The Role of Satellite Glial Cells, Astrocytes, and Microglia in Oxaliplatin-Induced Neuropathic Pain
Abstract
:1. Introduction
2. Results
2.1. Dorsal Root Ganglia (DRG)
Satellite Glial Cells (SGCs)
2.2. Spinal Cord
2.2.1. Astrocytes
2.2.2. Microglia
2.3. Brain
2.3.1. Astrocytes
2.3.2. Microglia
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Graham, J.; Muhsin, M.; Kirkpatrick, P. Oxaliplatin. Nat. Rev. Drug Discov. 2004, 3, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, T.; Steyger, P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015, 237, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Pasetto, L.M.; D’Andrea, M.R.; Rossi, E.; Monfardini, S. Oxaliplatin-related neurotoxicity: How and why? Crit. Rev. Oncol./Hematol. 2006, 59, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Attal, N.; Bouhassira, D.; Gautron, M.; Vaillant, J.; Mitry, E.; Lepere, C.; Rougier, P.; Guirimand, F. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: A prospective quantified sensory assessment study. PAIN 2009, 144, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Chung, Y.; Choi, S.; Min, B.-I.; Kim, S.K. Duloxetine protects against oxaliplatin-induced neuropathic pain and spinal neuron hyperexcitability in rodents. Int. J. Mol. Sci. 2017, 18, 2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descoeur, J.; Pereira, V.; Pizzoccaro, A.; Francois, A.; Ling, B.; Maffre, V.; Couette, B.; Busserolles, J.; Courteix, C.; Noel, J. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 2011, 3, 266–278. [Google Scholar] [CrossRef]
- Kim, W. Effect of Oxaliplatin on Voltage-Gated Sodium Channels in Peripheral Neuropathic Pain. Processes 2020, 8, 680. [Google Scholar] [CrossRef]
- Xiao, W.H.; Bennett, G.J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 2012, 153, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Riva, B.; Dionisi, M.; Potenzieri, A.; Chiorazzi, A.; Cordero-Sanchez, C.; Rigolio, R.; Carozzi, V.A.; Lim, D.; Cavaletti, G.; Marmiroli, P. Oxaliplatin induces pH acidification in dorsal root ganglia neurons. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Scholz, J.; Woolf, C.J. The neuropathic pain triad: Neaurons, immune cells and glia. Nat. Neurosci. 2007, 10, 1361–1368. [Google Scholar] [CrossRef]
- Vallejo, R.; Tilley, D.M.; Vogel, L.; Benyamin, R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Prac. 2010, 10, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Aldskogius, H.; Kozlova, E.N. Microglia and neuropathic pain. CNS Neurol. Disorders-Drug Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord.) 2013, 12, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-J.; Ji, R.-R. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 2010, 7, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Ling, B.; Coudoré-Civiale, M.-A.; Balayssac, D.; Eschalier, A.; Coudoré, F.; Authier, N. Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. Toxicology 2007, 234, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kim, M.J.; Go, D.; Min, B.-I.; Na, H.S.; Kim, S.K. Combined effects of bee venom acupuncture and morphine on oxaliplatin-induced neuropathic pain in mice. Toxins 2016, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, J.H.; Jang, J.U.; Quan, F.S.; Kim, S.K.; Kim, W. The efficacy of combination treatment of gabapentin and electro-acupuncture on paclitaxel-induced neuropathic pain. Korean J. Physiol. Pharmacol. 2017, 21, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Jeon, C.; Lee, J.H.; Jang, J.U.; Quan, F.S.; Lee, K.; Kim, W.; Kim, S.K. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor. Toxins 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.-S.; Kim, S.-K.; Kim, H.N.; Lee, J.-H.; Lee, J.-H.; Hwang, D.S.; Bae, H.; Min, B.-I.; Kim, S.K. Gyejigachulbu-tang relieves oxaliplatin-induced neuropathic cold and mechanical hypersensitivity in rats via the suppression of spinal glial activation. Evid.-Based Complement. Altern. Med. 2014, 2014, 436482. