CRISPR/Cas9 Reduces Viral Load in a BALB/c Mouse Model of Ocular Herpes Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus
2.2. Animals
2.3. HSV-1 Infection
2.4. Viral Load Assessment Through qPCR
2.5. Clinical Manifestation Analyses
2.6. CRISPR/Cas9 Treatment
2.7. Statistics
3. Results
3.1. Ocular Damage Was Associated with Viral Inoculum During HSV-1 Infection Kinetics
3.2. CRISPR/Cas9 Treatment Reduced Viral Load and Periocular/Ocular Lesion During HSV-1 Infection Kinetics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M.; DeLuca, N.A. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE 2015, 10, e0140765. [Google Scholar] [CrossRef] [PubMed]
- Tsatsos, M.; MacGregor, C.; Athanasiadis, I.; Moschos, M.M.; Jameel, S.; Hossain, P.; Anderson, D. Herpes Simplex Virus Keratitis: An Update of the Pathogenesis and Current Treatment with Oral and Topical Antiviral Agents—Comment. Clin. Exp. Ophthalmol. 2017, 45, 932. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Luo, Z.; Li, W.; Li, X.; Dallmann, R.; Kurihara, H.; Li, Y.-F.; He, R.-R. Disturbed Yin–Yang Balance: Stress Increases the Susceptibility to Primary and Recurrent Infections of Herpes Simplex Virus Type 1. Acta Pharm. Sin. B 2020, 10, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Sibley, D.; Larkin, D.F.P. Update on Herpes simplex keratitis management. Eye 2020, 34, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.V.; Shukla, D. Herpes Simplex Epithelial and Stromal Keratitis: An Epidemiologic Update. Surv. Ophthalmol. 2012, 57, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Carley, F.; Hillarby, C.; Brahma, A.; Tullo, A.B. Penetrating Keratoplasty: Indications, Outcomes, and 401 Complications. Eye 2009, 23, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Costa, D.; Kara-José, N. Corneal Transplant Rejection. Rev. Bras. Oftalmol. 2008, 67, 255–263. Available online: https://www.scielo.br/j/rbof/a/nmdv84M4zWKJ3VqpxBv9dpv/?format=pdf&lang=pt (accessed on 24 May 2025). [CrossRef]
- Geller, M.; Suchmacher Neto, M.; Ribeiro, M.; Oliveira, L.; Naliato, E.; Abreu, C.; Schechtman, R.C. Herpes Simplex: Clinical, Epidemiological, and Therapeutic Update. Braz. J. Sex. Transm. Dis. 2012, 24, 260–266. Available online: https://www.bjstd.org/revista/article/view/1089 (accessed on 24 May 2025). [CrossRef]
- Duan, R.; De Vries, R.D.; Osterhaus, A.D.M.E.; Remeijer, L.; Verjans, G.M.G.M. Acyclovir-Resistant Corneal HSV-1 Isolates 406 from Patients with Herpetic Keratitis. J. Infect. Dis. 2008, 198, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Andrei, G.; Snoeck, R. Herpes simplex virus drug-resistance. Curr. Opin. Infect. Dis. 2013, 26, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Filho, R.P.; Polli, M.C.; Filho, S.B.; Garcia, M.; Ferreira, E.I. Prodrugs Available on the Brazilian Pharmaceutical Market and 410 Their Corresponding Bioactivation Pathways. Braz. J. Pharm. Sci. 2010, 46, 393–420. [Google Scholar] [CrossRef]
- Patel, J.; Hayes, B.; Bauler, L.; Mastenbrook, J. Neurologic Acyclovir Toxicity in the Absence of Kidney Injury. J. Emerg. Med. 2019, 57, e35–e39. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Ling, S.; Wang, D.; Dai, Y.; Jiang, H.; Zhou, X.; Paludan, S.R.; Hong, J.; Cai, Y. Targeting herpes simplex virus with CRISPR–Cas9 cures herpetic stromal keratitis in mice. Nat. Biotechnol. 2021, 39, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, E.; Thakur, P.; Pareek, M.; Agarwal, N. Gene silencing by CRISPR interference in mycobacteria. Nat. Commun. 2015, 6, 6267. [Google Scholar] [CrossRef] [PubMed]
