Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men
Abstract
:1. Introduction
2. Acquired Heterotopic Ossification
2.1. Post-Traumatic Heterotopic Ossification
Mouse Models of Post-Traumatic Heterotopic Ossification HO
2.2. Neurogenic Heterotopic Ossification
Mouse Models of NHO
3. Genetic forms of Heterotopic Ossification
3.1. Fibrodysplasia Ossificans Progressiva (FOP)
Mouse Models of FOP
3.2. Progressive Osseous Heteroplasia (POH) and GNAS1 Related Conditions
Mouse Models of POH and AHO
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berendsen, A.D.; Olsen, B.R. Bone development. Bone 2015, 80, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, D. Calcium Signaling and Tissue Calcification. Cold Spring Harb. Perspect. Biol. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Vidavsky, N.; Kunitake, J.; Estroff, L.A. Multiple Pathways for Pathological Calcification in the Human Body. Adv. Healthc. Mater. 2020, e2001271. [Google Scholar] [CrossRef]
- Eisenstein, N.; Stapley, S.; Grover, L. Post-Traumatic Heterotopic Ossification: An Old Problem in Need of New Solutions. J. Orthop. Res. 2018, 36, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, E.F.; Sundaram, M. Heterotopic ossification: A review. Skeletal. Radiol. 2005, 34, 609–619. [Google Scholar] [CrossRef]
- Agarwal, S.; Loder, S.; Levi, B. Heterotopic Ossification Following Upper Extremity Injury. Hand Clin. 2017, 33, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.C.; Yang, J.Y.; Chuang, S.S.; Huang, C.Y.; Yang, S.Y. Heterotopic ossification in burns: Our experience and literature reviews. Burns 2009, 35, 857–862. [Google Scholar] [CrossRef]
- DeBaun, M.R.; Ziino, C.; LaPrade, C.; Pun, S.; Avedian, R.S.; Bellino, M.J. An anatomic classification for heterotopic ossification about the hip. J. Orthop. 2020, 21, 228–231. [Google Scholar] [CrossRef]
- Lespasio, M.J.; Guarino, A.J. Awareness of Heterotopic Ossification in Total Joint Arthroplasty: A Primer. Perm. J. 2020, 24. [Google Scholar] [CrossRef]
- Trieb, K.; Meryk, A.; Senck, S.; Naismith, E.; Grubeck-Loebenstein, B. Immunological and morphological analysis of heterotopic ossification differs to healthy controls. BMC Musculoskelet. Disord. 2018, 19, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, P.A.; Dugarte, A.J.; Talbot, M.; Routt, M.L.C., Jr. Early resection of ectopic bone in patients with heterotopic ossification about the hip after trauma. Injury 2020, 51, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.L.; Hebela, N.; Keenan, M.A.; Pignolo, R.J. Histopathology of periarticular non-hereditary heterotopic ossification. Bone 2018, 109, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lees-Shepard, J.B.; Goldhamer, D.J. Stem cells and heterotopic ossification: Lessons from animal models. Bone 2018, 109, 178–186. [Google Scholar] [CrossRef]
- Wosczyna, M.N.; Biswas, A.A.; Cogswell, C.A.; Goldhamer, D.J. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J. Bone Miner. Res. 2012, 27, 1004–1017. [Google Scholar] [CrossRef] [Green Version]
- Shafritz, A.B.; Shore, E.M.; Gannon, F.H.; Zasloff, M.A.; Taub, R.; Muenke, M.; Kaplan, F.S. Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N. Engl. J. Med. 1996, 335, 555–561. [Google Scholar] [CrossRef]
- Cappato, S.; Tonachini, L.; Giacopelli, F.; Tirone, M.; Galietta, L.J.; Sormani, M.; Giovenzana, A.; Spinelli, A.E.; Canciani, B.; Brunelli, S.; et al. High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva. Dis. Model. Mech. 2016, 9, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Medici, D.; Shore, E.M.; Lounev, V.Y.; Kaplan, F.S.; Kalluri, R.; Olsen, B.R. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 2010, 16, 1400–1406. [Google Scholar] [CrossRef]