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.H.; Kim, W.; Li, D.; Kim, Y.; Lee, K.; Kim, S.K. The suppressive effects of Cinnamomi Cortex and its phytocompound coumarin on oxaliplatin-induced neuropathic cold allodynia in rats. Molecules 2016, 21, 1253. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Lee, J.H.; Kim, W.; Yoon, S.H.; Kim, S.K. Anti-allodynic effect of Buja in a rat model of oxaliplatin-induced peripheral neuropathy via spinal astrocytes and pro-inflammatory cytokines suppression. BMC Complement. Altern. Med. 2017, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Xiao, W.-H.; Bennett, G. The response of spinal microglia to chemotherapy-evoked painful peripheral neuropathies is distinct from that evoked by traumatic nerve injuries. Neuroscience 2011, 176, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warwick, R.; Hanani, M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain 2013, 17, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Mannelli, L.D.C.; Pacini, A.; Bonaccini, L.; Zanardelli, M.; Mello, T.; Ghelardini, C. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. J. Pain 2013, 14, 1585–1600. [Google Scholar] [CrossRef] [PubMed]
- Mannelli, L.D.C.; Pacini, A.; Micheli, L.; Tani, A.; Zanardelli, M.; Ghelardini, C. Glial role in oxaliplatin-induced neuropathic pain. Exp. Neurol. 2014, 261, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-Y.; Robinson, C.R.; Zhang, H.; Dougherty, P.M. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J. Pain 2013, 14, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Mannelli, L.D.C.; Pacini, A.; Matera, C.; Zanardelli, M.; Mello, T.; De Amici, M.; Dallanoce, C.; Ghelardini, C. Involvement of α7 nAChR subtype in rat oxaliplatin-induced neuropathy: Effects of selective activation. Neuropharmacology 2014, 79, 37–48. [Google Scholar] [CrossRef]
- Robinson, C.R.; Zhang, H.; Dougherty, P.M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 2014, 274, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Janes, K.; Wahlman, C.; Little, J.W.; Doyle, T.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav. Immun. 2015, 44, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.T.; Chung, Y.H.; Lee, H.S.; Chung, S.J.; Lee, J.H.; Sohn, U.D.; Shin, Y.K.; Park, E.S.; Kim, H.-C.; Bang, J.S. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015, 130, 81–87. [Google Scholar] [CrossRef]
- Mannelli, L.D.C.; Pacini, A.; Corti, F.; Boccella, S.; Luongo, L.; Esposito, E.; Cuzzocrea, S.; Maione, S.; Calignano, A.; Ghelardini, C. Antineuropathic profile of N-palmitoylethanolamine in a rat model of oxaliplatin-induced neurotoxicity. PLoS ONE 2015, 10, e0128080. [Google Scholar]
- Deng, B.; Jia, L.; Pan, L.; Song, A.; Wang, Y.; Tan, H.; Xiang, Q.; Yu, L.; Ke, D. Wen-Luo-Tong prevents glial activation and nociceptive sensitization in a rat model of oxaliplatin-induced neuropathic pain. Evid.-Based Complement. Altern. Med. 2016, 2016, 3629489. [Google Scholar] [CrossRef] [PubMed]
- Pacini, A.; Micheli, L.; Maresca, M.; Branca, J.J.V.; McIntosh, J.M.; Ghelardini, C.; Mannelli, L.D.C. The α9α10 nicotinic receptor antagonist α-conotoxin RgIA prevents neuropathic pain induced by oxaliplatin treatment. Exp. Neurol. 2016, 282, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Makker, P.G.; Duffy, S.S.; Lees, J.G.; Perera, C.J.; Tonkin, R.S.; Butovsky, O.; Park, S.B.; Goldstein, D.; Moalem-Taylor, G. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS ONE 2017, 12, e0170814. [Google Scholar] [CrossRef] [PubMed]
- Mannelli, L.D.C.; Pacini, A.; Micheli, L.; Femia, A.P.; Maresca, M.; Zanardelli, M.; Vannacci, A.; Gallo, E.; Bilia, A.R.; Caderni, G. Astragali radix: Could it be an adjuvant for oxaliplatin-induced neuropathy? Sci. Rep. 2017, 7, 1–13. [Google Scholar]
- Wang, Y.-s.; Li, Y.-y.; Cui, W.; Li, L.-B.; Zhang, Z.-C.; Tian, B.-P.; Zhang, G.-S. Melatonin attenuates pain hypersensitivity and decreases astrocyte-mediated spinal neuroinflammation in a rat model of oxaliplatin-induced pain. Inflammation 2017, 40, 2052–2061. [Google Scholar] [CrossRef]
