective cohort. J. Peripher. Nerv. Syst. 2023, 28, 664–676. [Google Scholar] [CrossRef]
- Püttgen, S.; Bönhof, G.J.; Strom, A.; Müssig, K.; Szendroedi, J.; Roden, M.; Ziegler, D. Augmented Corneal Nerve Fiber Branching in Painful Compared With Painless Diabetic Neuropathy. J. Clin. Endocrinol. Metab. 2019, 104, 6220–6228. [Google Scholar] [CrossRef]
- Obrosova, I.G. Diabetic Painful and Insensate Neuropathy: Pathogenesis and Potential Treatments. Neurotherapeutics 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Sierra-Silvestre, E.; Andrade, R.J.; Colorado, L.H.; Edwards, K.; Coppieters, M.W. Occurrence of corneal sub-epithelial microneuromas and axonal swelling in people with diabetes with and without (painful) diabetic neuropathy. Diabetologia 2023, 66, 1719–1734. [Google Scholar] [CrossRef] [PubMed]
- Ferdousi, M.; Azmi, S.; Kalteniece, A.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Boulton, A.J.M.; Efron, N.; et al. Greater small nerve fibre damage in the skin and cornea of type 1 diabetic patients with painful compared to painless diabetic neuropathy. Eur. J. Neurol. 2021, 28, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Kalteniece, A.; Ferdousi, M.; Petropoulos, I.; Azmi, S.; Adam, S.; Fadavi, H.; Marshall, A.; Boulton, A.J.M.; Efron, N.; Faber, C.G.; et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy. Sci. Rep. 2018, 8, 3283. [Google Scholar] [CrossRef] [PubMed]
- Worthington, A.; Kalteniece, A.; Ferdousi, M.; D’Onofrio, L.; Dhage, S.; Azmi, S.; Adamson, C.; Hamdy, S.; Malik, R.A.; Calcutt, N.A.; et al. Spinal Inhibitory Dysfunction in Patients With Painful or Painless Diabetic Neuropathy. Diabetes Care 2021, 44, 1835–1841. [Google Scholar] [CrossRef]
- Mikolajczak, J.; Zimmermann, H.; Kheirkhah, A.; Kadas, E.M.; Oberwahrenbrock, T.; Muller, R.; Ren, A.; Kuchling, J.; Dietze, H.; Prüss, H.; et al. Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density. Mult. Scler. 2017, 23, 1847–1853. [Google Scholar] [CrossRef]
- Tavakoli, M.; Quattrini, C.; Abbott, C.; Kallinikos, P.; Marshall, A.; Finnigan, J.; Morgan, P.; Efron, N.; Boulton, A.J.; Malik, R.A. Corneal confocal microscopy: A novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 2010, 33, 1792–1797. [Google Scholar] [CrossRef]
- Edwards, K.; Pritchard, N.; Vagenas, D.; Russell, A.; Malik, R.A.; Efron, N. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: Baseline findings of the LANDMark study. Clin. Exp. Optom. 2012, 95, 348–354. [Google Scholar] [CrossRef]
- Gylfadottir, S.S.; Itani, M.; Kristensen, A.G.; Nyengaard, J.R.; Sindrup, S.H.; Jensen, T.S.; Finnerup, N.B.; Karlsson, P. Assessing Corneal Confocal Microscopy and Other Small Fiber Measures in Diabetic Polyneuropathy. Neurology 2023, 100, e1680–e1690. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, C.; Pritchard, N.; Edwards, K.; Vagenas, D.; Russell, A.W.; Malik, R.A.; Efron, N. Natural history of corneal nerve morphology in mild neuropathy associated with type 1 diabetes: Development of a potential measure of diabetic peripheral neuropathy. Investig. Opthalmol. Vis. Sci. 2014, 55, 7982–7990. [Google Scholar] [CrossRef]