- Peterson, J.R.; Agarwal, S.; Brownley, R.C.; Loder, S.J.; Ranganathan, K.; Cederna, P.S.; Mishina, Y.; Wang, S.C.; Levi, B. Direct Mouse Trauma/Burn Model of Heterotopic Ossification. J. Vis. Exp. 2015, e52880. [Google Scholar] [CrossRef] [Green Version]
- Sorkin, M.; Huber, A.K.; Hwang, C.; Carson, W.F.t.; Menon, R.; Li, J.; Vasquez, K.; Pagani, C.; Patel, N.; Li, S.; et al. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat. Commun. 2020, 11, 722. [Google Scholar] [CrossRef]
- Agarwal, S.; Loder, S.J.; Sorkin, M.; Li, S.; Shrestha, S.; Zhao, B.; Mishina, Y.; James, A.W.; Levi, B. Analysis of Bone-Cartilage-Stromal Progenitor Populations in Trauma Induced and Genetic Models of Heterotopic Ossification. Stem Cells 2016, 34, 1692–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelsson, J.E.; Granroth, G.; Andersson, L.C. Myositis ossificans following forcible manipulation of the leg. A rabbit model for the study of heterotopic bone formation. J. Bone Joint Surg. Am. 1980, 62, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Tsailas, P.G.; Babis, G.C.; Nikolopoulos, K.; Soucacos, P.N.; Korres, D.S. The effectiveness of two COX-2 inhibitors in the prophylaxis against heterotopic new bone formation: an experimental study in rabbits. J. Surg. Res. 2009, 151, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.R.; Rooney, P. Use of the myositis ossificans model of Michelsson. Clin. Orthop. Relat. Res. 1997, 336, 340–342. [Google Scholar] [CrossRef]
- Davis, E.L.; Davis, A.R.; Gugala, Z.; Olmsted-Davis, E.A. Is heterotopic ossification getting nervous? The role of the peripheral nervous system in heterotopic ossification. Bone 2018, 109, 22–27. [Google Scholar] [CrossRef]
- Bargellesi, S.; Cavasin, L.; Scarponi, F.; De Tanti, A.; Bonaiuti, D.; Bartolo, M.; Boldrini, P.; Estraneo, A.; Heterotopic Ossification Cross Sectional Survey group. Occurrence and predictive factors of heterotopic ossification in severe acquired brain injured patients during rehabilitation stay: cross-sectional survey. Clin. Rehabil. 2018, 32, 255–262. [Google Scholar] [CrossRef]
- de l’Escalopier, N.; Salga, M.; Gatin, L.; Genet, F.; Denormandie, P. Resection of heterotopic ossification around the hip after trauma. EFORT Open Rev. 2019, 4, 263–268. [Google Scholar] [CrossRef]
- Denormandie, P.; de l’Escalopier, N.; Gatin, L.; Grelier, A.; Genet, F. Resection of neurogenic heterotopic ossification (NHO) of the hip. Orthop. Traumatol. Surg. Res. 2018, 104, S121–S127. [Google Scholar] [CrossRef]
- Alexander, K.A.; Tseng, H.-W.; Fleming, W.; Jose, B.; Salga, M.; Kulina, I.; Millard, S.M.; Pettit, A.R.; Genêt, F.; Levesque, J.-P. Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury. Front. Immunol. 2019, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Cheng, W.X.; Hu, Y.P.; Chen, J.H.; Zheng, Z.T.; Zhang, P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J. Orthop. Translat. 2018, 12, 16–25. [Google Scholar] [CrossRef]
- Torossian, F.; Guerton, B.; Anginot, A.; Alexander, K.A.; Desterke, C.; Soave, S.; Tseng, H.W.; Arouche, N.; Boutin, L.; Kulina, I.; et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, C.; Haustrate, M.A.; Nisolle, J.F.; Deltombe, T. Heterotopic ossification in COVID-19: A series of 4 cases. Ann. Phys. Rehabil. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Divani, A.A.; Andalib, S.; Biller, J.; Napoli, D.M.; Moghimi, N.; Rubinos, C.A.; Nobleza, C.O.; Sylaja, P.N.; Toledano, M.; Lattanzi, S.; et al. Central Nervous System Manifestations Associated with COVID-19. Curr. Neurol. Neurosci. Rep. 2020, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Dang, A.B.; Joshi, S.K.; Halloran, B.; Nissenson, R.; Zhang, X.; Li, J.; Kim, H.T.; Liu, X. Novel mouse model of spinal cord injury-induced heterotopic ossification. J. Rehabil. Res. Dev. 2014, 51, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Genêt, F.; Kulina, I.; Vaquette, C.; Torossian, F.; Millard, S.; Pettit, A.R.; Sims, N.A.; Anginot, A.; Guerton, B.; Winkler, I.G.; et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J. Pathol. 2015, 236, 229–240. [Google Scholar] [CrossRef]