- Areti, A.; Komirishetty, P.; Kalvala, A.K.; Nellaiappan, K.; Kumar, A. Rosmarinic acid mitigates mitochondrial dysfunction and spinal glial activation in oxaliplatin-induced peripheral neuropathy. Mol. Neurobiol. 2018, 55, 7463–7475. [Google Scholar] [CrossRef]
- Tonkin, R.S.; Bowles, C.; Perera, C.J.; Keating, B.A.; Makker, P.G.; Duffy, S.S.; Lees, J.G.; Tran, C.; Don, A.S.; Fath, T. Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Exp. Neurol. 2018, 300, 1–12. [Google Scholar] [CrossRef]
- Wahlman, C.; Doyle, T.M.; Little, J.W.; Luongo, L.; Janes, K.; Chen, Z.; Esposito, E.; Tosh, D.K.; Cuzzocrea, S.; Jacobson, K.A. Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels via astrocyte-dependent mechanisms. Pain 2018, 159, 1025. [Google Scholar] [CrossRef]
- Hao, Y.; Luo, X.; Ba, X.; Wang, J.; Zhou, S.; Yang, S.; Fang, C.; Jiang, C.; Sun, W. Huachansu suppresses TRPV1 up-regulation and spinal astrocyte activation to prevent oxaliplatin-induced peripheral neuropathic pain in rats. Gene 2019, 680, 43–50. [Google Scholar] [CrossRef]
- Saika, F.; Matsuzaki, S.; Kobayashi, D.; Ideguchi, Y.; Nakamura, T.Y.; Kishioka, S.; Kiguchi, N. Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain. Front. Pharmacol. 2020, 11, 925. [Google Scholar] [CrossRef]
- Jacobs, S.; McCully, C.L.; Murphy, R.F.; Bacher, J.; Balis, F.M.; Fox, E. Extracellular fluid concentrations of cisplatin, carboplatin, and oxaliplatin in brain, muscle, and blood measured using microdialysis in nonhuman primates. Cancer Chemother. Pharmacol. 2010, 65, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Pannese, E. Biology and pathology of perineuronal satellite cells in sensory ganglia. In Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–63. [Google Scholar]
- Hanani, M.; Huang, T.Y.; Cherkas, P.S.; Ledda, M.; Pannese, E. Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 2002, 114, 279–283. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, X.; Xian, Y.-F.; Yao, M.; Zhang, X.; Huang, P.; Wu, W.; Lin, Z.-X. Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats. Biomed. Pharmacother. 2020, 127, 110187. [Google Scholar] [CrossRef] [PubMed]
- Alshelh, Z.; Di Pietro, F.; Youssef, A.M.; Reeves, J.M.; Macey, P.M.; Vickers, E.R.; Peck, C.C.; Murray, G.M.; Henderson, L.A. Chronic Neuropathic Pain: It’s about the Rhythm. J. Neurosci. 2016, 36, 1008–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, E.; Bai, L.; Li, S.; Li, L.; Dou, Z.; Huang, Y.; Li, Y.; Lv, Y. Dexmedetomidine Alleviates CCI-Induced Neuropathic Pain via Inhibiting HMGB1-Mediated Astrocyte Activation and the TLR4/NF-κB Signaling Pathway in Rats. Neurotox Res. 2020, 1–10. [Google Scholar] [CrossRef]
- Choi, S.R.; Roh, D.H.; Yoon, S.Y.; Choi, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Lee, J.H. Spinal cytochrome P450c17 plays a key role in the development of neuropathic mechanical allodynia: Involvement of astrocyte sigma-1 receptors. Neuropharmacology 2019, 149, 169–180. [Google Scholar] [CrossRef]
- Shibata, K.; Sugawara, T.; Fujishita, K.; Shinozaki, Y.; Matsukawa, T.; Suzuki, T.; Koizumi, S. The Astrocyte-Targeted Therapy by Bushi for the Neuropathic Pain in Mice. PLoS ONE 2011, 6, e23510. [Google Scholar] [CrossRef] [Green Version]
- Wade, J.J.; McDaid, L.J.; Harkin, J.; Crunelli, V.; Kelso, J.A.S. Bidirectional Coupling between Astrocytes and Neurons Mediates Learning and Dynamic Coordination in the Brain: A Multiple Modeling Approach. PLoS ONE 2011, 6, e29445. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Xu, Z.Z.; Wang, X.; Park, J.Y.; Zhuang, Z.Y.; Tan, P.H.; Gao, Y.J.; Roy, K.; Corfas, G.; Lo, E.H.; et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat. Med. 2008, 14, 331–336. [Google Scholar] [CrossRef]