- Quattrini, C.; Tesfaye, S. Understanding the impact of painful diabetic neuropathy. Diabetes/Metab. Res. Rev. 2003, 19 (Suppl. 1), S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, C.; Tavakoli, M.; Jeziorska, M.; Kallinikos, P.; Tesfaye, S.; Finnigan, J.; Marshall, A.; Boulton, A.J.; Efron, N.; Malik, R.A. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 2007, 56, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Stachs, O.; Guthoff, R.F.; Aumann, S. In Vivo Confocal Scanning Laser Microscopy. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; pp. 263–284. [Google Scholar]
- Dehghani, C.; Pritchard, N.; Edwards, K.; Russell, A.W.; Malik, R.A.; Efron, N. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea 2014, 33, 696–702. [Google Scholar] [CrossRef]
- Chin, J.Y.; Yang, L.W.Y.; Ji, A.J.S.; Nubile, M.; Mastropasqua, L.; Allen, J.C.; Mehta, J.S.; Liu, Y.C. Validation of the Use of Automated and Manual Quantitative Analysis of Corneal Nerve Plexus Following Refractive Surgery. Diagnostics 2020, 10, 493. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Herzog, R.; Álvarez-Pasquin, M.J.; Díaz, C.; Del Barrio, J.L.; Estrada, J.M.; Gil, Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? a systematic review. BMC Public Health 2013, 13, 154. [Google Scholar] [CrossRef]
- van den Berg, R.; Jongbloed, E.M.; de Schepper, E.I.T.; Bierma-Zeinstra, S.M.A.; Koes, B.W.; Luijsterburg, P.A.J. The association between pro-inflammatory biomarkers and nonspecific low back pain: A systematic review. Spine J. Off. J. N. Am. Spine Soc. 2018, 18, 2140–2151. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Li, T.; Deeks, J.J. Chapter 6: Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Publishes: London, UK, 2024. [Google Scholar]
- Thorlund, K.; Imberger, G.; Johnston, B.C.; Walsh, M.; Awad, T.; Thabane, L.; Gluud, C.; Devereaux, P.J.; Wetterslev, J. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS ONE 2012, 7, e39471. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.J.H.W. (Eds.) Handbook for Systematic Reviews of Interventions; Wiley: New York, NY, USA, 2019. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guvatt, G.; Oxman, A. Grade Handbook; Cochrane collaboration: London, UK, 2013. [Google Scholar]
- Schünemann, H.J.; Oxman, A.D.; Brozek, J.; Glasziou, P.; Jaeschke, R.; Vist, G.E.; Williams, J.W., Jr.; Kunz, R.; Craig, J.; Montori, V.M.; et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. Bmj 2008, 336, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.I.; Koustas, E.; Vesterinen, H.M.; Sutton, P.; Atchley, D.S.; Kim, A.N.; Campbell, M.; Donald, J.M.; Sen, S.; Bero, L.; et al. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ. Int. 2016, 92–93, 716–728. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Chen, H.; Cohen, P.; Chen, S. How Big is a Big Odds Ratio? Interpreting the Magnitudes of Odds Ratios in Epidemiological Studies. Commun. Stat.-Simul. Comput. 2010, 39, 860–864. [Google Scholar] [CrossRef]
- Kalteniece, A.; Ferdousi, M.; Azmi, S.; Khan, S.U.; Worthington, A.; Marshall, A.; Faber, C.G.; Lauria, G.; Boulton, A.J.M.; Soran, H.; et al. Corneal nerve loss is related to the severity of painful diabetic neuropathy. Eur. J. Neurol. 2022, 29, 286–294. [Google Scholar] [CrossRef]
- Alam, U.; Petropoulos, I.N.; Ponirakis, G.; Ferdousi, M.; Asghar, O.; Jeziorska, M.; Marshall, A.; Boulton, A.J.M.; Efron, N.; Malik, R.A. Vitamin D deficiency is associated with painful diabetic neuropathy. Diabetes Metab. Res. Rev. 2021, 37, e3361. [Google Scholar] [CrossRef]