- Brady, R.D.; Zhao, M.Z.; Wong, K.R.; Casilla-Espinosa, P.M.; Yamakawa, G.R.; Wortman, R.C.; Sun, M.; Grills, B.L.; Mychasiuk, R.; O’Brien, T.J.; et al. A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone 2020, 133, 115263. [Google Scholar] [CrossRef]
- Tsitsilonis, S.; Seemann, R.; Misch, M.; Wichlas, F.; Haas, N.P.; Schmidt-Bleek, K.; Kleber, C.; Schaser, K.D. The effect of traumatic brain injury on bone healing: an experimental study in a novel in vivo animal model. Injury 2015, 46, 661–665. [Google Scholar] [CrossRef]
- Kaplan, F.S.; Xu, M.; Seemann, P.; Connor, J.M.; Glaser, D.L.; Carroll, L.; Delai, P.; Fastnacht-Urban, E.; Forman, S.J.; Gillessen-Kaesbach, G.; et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum. Mutat 2009, 30, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Pignolo, R.J.; Bedford-Gay, C.; Liljesthrom, M.; Durbin-Johnson, B.P.; Shore, E.M.; Rocke, D.M.; Kaplan, F.S. The Natural History of Flare-Ups in Fibrodysplasia Ossificans Progressiva (FOP): A Comprehensive Global Assessment. J. Bone Miner. Res. 2016, 31, 650–656. [Google Scholar] [CrossRef]
- Gannon, F.H.; Valentine, B.A.; Shore, E.M.; Zasloff, M.A.; Kaplan, F.S. Acute lymphocytic infiltration in an extremely early lesion of fibrodysplasia ossificans progressiva. Clin. Orthop. Relat. Res. 1998, 346, 19–25. [Google Scholar] [CrossRef]
- Gannon, F.H.; Glaser, D.; Caron, R.; Thompson, L.D.; Shore, E.M.; Kaplan, F.S. Mast cell involvement in fibrodysplasia ossificans progressiva. Hum. Pathol. 2001, 32, 842–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Lindborg, C.; Lounev, V.; Kim, J.H.; McCarrick-Walmsley, R.; Xu, M.; Mangiavini, L.; Groppe, J.C.; Shore, E.M.; Schipani, E.; et al. Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling. J. Bone Miner. Res. 2016, 31, 1652–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shore, E.M.; Xu, M.; Feldman, G.J.; Fenstermacher, D.A.; Cho, T.J.; Choi, I.H.; Connor, J.M.; Delai, P.; Glaser, D.L.; LeMerrer, M.; et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 2006, 38, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Ratbi, I.; Bocciardi, R.; Regragui, A.; Ravazzolo, R.; Sefiani, A. Rarely occurring mutation of ACVR1 gene in Moroccan patient with fibrodysplasia ossificans progressiva. Clin. Rheumatol. 2010, 29, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Morales-Piga, A.; Bachiller-Corral, J.; Trujillo-Tiebas, M.J.; Villaverde-Hueso, A.; Gamir-Gamir, M.L.; Alonso-Ferreira, V.; Vazquez-Diaz, M.; Posada de la Paz, M.; Ayuso-Garcia, C. Fibrodysplasia ossificans progressiva in Spain: epidemiological, clinical, and genetic aspects. Bone 2012, 51, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Huning, I.; Gillessen-Kaesbach, G. Fibrodysplasia ossificans progressiva: Clinical course, genetic mutations and genotype-phenotype correlation. Mol. Syndromol. 2014, 5, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eresen Yazicioglu, C.; Karatosun, V.; Kizildag, S.; Ozsoylu, D.; Kavukcu, S. ACVR1 gene mutations in four Turkish patients diagnosed as fibrodysplasia ossificans progressiva. Gene 2013, 515, 444–446. [Google Scholar] [CrossRef]