- Zhou, L.J.; Peng, J.; Xu, Y.N.; Zeng, W.J.; Zhang, J.; Wei, X.; Mai, C.L.; Lin, Z.J.; Liu, Y.; Murugan, M.; et al. Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain. Cell Rep. 2019, 27, 3844–3859. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, M. Microglia in the spinal cord and neuropathic pain. J. Diabetes Investig. 2016, 7, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Z.-Y.; Kawasaki, Y.; Tan, P.-H.; Wen, Y.-R.; Huang, J.; Ji, R.-R. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav. Immun. 2007, 21, 642–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, R.-D.; Suter, M.R.; Ji, R.-R.; Decosterd, I. Glial cells and chronic pain. Neuroscientist 2010, 16, 519–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, M.; Wu, G.; Wu, L.-J. Neuronal and microglial mechanisms of neuropathic pain. Mol. Brain 2011, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.-R.; Suter, M.R. p38 MAPK, microglial signaling, and neuropathic pain. Mol. Pain 2007, 3, 1744–8069. [Google Scholar] [CrossRef] [Green Version]
- Hains, B.C.; Waxman, S.G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J. Neurosci. 2006, 26, 4308–4317. [Google Scholar] [CrossRef] [Green Version]
- Loggia, M.L.; Chonde, D.B.; Akeju, O.; Arabasz, G.; Catana, C.; Edwards, R.R.; Hill, E.; Hsu, S.; Izquierdo-Garcia, D.; Ji, R.-R.; et al. Evidence for brain glial activation in chronic pain patients. Brain 2015, 138, 604–615. [Google Scholar] [CrossRef]
- Barcelon, E.E.; Cho, W.-H.; Jun, S.B.; Lee, S.J. Brain Microglial Activation in Chronic Pain-Associated Affective Disorder. Front. Neurosci. 2019, 13, 213. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Cheng, G.; Zhu, Y.; Zhang, X.; Pu, S.; Wu, J.; Lv, Y.; Du, D. Anti-nociceptive roles of the glia-specific metabolic inhibitor fluorocitrate in paclitaxel-evoked neuropathic pain. Acta Biochim. Biophys. Sin. 2016, 48, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.S.; Cherng, C.H.; Wen, Z.H.; Chang, W.K.; Huang, S.Y.; Lin, S.L.; Chan, K.H.; Wong, C.S. Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1β—Induced thermal hyperalgesic rats. Glia 2012, 60, 2004–2017. [Google Scholar] [CrossRef]
Authors/ Years | Animal Type (Investigated Site) | Oxaliplatin Dosing Schedule/Cumulative Dose | Glial Type | Findings: Behavioral Assessments |
---|---|---|---|---|
Findings: Glial Activation | ||||
Zheng et al. (2011) [21] | SD rat (spinal cord) | D0–4 (5 times)/10 mg/kg (i.p.) | Mic. | Oxaliplatin-induced mechanical hypersensitivity (von Frey test): D35; p < 0.05 (4 g); p < 0.01 (15 g) versus control |
No significant change in Iba1 expression after oxaliplatin treatment: D35; DH: 76.3 ± 4.2 (control) versus 67.9 ± 4.9; VH: 59.7 ± 5.3 (control) versus 55.3 ± 6.1 | ||||
Warwick et al. (2012) [22] | Balb/c mice (DRG) | D0, D3 (twice)/8 mg/kg (i.p.) | SGCs | Oxaliplatin lowered the pain threshold by 70% (von Frey test): D7, p < 0.05 versus control Carbenoxolone (50 mg/kg, i.p.) increased the lowered pain threshold: p < 0.05 versus oxaliplatin |
Oxaliplatin increased the number of DRG neurons surrounded by SGCs (more than 50% of their circumference): 15% (control); 35% (oxaliplatin, p < 0.05 versus control) Carbenoxolone (i.p.) lowered the increased incidence of coupling rate after oxaliplatin injection: 5/60 (control), 23/56 (oxaliplatin, p < 0.05 versus control), 10/40 (50 mg/kg, NS versus oxaliplatin), 6/53 (100 mg/kg, p < 0.05 versus oxaliplatin) | ||||
Yoon et al. (2012) [25] | SD rat (spinal cord) | D1, D3, D5, D7 (4 times)/8 mg/kg (i.p.) | Ast. | Oxaliplatin decreased the pain threshold (von Frey test): D10, p < 0.05; D12 and D14, p < 0.01 versus control D0–7 carbenoxolone injection (25 μg, i.t.) prevented mechanical hypersensitivity D14–21 carbenoxolone injection (25 μg, i.t.) did not attenuate mechanical hypersensitivity |
Increased GFAP expression in the spinal cord after oxaliplatin injection: D7, p < 0.05 versus control (Hypertrophied cell bodies with thickened and elongated processes); D14, NS versus control Increased expression of Cx43 in the spinal dorsal horn: D7 and 14, p < 0.05 versus control D0–7 carbenoxolone injection (25 μg, i.t.) prevented the increase of GFAP expression | ||||