- Røikjer, J.; Croosu, S.S.; Sejergaard, B.F.; Hansen, T.M.; Frøkjær, J.B.; Søndergaard, C.B.; Petropoulos, I.N.; Malik, R.A.; Nielsen, E.; Mørch, C.D.; et al. Diagnostic Accuracy of Perception Threshold Tracking in the Detection of Small Fiber Damage in Type 1 Diabetes. J. Diabetes Sci. Technol. 2024, 18, 1157–1164. [Google Scholar] [CrossRef]
- Ponirakis, G.; Abdul-Ghani, M.A.; Jayyousi, A.; Zirie, M.A.; Qazi, M.; Almuhannadi, H.; Petropoulos, I.N.; Khan, A.; Gad, H.; Migahid, O.; et al. Painful diabetic neuropathy is associated with increased nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. J. Diabetes Investig. 2021, 12, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, L.; Hibbard, P.B. Support for the efficient coding account of visual discomfort. Vis. Neurosci. 2024, 41, E008. [Google Scholar] [CrossRef]
- Sorensen, L.; Molyneaux, L.; Yue, D.K. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care 2006, 29, 883–887. [Google Scholar] [CrossRef]
- Clauw, D.J. What is the meaning of “small fiber neuropathy” in fibromyalgia? Pain 2015, 156, 2115–2116. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, P.; Provitera, V.; Caporaso, G.; Stancanelli, A.; Saltalamacchia, A.M.; Borreca, I.; Manganelli, F.; Santoro, L.; Jensen, T.S.; Nolano, M. Increased peptidergic fibers as a potential cutaneous marker of pain in diabetic small fiber neuropathy. Pain 2021, 162, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.M.; Howard, R.; Kinsella, N.; Lucas, S.; McColl, I.; Saldanha, G.; Hall, S.M.; Hughes, R.A. Prospective study of the usefulness of sural nerve biopsy. J. Neurol. Neurosurg. Psychiatry 2000, 69, 442–446. [Google Scholar] [CrossRef]
- Hegarty, D.; Hermes, S.; Yang, K.; Aicher, S. Select noxious stimuli induce changes on corneal nerve morphology. J. Comp. Neurol. 2017, 525, 2019–2031. [Google Scholar] [CrossRef]
- Burgess, J.; Ferdousi, M.; Gosal, D.; Boon, C.; Matsumoto, K.; Marshall, A.; Mak, T.; Marshall, A.; Frank, B.; Malik, R.A.; et al. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol. Ther. 2021, 9, 385–450. [Google Scholar] [CrossRef]
- Nieuwenhoff, M.D.; Nguyen, H.T.; Niehof, S.P.; Huygen, F.; Verma, A.; Klaassen, E.S.; Bechakra, M.; Geelhoed, W.J.; Jongen, J.L.M.; Moll, A.C.; et al. Differences in corneal nerve fiber density and fiber length in patients with painful chronic idiopathic axonal polyneuropathy and diabetic polyneuropathy. Muscle Nerve 2024, 70, 782–790. [Google Scholar] [CrossRef]
- Gad, H.; Petropoulos, I.N.; Khan, A.; Ponirakis, G.; MacDonald, R.; Alam, U.; Malik, R.A. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: A systematic review and meta-analysis. J. Diabetes Investig. 2022, 13, 134–147. [Google Scholar] [CrossRef]
- Jiang, M.S.; Yuan, Y.; Gu, Z.X.; Zhuang, S.L. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: A meta-analysis. Br. J. Ophthalmol. 2016, 100, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.T.; Dauch, J.R.; Porzio, M.T.; Yanik, B.M.; Hsieh, W.; Smith, A.G.; Singleton, J.R.; Feldman, E.L. Increased axonal regeneration and swellings in intraepidermal nerve fibers characterize painful phenotypes of diabetic neuropathy. J. Pain 2013, 14, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, P.; Gylfadottir, S.; Kristensen, A.; Ramírez, J.; Cruz, P.; Le, N.; Shillo, P.; Tesfaye, S.; Rice, A.; Tankisi, H.; et al. Axonal swellings are related to type 2 diabetes, but not to distal diabetic sensorimotor polyneuropathy. Diabetologia 2021, 64, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Turhan, S.A.; Karlsson, P.; Ozun, Y.; Gunes, H.; Surucu, S.; Toker, E.; Isak, B. Identification of corneal and intra-epidermal axonal swellings in amyotrophic lateral sclerosis. Muscle Nerve 2024, 69, 78–86. [Google Scholar] [CrossRef]