- Bocciardi, R.; Bordo, D.; Di Duca, M.; Di Rocco, M.; Ravazzolo, R. Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements. Eur J. Hum. Genet. 2009, 17, 311–318. [Google Scholar] [CrossRef]
- Hino, K.; Ikeya, M.; Horigome, K.; Matsumoto, Y.; Ebise, H.; Nishio, M.; Sekiguchi, K.; Shibata, M.; Nagata, S.; Matsuda, S.; et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc. Natl. Acad. Sci. USA 2015, 112, 15438–15443. [Google Scholar] [CrossRef] [Green Version]
- Hatsell, S.J.; Idone, V.; Wolken, D.M.A.; Huang, L.; Kim, H.J.; Wang, L.; Wen, X.; Nannuru, K.C.; Jimenez, J.; Xie, L.; et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl. Med. 2015, 7, 303ra137. [Google Scholar] [CrossRef]
- Machiya, A.; Tsukamoto, S.; Ohte, S.; Kuratani, M.; Fujimoto, M.; Kumagai, K.; Osawa, K.; Suda, N.; Bullock, A.N.; Katagiri, T. Effects of FKBP12 and type II BMP receptors on signal transduction by ALK2 activating mutations associated with genetic disorders. Bone 2018, 111, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shore, E.M.; Pignolo, R.J.; Kaplan, F.S. Activin A amplifies dysregulated BMP signaling and induces chondro-osseous differentiation of primary connective tissue progenitor cells in patients with fibrodysplasia ossificans progressiva (FOP). Bone 2018, 109, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Morianos, I.; Papadopoulou, G.; Semitekolou, M.; Xanthou, G. Activin-A in the regulation of immunity in health and disease. J. Autoimmun. 2019, 104, 102314. [Google Scholar] [CrossRef]
- Kan, L.; Hu, M.; Gomes, W.A.; Kessler, J.A. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype. Am. J. Pathol. 2004, 165, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.B.; Deng, D.Y.; Lai, C.S.; Hong, C.C.; Cuny, G.D.; Bouxsein, M.L.; Hong, D.W.; McManus, P.M.; Katagiri, T.; Sachidanandan, C.; et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat. Med. 2008, 14, 1363–1369. [Google Scholar] [CrossRef]
- Haupt, J.; Deichsel, A.; Stange, K.; Ast, C.; Bocciardi, R.; Ravazzolo, R.; Di Rocco, M.; Ferrari, P.; Landi, A.; Kaplan, F.S.; et al. ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant. Hum. Mol Genet. 2014, 23, 5364–5377. [Google Scholar] [CrossRef]
- Shimono, K.; Tung, W.E.; Macolino, C.; Chi, A.H.; Didizian, J.H.; Mundy, C.; Chandraratna, R.A.; Mishina, Y.; Enomoto-Iwamoto, M.; Pacifici, M.; et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat. Med. 2011, 17, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Chakkalakal, S.A.; Zhang, D.; Culbert, A.L.; Convente, M.R.; Caron, R.J.; Wright, A.C.; Maidment, A.D.; Kaplan, F.S.; Shore, E.M. An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J. Bone Miner. Res. 2012, 27, 1746–1756. [Google Scholar] [CrossRef] [Green Version]
- Convente, M.R.; Chakkalakal, S.A.; Yang, E.; Caron, R.J.; Zhang, D.; Kambayashi, T.; Kaplan, F.S.; Shore, E.M. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1(R206H) Mouse Model of Fibrodysplasia Ossificans Progressiva. J. Bone Miner. Res. 2018, 33, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Lees-Shepard, J.B.; Yamamoto, M.; Biswas, A.A.; Stoessel, S.J.; Nicholas, S.E.; Cogswell, C.A.; Devarakonda, P.M.; Schneider, M.J., Jr.; Cummins, S.M.; Legendre, N.P.; et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat. Commun. 2018, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, F.S.; Tabas, J.A.; Gannon, F.H.; Finkel, G.; Hahn, G.V.; Zasloff, M.A. The histopathology of fibrodysplasia ossificans progressiva. An endochondral process. J. Bone Joint Surg. Am. 1993, 75, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Shore, E.M. Progressive osseous heteroplasia. J. Bone Miner. Res. 2000, 15, 2084–2094. [Google Scholar] [CrossRef] [PubMed]