Mannelli et al. (2013) [23] | SD rat (brain, DRG, spinal cord) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. SGCs | Oxaliplatin induced cold hyperalgesia (cold plate test): 25.4 ± 0.9 s (control); 18.5 ± 0.8 s (D7, p < 0.05 versus control); 14 s (D14 and 21, p < 0.05 versus control) Oxaliplatin induced mechanical allodynia (von Frey test): 28.3 ± 1.2 g (control); 19.3 ± 1.3 g (D14, p < 0.05 versus control); 14.7 ± 1.5 g (D21, p < 0.05 versus control) Oxaliplatin induced mechanical hyperalgesia (paw-pressure test): 73.4 ± 2.1 g (control); 37.5 ± 2.8 g (D21, p < 0.05 versus control) |
The number of SGCs increased in the DRG: D21, 31.4 ± 5.4 (control); 92.1 ± 7.9 (oxaliplatin, p < 0.01 versus control) Iba1 cell density increased in the dorsal horn of the spinal cord: D7, 73% higher versus control, p < 0.05 (cell body increased, and branches of the processes shortened); D14, NS versus control; D21, NS versus control GFAP cell density in spinal superficial laminae increased after oxaliplatin injection: D7, D14, and D21, p < 0.05 versus control, highest on D7; 54% higher versus control. No altered morphology Iba1 positive cells increased after oxaliplatin injection: thalamus, neostriatum, S1, DL-PAG, NRM: D7, D14 and D21, p < 0.05 versus control; ACC and VL-PAG: D14, p < 0.05 versus control; mfb: D7 and D14, p < 0.05 versus control GFAP expressing cells increased after oxaliplatin injection: neostriatum, ACC, S1: D7, D14, and D21, p < 0.05 versus control; thalamus: D7 and D14, p < 0.05 versus control; VL-PAG: D21, p < 0.05 versus control; NRM: D14 and D21, p < 0.05 versus control; DL-PAG and mfb: NS versus control | ||||
Ahn et al. (2014) [18] | SD rat (spinal cord) | D0 (single)/6 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold allodynia (TWL, 4 °C): D3 and D5, p < 0.001 versus control) Oxaliplatin induced mechanical hypersensitivity (von Frey test): D3, p < 0.05 versus control; D5, p < 0.001 versus control GBT (400 and 600 mg/kg, p.o.) attenuated the cold allodynia and mechanical hypersensitivity: D5, p < 0.001 and p < 0.01 versus oxaliplatin, respectively |
Oxaliplatin increased GFAP and OX-42 expression in the spinal cord: D5, 135.0 ± 13.5 (control); 216.3 ± 2.8 (oxaliplatin, p < 0.001 versus control); and 106.7 ± 11.9 (control); 204.0 ± 2.2 (oxaliplatin, p < 0.001 versus control) Hypertrophic with thick processes (astrocytes) and hypertrophic amoeboid shape with short processes (microglia) GBT (400 mg/kg, p.o.) suppressed the increase in the number of spinal GFAP and OX-42-positive cells: D5, p < 0.001 versus oxaliplatin | ||||
Mannelli et al. (2014) [26] | SD rat (brain, spinal cord) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold hyperalgesia (cold plate test): 23.8 ± 1.2 s (control); 14.1 ± 0.8 s (D21, p < 0.01 versus control) Oxaliplatin induced mechanical allodynia (von Frey test): 21.0 ± 0.5 g (control); 13.8 ± 0.3 g (D21, p < 0.01 versus control) Oxaliplatin induced mechanical hyperalgesia (paw-pressure test): 68.3 ± 1.6 g (control); 41.7 ± 2.1 g (D21, p < 0.01 versus control) D0-20 α7 nAChR agonists (PNU-282987 and (R)-ICH3, 30 mg/kg, p.o.) injection prevented the pain behavior evoked by oxaliplatin (p < 0.01 versus oxaliplatin) |
No change in Iba1 positive cell number in the spinal cord after oxaliplatin treatment: D21 Iba1 expression increased in the brain after oxaliplatin: thalamus, S1, and DL-PAG (p < 0.05 versus control) PNU or (R)-ICH3 per se enhanced Iba1 cell density: in the thalamus by 60% and S1 by 108% (p < 0.05 versus control) Increase in GFAP-positive cell number in the spinal cord after oxaliplatin injection: D21 GFAP expression increased in the brain after oxaliplatin: S1 by 49% and VL-PAG by 50% (p < 0.05 versus control) PNU or (R)-ICH3 (30 mg/kg, p.o.) failed to reduce increased GFAP expression in the spinal cord PNU or (R)-ICH3 injection increased GFAP cell number in the thalamus and S1, but decreased in the VL-PAG (p < 0.05 versus oxaliplatin) | ||||