- Greig, M.; Tesfaye, S.; Selvarajah, D.; Wilkinson, I.D. Chapter 35-Insights into the pathogenesis and treatment of painful diabetic neuropathy. In Handbook of Clinical Neurology; Zochodne, D.W., Malik, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 559–578. [Google Scholar]
- Selvarajah, D.; Sloan, G.; Teh, K.; Wilkinson, I.D.; Heiberg-Gibbons, F.; Awadh, M.; Kelsall, A.; Grieg, M.; Pallai, S.; Tesfaye, S. Structural Brain Alterations in Key Somatosensory and Nociceptive Regions in Diabetic Peripheral Neuropathy. Diabetes Care 2023, 46, 777–785. [Google Scholar] [CrossRef]
Studies | Groups | n | Type of Diabetes (Mixed (T1D, T2D)) | Age (Years) | Duration of Diabetes (Years) | HBA1c Levels (mmol/mol) | Painful Diabetic Assessment | IVCM Type | Software Used for Image Analysis | Assessment with IVCM | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNFD | CNBD | CNFL | CNFT | ||||||||||
Sierra-Silvestre et al., 2023 [27] | Controls | 27 | - | 48.9 ± 16.0 | - | 35.4 ± 3.4 | HRTIII | ACCMetrics | ✓ | ✓ | ✓ | ||
DPN- | 33 | Mixed (26, 50) | 46.6 ± 17.1 | 12.8 ± 10.3 | 48.7 ± 8.3 | ||||||||
npDPN | 25 | 63.3 ± 8.4 | 12.9 ± 10.0 | 64.5 ± 17.9 | NRS (≥4/10) | ||||||||
pDPN | 18 | 59.4 ± 8.5 | 14.6 ± 0.4 | 73.2 ± 15.4 | |||||||||
Roikjer et al., 2023 [56] | Controls | 19 | - | 47.6 ± 7.2 | - | 33.7 ± 2.4 | HRTIII | CCMetrics | ✓ | ✓ | ✓ | ||
DPN- | 19 | T1D | 51.3 ± 11.2 | 23.7 ± 13.6 | 65.7 ± 11.2 | DN4 (≥4) | |||||||
npDPN | 14 | 51.6 ± 13.2 | 35.3 ± 9.1 | 74.7 ± 14.0 | |||||||||
pDPN | 19 | 50.3 ± 11.2 | 33.0 ± 15.2 | 70.3 ± 16.1 | |||||||||
Ponirakis et al., 2021 [57] | Controls | 18 | - | 53.0 ± 11.0 | - | - | HRTIII | CCMetrics | ✓ | ✓ | ✓ | ||
DPN- | - | T2D | - | - | DN4 (≥4) | ||||||||
npDPN | 28 | 50.7 ± 9.4 | 12.0 ± 8.0 | 90.1 ± 21.1 | |||||||||
pDPN | 13 | 57.6 ± 5.1 | 9.3 ± 6.3 | 87.0 ± 20.7 | |||||||||
Worthington et al., 2021 [30] | Controls | 34 | - | 44.2 ± 18.6 | - | 34.75 ± 6.4 | HRTIII | CCMetrics | ✓ | ✓ | ✓ | ||
DPN- | - | Mixed (37, 67) | - | - | - | ||||||||
npDPN | 62 | 62.5 ± 14.8 | 16.4 ± 10.1 | 59.25 ± 13.1 | VAS (>0) | ||||||||
pDPN | 42 | 60.3 ± 15.1 | 12.5 ± 11.9 | 51.8 ± 10.4 | |||||||||
Ferdousi et al., 2021 [28] | Controls | 50 | - | 51.5 ± 12.7 | - | 37.7 ± 3.6 | HRTIII | CCMetrics | ✓ | ✓ | ✓ | ✓ | |
DPN- | - | T1D | - | - | - | ||||||||
npDPN | 50 | 47.6 ± 14.4 | 30.8 ± 17.0 | 64.7 ± 18.1 | McGill (>1/5) | ||||||||
pDPN | 41 | 52.7 ± 14.4 | 33.6 ± 16.1 | 69.6 ± 18.5 | |||||||||
Puttgen et al., 2019 [25] | Controls | 46 | - | 66.0 ± 5.2 | - | 36.0 ± 2.5 | HRTIII | ACCMetrics | ✓ | ✓ | ✓ | ||
DPN- | - | T2D | - | - | - | ||||||||
npDPN | 63 | 67.4 ± 9.5 | 19.6 ± 15.1 | 56.5 ± 12.5 | NRS (≥4/10) | ||||||||
pDPN | 53 | 67.2 ± 8.5 | 15.6 ± 10.9 | 58.3 ± 15.6 | |||||||||
Kalteniece et al., 2018 [29] | Controls | 22 | - | 50.32 ± 2.9 | - | 36.4 ± 1.0 | HRTIII | CCMetrics | ✓ | ✓ | ✓ | ||
DPN- | 47 | Mixed (52, 63) | 46.9 ± 1.9 | 16.0 ± 1.8 | 60.8 ± 3.3 | VAS (>4) | |||||||