- Adegbite, N.S.; Xu, M.; Kaplan, F.S.; Shore, E.M.; Pignolo, R.J. Diagnostic and mutational spectrum of progressive osseous heteroplasia (POH) and other forms of GNAS-based heterotopic ossification. Am. J. Med. Genet. A 2008, 146A, 1788–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urtizberea, J.A.; Testart, H.; Cartault, F.; Boccon-Gibod, L.; Le Merrer, M.; Kaplan, F.S. Progressive osseous heteroplasia. Report of a family. J. Bone Joint Surg. Br. 1998, 80, 768–771. [Google Scholar] [CrossRef]
- Shore, E.M.; Ahn, J.; Jan de Beur, S.; Li, M.; Xu, M.; Gardner, R.J.; Zasloff, M.A.; Whyte, M.P.; Levine, M.A.; Kaplan, F.S. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N. Engl. J. Med. 2002, 346, 99–106. [Google Scholar] [CrossRef]
- Faust, R.A.; Shore, E.M.; Stevens, C.E.; Xu, M.; Shah, S.; Phillips, C.D.; Kaplan, F.S. Progressive osseous heteroplasia in the face of a child. Am. J. Med. Genet. A 2003, 118A, 71–75. [Google Scholar] [CrossRef]
- Chan, I.; Hamada, T.; Hardman, C.; McGrath, J.A.; Child, F.J. Progressive osseous heteroplasia resulting from a new mutation in the GNAS1 gene. Clin. Exp. Dermatol. 2004, 29, 77–80. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Ramaswamy, G.; Fong, J.T.; Shore, E.M.; Kaplan, F.S. Progressive osseous heteroplasia: Diagnosis, treatment, and prognosis. Appl. Clin. Genet. 2015, 8, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Castrop, H.; Oppermann, M.; Mizel, D.; Huang, Y.; Faulhaber-Walter, R.; Weiss, Y.; Weinstein, L.S.; Chen, M.; Germain, S.; Lu, H.; et al. Skeletal abnormalities and extra-skeletal ossification in mice with restricted Gsalpha deletion caused by a renin promoter-Cre transgene. Cell Tissue Res. 2007, 330, 487–501. [Google Scholar] [CrossRef]
- Turan, S.; Bastepe, M. GNAS Spectrum of Disorders. Curr. Osteoporos. Rep. 2015, 13, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.C.; Hall, C.M. Albright’s hereditary osteodystrophy and pseudohypoparathyroidism. Semin. Musculoskelet. Radiol. 2002, 6, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Bastepe, M. GNAS mutations and heterotopic ossification. Bone 2018, 109, 80–85. [Google Scholar] [CrossRef]
- Salemi, P.; Skalamera Olson, J.M.; Dickson, L.E.; Germain-Lee, E.L. Ossifications in Albright Hereditary Osteodystrophy: Role of Genotype, Inheritance, Sex, Age, Hormonal Status, and BMI. J. Clin. Endocrinol. Metab. 2018, 103, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yu, D.; Lee, E.; Eckhaus, M.; Lee, R.; Corria, Z.; Accili, D.; Westphal, H.; Weinstein, L.S. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc. Natl. Acad. Sci. USA 1998, 95, 8715–8720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Gavrilova, O.; Liu, J.; Xie, T.; Deng, C.; Nguyen, A.T.; Nackers, L.M.; Lorenzo, J.; Shen, L.; Weinstein, L.S. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc. Natl. Acad. Sci. USA 2005, 102, 7386–7391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huso, D.L.; Edie, S.; Levine, M.A.; Schwindinger, W.; Wang, Y.; Juppner, H.; Germain-Lee, E.L. Heterotopic ossifications in a mouse model of albright hereditary osteodystrophy. PLoS ONE 2011, 6, e21755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain-Lee, E.L.; Schwindinger, W.; Crane, J.L.; Zewdu, R.; Zweifel, L.S.; Wand, G.; Huso, D.L.; Saji, M.; Ringel, M.D.; Levine, M.A. A mouse model of albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology 2005, 146, 4697–4709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, B.; Jayakumar, P.; Giladi, A.; Jupiter, J.B.; Ring, D.C.; Kowalske, K.; Gibran, N.S.; Herndon, D.; Schneider, J.C.; Ryan, C.M. Risk factors for the development of heterotopic ossification in seriously burned adults: A National Institute on