Mannelli et al. (2014) [24] | SD rat (spinal cord, DRG) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. SGCs | Oxaliplatin induced mechanical hyperalgesia (paw-pressure test): ± 70 g (control); 56.6 ± 1.9 g (D7, p < 0.05 versus control); 45.0 ± 4.1 g (D14, p < 0.01 versus control); 43.5 ± 1.9 g (D21, p < 0.01 versus control); Minocycline (12.5 nmol/h, i.t.) prevented mechanical hyperalgesia: by 50% (D7, p < 0.05); by 33% (D14, p < 0.05); by 60% (D21, p < 0.01); Fluorocitrate (1 nmol/h, i.t.) prevented hyperalgesia: by 100% (D7, p < 0.01); by 80% (D14, p < 0.01); 87% (D21, p < 0.01) Oxaliplatin induced mechanical allodynia (von Frey test): ± 28 g (control); 19.2 ± 0.6 g (D14, p < 0.05); 14.2 ± 0.5 g (D21, p < 0.01). Minocycline prevented by 60% (D14, p < 0.05); 90% (D21, p < 0.01); Fluorocitrate prevented by 93% (D14, p < 0.01); 94% (D21, p < 0.01). Oxaliplatin induced cold hyperalgesia (cold plate test): ± 23 s (control), 17.0 ± 1.5 g (D7, p < 0.05), 16.1 ± 0.8 g (D14, p < 0.01), and 12.4 ± 1.1 g (D21, p < 0.01); Minocycline prevented by 80% (D21, p < 0.01); Fluorocitrate prevented by 100% (D7, p < 0.01), by 90% (D14, p < 0.01), and by 95% (D21, p < 0.01) |
Oxaliplatin increased Iba1 positive cells in the spinal cord: D7, p < 0.01 versus control. Minocycline prevented this increased: D7, p < 0.01 versus oxaliplatin; D14, NS versus control; D21, NS versus control Oxaliplatin increased GFAP expressing cell number in the superficial laminae of the dorsal horn: D7, D14, and D21, p < 0.01 versus control. Fluorocitrate prevented this increase: D7, D14, and D21, p < 0.01 versus oxaliplatin Minocycline and fluorocitrate did not decrease the number of SGCs increased in DRG after oxaliplatin treatment: D21; 10.7 ± 1.3 (control); 23.5 ± 2.7 (oxaliplatin, p < 0.05 versus control); 20.4 ± 3.6 (minocycline, NS versus oxaliplatin); 22.7 ± 4.1(fluorocitrate, NS versus oxaliplatin) | ||||
Robinson et al. (2014) [27] | SD rat (spinal cord) | D1, D3, D5, D7 (4 times)/8 mg/kg (i.p.) | Ast. | Oxaliplatin induced mechanical allodynia (von Frey test): D14, 20.6 ± 1.8 g (control); 12.0 ± 1.4 g (oxaliplatin, p < 0.05 versus control); D0-8 treatment of minocycline (25 mg/kg, i.p.) prevented this change: D14 |
Oxaliplatin increased GFAP fluorescence intensity in the spinal cord: D7, 131 ± 9.4% of control (p < 0.001); D14, 122 ± 4.7% of control (p < 0.001) D0–8 treatment of minocycline showed an increase of intensity at D7, 115 ± 13.5% of control (NS) and decrease at D14, 91 ± 20.2% of control (NS) | ||||
Janes et al. (2015) [28] | SD rat (spinal cord) | D0–4 (5 times)/10 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced mechanical hypersensitivity (von Frey test): D11, D17, and D25 (p < 0.05 versus control) D0–4 A3AR agonists MRS5698 (0.1 mg/kg/day, i.p.) injection prevented the development of mechanical hypersensitivity: D11, D17, and D25 (p < 0.05 versus oxaliplatin) |
No change in spinal expression of OX42 after oxaliplatin treatment: D25 GFAP expression increased bilaterally within the superficial dorsal horn: p < 0.05 versus control Enhanced expression of GFAP was suppressed by treatment of MRS5698: p < 0.05 versus oxaliplatin | ||||
Kim et al. (2015) [29] | SD rat (spinal cord) | Twice a week for 4 weeks (8 times)/32 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced mechanical allodynia (von Frey test): D21, p < 0.05; D28, p < 0.01 versus control Oxaliplatin induced thermal pain (hot plate test, tail-flick test): D14, p < 0.01 versus control; D21, p < 0.05 versus control; D28, p < 0.001 versus control PC (300 mg/kg, p.o.) treatment decrease mechanical allodynia induced by oxaliplatin: D28, p < 0.05 versus oxaliplatin Increased thermal pain reduced after PC treatment: D21, p < 0.05; D28, p < 0.01 versus oxaliplatin |
No change in GFAP expression in the spinal cord after oxaliplatin treatment: D28 PC administration decreased the number of Iba1 positive cells increased after oxaliplatin treatment in the spinal cord: D28, 10.00 ± 2.12 (control); 16.67 ± 4.27 (oxaliplatin, p < 0.01 versus control); 11.80 ± 3.11 (PC, p < 0.05 versus oxaliplatin) | ||||