- Sidik, S.M.; Hackett, C.G.; Tran, F.; Westwood, N.J.; Lourido, S.; Blader, I.J. Efficient Genome Engineering of Toxoplasma gondii Using CRISPR/Cas9. PLoS ONE 2014, 9, e100450. [Google Scholar] [CrossRef] [PubMed]
- Vyas, V.K.; Barrasa, M.I.; Fink, G.R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv. 2015, 1, e1500248. [Google Scholar] [CrossRef] [PubMed]
- Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 2013, 3, srep02510. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Kaminski, R.; Yang, F.; Zhang, Y.; Cosentino, L.; Li, F.; Luo, B.; Alvarez-Carbonell, D.; Garcia-Mesa, Y.; Karn, J.; et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA 2014, 111, 11461–11466. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, R.; Chen, Y.; Fischer, T.; Tedaldi, E.; Napoli, A.; Zhang, Y.; Karn, J.; Hu, W.; Khalili, K. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Sci. Rep. 2016, 6, 22555. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-K.; Gu, Y.; Diaz, A.; Marlett, J.M.; Takahashi, Y.; Li, M.; Suzuki, K.; Xu, R.; Hishida, T.; Chang, C.J.; et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 2015, 6, 6413. [Google Scholar] [CrossRef] [PubMed]
- Vasques Raposo, J.; Rodrigues Carvalho Barros, L.; Ribas Torres, L.; Barbosa da Silva Pinto, R.; De Oliveira Lopes, A.; Mello de Souza, E.; Hernan Bonamino, M.; Salete de Paula, V. CRISPR/Cas-9 Vector System: Targets UL-39 and Inhibits Simplexvirus Humanalpha1 (HSV-1) Replication In Vitro. Cell. Mol. Biol. 2023, 69, 19–23. [Google Scholar] [CrossRef] [PubMed]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.G.; Bruggeling, C.E.; Schürch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.H.J.; Lebbink, R.J.; et al. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLOS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef] [PubMed]
- van Diemen, F.R.; Lebbink, R.J. CRISPR/Cas9, a Powerful Tool to Target Human Herpesviruses. Cell. Microbiol. 2017, 19, 438 e12610. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, R.M.P.; Garcia, L.S.; Lemos, F.S.; de Campos, V.S.; Ferreira, E.M.; de Almeida, N.A.A.; Maron-Gutierrez, T.; de Souza, E.M.; de Paula, V.S. CRISPR/Cas9 Eye Drop HSV-1 Treatment Reduces Brain Viral Load: A Novel Application to Prevent Neuronal Damage. Pathogens 2024, 13, 1087. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.A.A.; Torres, L.R.; Lima, L.R.P.; de Paula, V.; Barros, J.J.; Bonecini-Almeida, M.D.G.; Waghabi, M.C.; Gardel, M.A.; Meuser-Batista, M.; Souza, E.M. Inhibition of Brazilian ZIKV Strain Replication in Primary Human Placental Chorionic Cells and Cervical Cells Treated with Nitazoxanide. Braz. J. Infect. Dis. 2020, 24, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.R.P.; da Silva, A.P.; Schmidt-Chanasit, J.; de Paula, V.S. Diagnosis of Human Herpes Virus 1 and 2 (HHV-1 and HHV-2): Use of a Synthetic Standard Curve for Absolute Quantification by Real-Time Polymerase Chain Reaction. Mem. Inst. Oswaldo Cruz 2017, 112, 220–223. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Herpes Simplex Virus. WHO Fact Sheets [Internet]. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (accessed on 4 April 2023).