npDPN | 33 | 59.9 ± 2.1 | 25.7 ± 3.3 | - NR | |||||||||
pDPN | 27 | 64.6 ± 2.2 | 18.1 ± 3.0 | - NR |
Included Studies | Representation of the Sample (/1) | Sample Size (/1) | Non-Respondents (/1) | Ascertainment of the Exposure (/2) | Comparability of Subjects (/2) | Assessment of Outcome (/2) | Statistical Test (/1) | Overall Score | Classification |
---|---|---|---|---|---|---|---|---|---|
Sierra-Silvestre et al. [27] | ⋆ | ⋆ | 0 | ⋆⋆ | ⋆⋆ | ⋆⋆ | ⋆ | 9 | Low |
Roikjer et al. [56] | ⋆ | ⋆ | 0 | ⋆⋆ | ⋆⋆ | ⋆⋆ | ⋆ | 9 | Low |
Ponirakis et al. [57] | * | ⋆ | 0 | ⋆⋆ | ⋆ | 0 | ⋆ | 6 | Moderate |
Worthington et al. [30] | ⋆ | 0 | 0 | ⋆⋆ | ⋆⋆ | 0 | ⋆ | 6 | Moderate |
Ferdousi et al. [28] | ⋆ | 0 | 0 | ⋆⋆ | ⋆⋆ | ⋆⋆ | ⋆ | 8 | Low |
Puttgen et al. [25] | ⋆ | ⋆ | 0 | ⋆⋆ | ⋆⋆ | 0 | ⋆ | 7 | Low |
Kalteniece et al. [29] | ⋆ | 0 | 0 | ⋆⋆ | ⋆ | 0 | ⋆ | 5 | Moderate |
No of Studies | Risk of Bias | Inconsistency of Results | Indirectness | Imprecision | Publication Bias | Effect Size | Total No. of Participants | Mean Difference (95% Confidence Intervals) | Certainty of Evidence (GRADE) | |
---|---|---|---|---|---|---|---|---|---|---|
pDPN vs. npDPN | ||||||||||
CNFL | 7 | No Change | No Change | No Change | No Change | No Change | No Change | 488 | MD 0.79 (−0.64, 2.22) | High |
CNFD | 7 | No Change | No Change | No Change | No Change | No Change | No Change | MD 1.67 (−0.14, 3.47) | High | |
CNBD | 7 | No Change | ↓ a | No Change | No Change | No Change | No Change | MD 1.74 (−4.31, 7.98) | Moderate | |
pDPN vs. DPN- | ||||||||||
CNFL | 3 | No Change | ↓ a | No Change | ↓ b | No Change | ↑ c | 163 | MD 3.94 (1.69, 6.20) | Moderate |
CNFD | 3 | No Change | No Change | No Change | ↓ b | No Change | ↑ c | MD 5.38 (3.51, 7.26) | High | |
CNBD | 3 | No Change | ↓ a | No Change | ↓ b | No Change | ↑ c | MD 15.41 (4.47, 26.35) | Moderate | |
pDPN vs. Controls | ||||||||||
CNFL | 7 | No Change | ↓ a | No Change | No Change | No Change | ↑ c | 429 | MD 7.13 (5.20, 9.06) | High |
CNFD | 7 | No Change | ↓ a | No Change | No Change | No Change | ↑ c | MD 10.81 (7.98, 13.65) | High | |
CNBD | 7 | No Change | ↓ a | No Change | No Change | No Change | ↑ c | MD 31.30 (16.28, 46.33) | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidyasagar, P.; Farrell, S.F.; Colorado, L.H.; Dando, S.; Edwards, K. Corneal Nerve Morphology in Painful Diabetic Neuropathy: A Meta-Analysis of In Vivo Confocal Microscopy Studies. Biomedicines 2025, 13, 1675. https://doi.org/10.3390/biomedicines13071675
Vidyasagar P, Farrell SF, Colorado LH, Dando S, Edwards K. Corneal Nerve Morphology in Painful Diabetic Neuropathy: A Meta-Analysis of In Vivo Confocal Microscopy Studies. Biomedicines. 2025; 13(7):1675. https://doi.org/10.3390/biomedicines13071675
Chicago/Turabian StyleVidyasagar, Prajna, Scott F. Farrell, Luisa Holguin Colorado, Samantha Dando, and Katie Edwards. 2025. "Corneal Nerve Morphology in Painful Diabetic Neuropathy: A Meta-Analysis of In Vivo Confocal Microscopy Studies" Biomedicines 13, no. 7: 1675. https://doi.org/10.3390/biomedicines13071675
APA StyleVidyasagar, P., Farrell, S. F., Colorado, L. H., Dando, S., & Edwards, K. (2025). Corneal Nerve Morphology in Painful Diabetic Neuropathy: A Meta-Analysis of In Vivo Confocal Microscopy Studies. Biomedicines, 13(7), 1675. https://doi.org/10.3390/biomedicines13071675