Mannelli et al. (2015) [30] | SD rat (brain, spinal cord) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold hyperalgesia (cold plate test): 21.3 ± 0.8 s (control); 11.5 ± 0.6 s (D21, p < 0.01 versus control) Single PEA (30 mg/kg, i.p.) injection relieved pain for 30–60 min after administration (p < 0.01 versus oxaliplatin) D0–20 PEA (30 mg/kg/day, i.p.) administration decreased mechanical allodynia about 40% (p < 0.05 versus oxaliplatin) Oxaliplatin induced mechanical allodynia (von Frey test): 32.1 ± 1.1 g (control), 21.6 ± 1.1 g (D21, p < 0.01 versus control) D0-20 PEA treatment prevented pain threshold alteration by 55% (p < 0.01 versus oxaliplatin) Oxaliplatin induced mechanical hyperalgesia (paw-pressure test): 69.2 ± 1.7 g (control), 40.5 ± 1.3 g (D21, p < 0.01 versus control); D0-20 PEA treatment, prevented mechanical hyperalgesia by 62% (p < 0.01 versus oxaliplatin) |
D0–20 PEA treatment decreased increased expression of GFAP-positive cells by 66% in the dorsal horn of the spinal cord: D21, p < 0.05 versus oxaliplatin. Iba1 expression was not changed after oxaliplatin In S1, both GFAP and Iba1 positive cell number increased after oxaliplatin: D21, p < 0.05 versus control D0-20 PEA treatment decreased GFAP and Iba1 positive cell number: D21, p < 0.05 versus oxaliplatin | ||||
Deng et al. (2016) [31] | Wistar rat (spinal cord) | Twice a week (not mentioned)/36 mg/kg (i.p.) | Ast. | WLT decrease oxaliplatin induced mechanical allodynia (von Frey test, 4 g): D31, 5.00 ± 5.35 (control); 46.25 ± 20.65 (oxaliplatin, p < 0.01 versus control); 16.25 ± 10.61 (WLT, p < 0.05 versus oxaliplatin) WLT decrease oxaliplatin induced mechanical hyperalgesia (von Frey test, 15g): D31, 18.75 ± 8.35 (control); 60.00 ± 16.04 (oxaliplatin, p < 0.01 versus control); 33.75 ± 15.06 (WLT, p < 0.01 versus oxaliplatin) |
GFAP-positive cell density change (IOD) after oxaliplatin and WLT treatment in the spinal dorsal horn: D31, 0.55 ± 0.07 (control); 1.27 ± 0.33 (oxaliplatin, p < 0.01 versus control); 0.61 ± 0.11 (WLT, p < 0.01 versus oxaliplatin) GFAP-positive cell density change (area μm2) after oxaliplatin and WLT treatment in the spinal dorsal horn: D31, 191.44 ± 171.04 (control); 1366.17 ± 486.86 (oxaliplatin, p < 0.01 versus control); 129.85 ± 54.31 (WLT, p < 0.01 versus oxaliplatin) | ||||
Kim et al. (2016) [19] | SD rat (spinal cord) | D0 (single)/6 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold allodynia (TWL, 4 °C): D3–5, p < 0.001 versus control D0-4 WECC (200, 400 mg/kg, p.o.) administration showed potent analgesic effects: D3–5, p < 0.001 versus oxaliplatin Coumarin decreased oxaliplatin induced cold allodynia: D3 and 5, p < 0.001; D4, p < 0.01 versus oxaliplatin |
GFAP and Iba1 positive cells in spinal cord (laminae I–II) increased after oxaliplatin injection: p < 0.001 versus control D0–4 WECC (200 mg/kg, p.o.) administration suppressed the change in GFAP and Iba1 positive cells: GFAP (p < 0.001 versus oxaliplatin); Iba1 (p < 0.05 versus oxaliplatin) | ||||
Pacini et al. (2016) [32] | SD rat (brain, spinal cord) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced mechanical hyperalgesia (paw-pressure test): ± 75 g (control); 60.1 ± 2.0 g (D7, p < 0.05 versus control); 47.4 ± 1.2 g (D14, p < 0.01 versus control); 44.6 ± 2.9 g (D21, p < 0.01 versus control); D0-21 RgIA (10 nmol/100 μL, i.m.) injection prevented pain development: D7, p < 0.05; D14 and D21; p < 0.01 versus oxaliplatin Oxaliplatin induced mechanical allodynia (von Frey test): ± 35 g (control); 20.2 ± 2.3 g (D14, p < 0.01 versus control); 15.0 ± 2.0 g (D21, p < 0.01 versus control); D0–21 RgIA injection increased the threshold (D14 and D21, p < 0.01 versus oxaliplatin) Oxaliplatin induced cold hyperalgesia (cold plate test): ± 23 s (control); 14.7 ± 0.9 g (D7, p < 0.01 versus control); 15.0 ± 0.6 g (D14, p < 0.01 versus control); 10.7 ± 1.6 g (D21, p < 0.01 versus control); D0–21 RgIA significantly delayed the latency (D7, p < 0.05 versus oxaliplatin; D14 and D21, p < 0.01 versus oxaliplatin group) |