- Al-Dujaili, L.J.; Clerkin, P.P.; Clement, C.; McFerrin, H.E.; Bhattacharjee, P.S.; Varnell, E.D.; Kaufman, H.E.; Hill, J.M. Ocular Herpes Simplex Virus: How Are Latency, Reactivation, Recurrent Disease and Therapy Interrelated? Future Microbiol. 2011, 6, 877–907. [Google Scholar] [CrossRef] [PubMed]
- Margolis, T.P.; Elfman, F.L.; Leib, D.; Pakpour, N.; Apakupakul, K.; Imai, Y.; Voytek, C. Spontaneous Reactivation of Herpes Simplex Virus Type 1 in Latently Infected Murine Sensory Ganglia. J. Virol. 2007, 81, 11069–11074. [Google Scholar] [CrossRef] [PubMed]
- Toma, H.S.; Murina, A.T.; Areaux, R.G.; Neumann, D.M.; Bhattacharjee, P.S.; Foster, T.P.; Kaufman, H.E.; Hill, J.M. Ocular HSV-1 Latency, Reactivation and Recurrent Disease. Semin. Ophthalmol. 2008, 23, 249–273. [Google Scholar] [CrossRef] [PubMed]
- Caspary, L.; Schindling, B.; Dundarov, S.; Falke, D. Infections of Susceptible and Resistant Mouse Strains with Herpes Simplex 459 Virus Type 1 and 2. Arch. Virol. 1980, 65, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.R.; Guimarães, M.A.; Neto, L.V.; Segenreich, D.; Varella, R.B.; Antunes Chagas, V.L.; Câmara, F.P. Herpes Simplex Virus 463 Ophthalmic Disease Induced Using Two Different Methods of Mice Inoculation. Braz. J. Infect. Dis. 2001, 5, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Moein, H.-R.; Sendra, V.G.; Jamali, A.; Kheirkhah, A.; Harris, D.L.; Hamrah, P. Herpes simplex virus-1 KOS-63 strain is virulent and causes titer-dependent corneal nerve damage and keratitis. Sci. Rep. 2021, 11, 4267. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Kita, M.; Yan, X.-Q.; Yamamoto, T.; Iida, T.; Sekikawa, K.; Iwakura, Y.; Imanishi, J. Role of IFN-γ and Tumor Necrosis Factor-α in Herpes Simplex Virus Type 1 Infection. J. Interf. Cytokine Res. 2002, 22, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.H.; Thompson, T.W.; Konen, A.J.; Haenchen, S.D.; Hilliard, J.G.; Macdonald, S.J.; Morrison, L.A.; Davido, D.J. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. J. Virol. 2018, 92, e01654-17. [Google Scholar] [CrossRef] [PubMed]
- Roehm, P.C.; Shekarabi, M.; Wollebo, H.S.; Bellizzi, A.; He, L.; Salkind, J.; Khalili, K. Inhibition of HSV-1 Replication by Gene Editing Strategy. Sci. Rep. 2016, 6, 23146. [Google Scholar] [CrossRef] [PubMed]
Classification | Absent | Mild | Moderate | Intense | Severe |
---|---|---|---|---|---|
Description | No visible changes | Mild facial edema | Moderate facial edema and periocular/ocular inflammation | Intense facial edema and periocular hair loss | Severe facial edema and periocular/ocular inflammation; extensive hair loss; corneal opacity |
Score | 0 | 1 | 2 | 3 | 4 |
Experimental Groups | |
---|---|
G1 | Non-infected (NI); negative control |
G2 | HSV-1 107 PFU/mL and untreated (UNT); positive control |
G3 | HSV-1 109 PFU/mL and untreated (UNT); positive control |
G4 | HSV-1 109 PFU/mL and treated CRISPR/Cas9 50 ng/μL |
G5 | HSV-1 109 PFU/mL and treated CRISPR/Cas9 100 ng/μL |
G6 | HSV-1 109 PFU/mL and treated CRISPR/Cas9 200 ng/μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, L.S.; de Sousa, R.M.P.; Campos, V.S.; Ferreira, E.M.; Cascabulho, C.M.; de Souza, E.M.; de Paula, V.S. CRISPR/Cas9 Reduces Viral Load in a BALB/c Mouse Model of Ocular Herpes Infection. Biomedicines 2025, 13, 1738. https://doi.org/10.3390/biomedicines13071738
Garcia LS, de Sousa RMP, Campos VS, Ferreira EM, Cascabulho CM, de Souza EM, de Paula VS. CRISPR/Cas9 Reduces Viral Load in a BALB/c Mouse Model of Ocular Herpes Infection. Biomedicines. 2025; 13(7):1738. https://doi.org/10.3390/biomedicines13071738
Chicago/Turabian StyleGarcia, Luiza Silveira, Rafaela Moraes Pereira de Sousa, Viviane Souza Campos, Erik Machado Ferreira, Cynthia Machado Cascabulho, Elen Mello de Souza, and Vanessa Salete de Paula. 2025. "CRISPR/Cas9 Reduces Viral Load in a BALB/c Mouse Model of Ocular Herpes Infection" Biomedicines 13, no. 7: 1738. https://doi.org/10.3390/biomedicines13071738
APA StyleGarcia, L. S., de Sousa, R. M. P., Campos, V. S., Ferreira, E. M., Cascabulho, C. M., de Souza, E. M., & de Paula, V. S. (2025). CRISPR/Cas9 Reduces Viral Load in a BALB/c Mouse Model of Ocular Herpes Infection. Biomedicines, 13(7), 1738. https://doi.org/10.3390/biomedicines13071738