Disability, Independent Living and Rehabilitation Research burn model system database analysis. J. Trauma Acute Care Surg. 2015, 79, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Potter, B.K.; Forsberg, J.A.; Davis, T.A.; Evans, K.N.; Hawksworth, J.S.; Tadaki, D.; Brown, T.S.; Crane, N.J.; Burns, T.C.; O’Brien, F.P.; et al. Heterotopic ossification following combat-related trauma. J. Bone Joint Surg. Am. 2010, 92, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.R.; Eboda, O.N.; Brownley, R.C.; Cilwa, K.E.; Pratt, L.E.; De La Rosa, S.; Agarwal, S.; Buchman, S.R.; Cederna, P.S.; Morris, M.D.; et al. Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells Dev. 2015, 24, 205–213. [Google Scholar] [CrossRef]
- Kan, L.; Kessler, J.A. Animal models of typical heterotopic ossification. J. Biomed. Biotechnol. 2011, 2011, 309287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katagiri, T.; Watabe, T. Bone Morphogenetic Proteins. Cold Spring Harb. Perspect. Biol. 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Kang, H.; Shahnazari, M.; Kim, H.; Wang, L.; Larm, O.; Adolfsson, L.; Nissenson, R.; Halloran, B. A novel mouse model of trauma induced heterotopic ossification. J. Orthop. Res. 2014, 32, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Tirone, M.; Giovenzana, A.; Vallone, A.; Zordan, P.; Sormani, M.; Nicolosi, P.A.; Meneveri, R.; Gigliotti, C.R.; Spinelli, A.E.; Bocciardi, R.; et al. Severe Heterotopic Ossification in the Skeletal Muscle and Endothelial Cells Recruitment to Chondrogenesis Are Enhanced by Monocyte/Macrophage Depletion. Front. Immunol. 2019, 10, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leblanc, E.; Trensz, F.; Haroun, S.; Drouin, G.; Bergeron, E.; Penton, C.M.; Montanaro, F.; Roux, S.; Faucheux, N.; Grenier, G. BMP-9-induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment. J. Bone Miner. Res. 2011, 26, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Lounev, V.Y.; Ramachandran, R.; Wosczyna, M.N.; Yamamoto, M.; Maidment, A.D.; Shore, E.M.; Glaser, D.L.; Goldhamer, D.J.; Kaplan, F.S. Identification of progenitor cells that contribute to heterotopic skeletogenesis. J. Bone Joint Surg. Am. 2009, 91, 652–663. [Google Scholar] [CrossRef] [Green Version]
- Le Nihouannen, D.; Daculsi, G.; Saffarzadeh, A.; Gauthier, O.; Delplace, S.; Pilet, P.; Layrolle, P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 2005, 36, 1086–1093. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Xie, L.; Crane, J.; Zhen, G.; Mishina, Y.; Deng, R.; Gao, B.; Chen, H.; Liu, S.; et al. Inhibition of overactive TGF-beta attenuates progression of heterotopic ossification in mice. Nat. Commun. 2018, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.A.; Smyth, N.A.; Hannon, C.P.; Seaworth, C.M.; DiCarlo, E.F.; Kennedy, J.G. An atraumatic case of extensive Achilles tendon ossification. Foot. Ankle Surg. 2014, 20, e59–e64. [Google Scholar] [CrossRef]
- Richards, P.J.; Braid, J.C.; Carmont, M.R.; Maffulli, N. Achilles tendon ossification: pathology, imaging and aetiology. Disabil. Rehabil. 2008, 30, 1651–1665. [Google Scholar] [CrossRef]
- Lotke, P.A. Ossification of the Achilles tendon. Report of seven cases. J. Bone Joint Surg. Am. 1970, 52, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Salah, E.D.; Pritchard, J.J. Heterotopic ossification in the tendo achillis of the rat following crushing and ligation. J. Anat. 1969, 104, 181. [Google Scholar] [PubMed]
- McClure, J. The effect of diphosphonates on heterotopic ossification in regenerating Achilles tendon of the mouse. J. Pathol. 1983, 139, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Shen, Q.; Xue, T.; Yu, C. Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: expression of bone and cartilage related genes. Bone 2010, 46, 425–431. [Google Scholar] [CrossRef]
- Vanden Bossche, L.; Vanderstraeten, G. Heterotopic ossification: a review. J. Rehabil. Med. 2005, 37, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Loder, S.; Brownley, C.; Cholok, D.; Mangiavini, L.; Li, J.; Breuler, C.; Sung, H.H.; Li, S.; Ranganathan, K.; et al. Inhibition of Hif1alpha prevents both trauma-induced and genetic heterotopic ossification. Proc. Natl. Acad. Sci. USA 2016, 113, E338–E347. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Marini, S.; Huber, A.K.; Stepien, D.M.; Sorkin, M.; Loder, S.; Pagani, C.A.; Li, J.; Visser, N.D.; Vasquez, K.; et al. Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Res. 2019, 7, 36. [Google Scholar] [CrossRef]
- Peterson, J.R.; De La Rosa, S.; Sun, H.; Eboda, O.; Cilwa, K.E.; Donneys, A.; Morris, M.; Buchman, S.R.; Cederna, P.S.; Krebsbach, P.H.; et al. Burn injury enhances bone formation in heterotopic ossification model. Ann. Surg. 2014, 259, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Pagani, C.A.; Das, N.; Marini, S.; Huber, A.K.; Xie, L.; Jimenez, J.; Brydges, S.; Lim, W.K.; Nannuru, K.C.; et al. Activin A does not drive post-traumatic heterotopic ossification. Bone 2020, 138, 115473. [Google Scholar] [CrossRef]
- Agarwal, S.; Loder, S.; Cholok, D.; Peterson, J.; Li, J.; Fireman, D.; Breuler, C.; Hsieh, H.S.; Ranganathan, K.; Hwang, C.; et al. Local and Circulating Endothelial Cells Undergo Endothelial to Mesenchymal Transition (EndMT) in Response to Musculoskeletal Injury. Sci. Rep. 2016, 6, 32514. [Google Scholar] [CrossRef]
- Agarwal, S.; Drake, J.; Qureshi, A.T.; Loder, S.; Li, S.; Shigemori, K.; Peterson, J.; Cholok, D.; Forsberg, J.A.; Mishina, Y.; et al. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS ONE 2016, 11, e0156253. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, F.; Ajami, M.; Pazoki-Toroudi, H. Why does COVID-19 pathology have several clinical forms? Bioessays 2020, e2000198. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M.; Horbelt, D.; Marom, B.; Knaus, P.; Henis, Y.I. Homomeric and heteromeric complexes among TGF-beta and BMP receptors and their roles in signaling. Cell Signal. 2011, 23, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Ikeda, K.; Akakabe, Y.; Koide, M.; Uraoka, M.; Yutaka, K.T.; Kurimoto-Nakano, R.; Takahashi, T.; Matoba, S.; Yamada, H.; et al. Paracrine osteogenic signals via bone morphogenetic protein-2 accelerate the atherosclerotic intimal calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1908–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellusci, S.; Henderson, R.; Winnier, G.; Oikawa, T.; Hogan, B.L. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 1996, 122, 1693–1702. [Google Scholar] [PubMed]
- Glaser, D.L.; Economides, A.N.; Wang, L.; Liu, X.; Kimble, R.D.; Fandl, J.P.; Wilson, J.M.; Stahl, N.; Kaplan, F.S.; Shore, E.M. In vivo somatic cell gene transfer of an engineered Noggin mutein prevents BMP4-induced heterotopic ossification. J. Bone Joint Surg. Am 2003, 85, 2332–2342. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Scott, G.; Komatsu, Y.; Araya, R.; Kawano, M.; Ray, M.K.; Yamada, M.; Mishina, Y. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2. Genesis 2006, 44, 159–167. [Google Scholar] [CrossRef]
- Pan, H.; Fleming, N.; Hong, C.C.; Mishina, Y.; Perrien, D.S. Methods for the reliable induction of heterotopic ossification in the conditional Alk2(Q207D) mouse. J. Musculoskelet. Neuronal. Interact. 2020, 20, 149–159. [Google Scholar]
- Dey, D.; Bagarova, J.; Hatsell, S.J.; Armstrong, K.A.; Huang, L.; Ermann, J.; Vonner, A.J.; Shen, Y.; Mohedas, A.H.; Lee, A.; et al. Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Sci. Transl. Med. 2016, 8, 366ra163. [Google Scholar] [CrossRef]
- Cong, Q.; Xu, R.; Yang, Y. Galphas signaling in skeletal development, homeostasis and diseases. Curr. Top. Dev. Biol. 2019, 133, 281–307. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Xu, M.; Russell, E.; Richardson, A.; Kaplan, J.; Billings, P.C.; Kaplan, F.S.; Shore, E.M. Heterozygous inactivation of Gnas in adipose-derived mesenchymal progenitor cells enhances osteoblast differentiation and promotes heterotopic ossification. J. Bone Miner. Res. 2011, 26, 2647–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Khan, S.K.; Zhou, T.; Gao, B.; Zhou, Y.; Zhou, X.; Yang, Y. Galphas signaling controls intramembranous ossification during cranial bone development by regulating both Hedgehog and Wnt/beta-catenin signaling. Bone Res. 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regard, J.B.; Malhotra, D.; Gvozdenovic-Jeremic, J.; Josey, M.; Chen, M.; Weinstein, L.S.; Lu, J.; Shore, E.M.; Kaplan, F.S.; Yang, Y. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat. Med. 2013, 19, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, A.; Chen, M.; Kobayashi, T.; Kronenberg, H.M.; Weinstein, L.S. Chondrocyte-specific knockout of the G protein G(s)alpha leads to epiphyseal and growth plate abnormalities and ectopic chondrocyte formation. J. Bone Miner. Res. 2005, 20, 663–671. [Google Scholar] [CrossRef] [PubMed]
HO Classification | Human Condition | Mouse Models of HO | ||
---|---|---|---|---|
Acquired HO | Inciting Event/Condition | Features | Inciting Event | Features |
Post-traumatic HO |
|
| BMPs injection /implantation models [14,15,16,17,18] |
|
Achilles tenotomy model Burn/tenotomy model [19,20,21] |
| |||
Michelsson’s model [22,23,24] |
| |||
Neurogenic HO |
|
| Spinal cord injury (SCI) mouse model [31,34,35] |
|
Traumatic brain injury (TBI) mouse model [36,37] |
| |||
Genetic forms of HO | Genetic cause | Features | Genetic background | Features |
FOP (OMIM 135100) | Gain of function mutations of ACVR1/Alk2: alteration of the BMP signalling and acquired responsivity to Activin A [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
| BMP ligand overexpression mouse models (Nse-BMP4) [54] |
|
Alk2Q207D-floxed (caAlk2fl) mouse model [55,56,57] |
| |||
Acvr1R206H/+ chimeric mouse model [58] |
| |||
Acvr1[R206H]FlEx knock-in mouse model [50,59] Acvr1tnR206H knock-in mouse model [60] |
| |||
POH (OMIM166350) | Loss of function mutation of GNAS1 (paternal allele) [61,62,63,64,65,66,67,68] |
| rCre-Gsα mouse model [69] |
|
AHO (OMIM103580 & 612463) | Loss of function mutation of GNAS1 (mainly maternal transmitted) [63,70,71,72,73] |
| GnasE2+/− mouse model [74,75] | Maternal mutation
|
GnasE1+/− mouse model [75,76,77] |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappato, S.; Gamberale, R.; Bocciardi, R.; Brunelli, S. Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men. Biomedicines 2020, 8, 611. https://doi.org/10.3390/biomedicines8120611
Cappato S, Gamberale R, Bocciardi R, Brunelli S. Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men. Biomedicines. 2020; 8(12):611. https://doi.org/10.3390/biomedicines8120611
Chicago/Turabian StyleCappato, Serena, Riccardo Gamberale, Renata Bocciardi, and Silvia Brunelli. 2020. "Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men" Biomedicines 8, no. 12: 611. https://doi.org/10.3390/biomedicines8120611
APA StyleCappato, S., Gamberale, R., Bocciardi, R., & Brunelli, S. (2020). Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men. Biomedicines, 8(12), 611. https://doi.org/10.3390/biomedicines8120611