No change in spinal expression of Iba1 after oxaliplatin treatment: D21, 40.7 ± 2.7 (control); 37.0 ± 4.4 (NS versus control) D0–21 RgIA (10 nmol) treatment prevented oxaliplatin-induced GFAP expression increase: 185.1 ± 21.3 (control); 303.0 ± 14.1 (p < 0.05 versus control); 201.3 ± 28.4 (p < 0.05 versus oxaliplatin) RgIA treated rats showed increase in the density of both Iba1 and GFAP expression in the brain: Cg1, Cg2, M1, M2, S1, S2, GI, VPL, mfb, PAG, CA2/CA3 (p < 0.05 versus control) | ||||
Jung et al. (2017) [20] | SD rat (spinal cord) | D0 (single)/6 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold allodynia (TWL, 4 °C): D3, p < 0.05; D5, p < 0.001 versus control Oxaliplatin induced mechanical hypersensitivity (von Frey test): D3 and D5, p < 0.001 versus control D0-5 Buja (300 mg/kg, p.o.) administration prevented the development of cold allodynia (D5, p < 0.001 versus oxaliplatin) and mechanical hypersensitivity (D3 and D5, p < 0.001 versus oxaliplatin) |
GFAP and Iba1-positive cells increased in the spinal cord after oxaliplatin injection (p < 0.001 versus control) Buja only suppressed GFAP expressions (p < 0.001), but not Iba1 expression in cells increased by oxaliplatin | ||||
Makker et al. (2017) [33] | C57BL/6J mice (spinal cord) | D0, D2, D4, D6 (4 times)/20 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced mechanical allodynia (von Frey test): D8, p < 0.01 versus control; D13, p < 0.001 versus control; and D16, p < 0.001 versus control |
No change of GFAP and Iba1 expression in the spinal cord after oxaliplatin injection: D13 Reduction in P2ry12 + homeostatic microglia in the spinal cord: p < 0.001 versus control | ||||
Mannelli et al. (2017) [34] | SD rat (BrainSpinal cord) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold hyperalgesia (cold plate test): 24.1 ± 1.2 s (control); 16.2 ± 0.8 s (oxaliplatin, p < 0.05) Oxaliplatin induced mechanical allodynia (von Frey test): 23.7 ± 1.2 g (control); 13.8 ± 0.9 g (oxaliplatin, p < 0.05) Oxaliplatin induced mechanical hyperalgesia (paw-pressure test): 66.5 ± 1.9 g (control); 40.7 ± 1.8 g (oxaliplatin, p < 0.05 versus control) D0–21 treatment of 50% HA (300 mg/kg, p.o.) attenuated oxaliplatin-induced pain: D21, p < 0.01 versus oxaliplatin |
Increased number of GFAP but not Iba1 positive cells in the spinal cord after oxaliplatin injection: D21, p < 0.05 versus control; 50% HA reduced the number of GFAP-positive cells: p < 0.05 versus oxaliplatin Oxaliplatin increased both GFAP and Iba1 positive cells in the brain: Cg, S1, M1, PAG, and mfb (p < 0.05 versus control) D0–21 treatment of 50% HA (300 mg/kg, p.o.) reduced the number of the GFAP and Iba1 positive cells except in Cg (Iba1): p < 0.05 versus oxaliplatin | ||||
Wang et al. (2017) [35] | SD rat (spinal cord) | D0–3 (4 times)/20 mg/kg (i.p.) | Ast. | Oxaliplatin induced mechanical allodynia (von Frey test): D7, p < 0.05 versus control Oxaliplatin induced thermal pain (hot plate test, tail-flick test): D7, p < 0.05 versus control Single melatonin (20 mg/kg, i.p.) injection alleviated pain: D1 and D3, p < 0.05 versus oxaliplatin |
Enhanced GFAP expression after oxaliplatin treatment: p < 0.05 versus control; hypertrophic with thicker processes Melatonin (20 mg/kg, i.p.) decreased oxaliplatin-induced upregulation of GFAP expressions: p < 0.05 versus oxaliplatin | ||||
Areti et al. (2018) [36] | SD rat (spinal cord) | Twice a week for 4 weeks (8 times)/32 mg/kg (i.p.) | Ast. | Oxaliplatin induced cold allodynia (acetone spray test): D14–28, p < 0.001 versus control Oxaliplatin induced thermal hyperalgesia (hot/cold plate test): D14–28, p < 0.001 versus control Oxaliplatin induced mechanical hypersensitivity (von Frey test): D14–28, p < 0.001 versus control D0-28 RA (25 and 50 mg/kg, i.p.) treatment attenuated pain: D21–28, p < 0.001 versus oxaliplatin |
Oxaliplatin increased the GFAP expression in the L4-L6 spinal cord: p < 0.001 versus control D0-28 RA (25 and 50 mg/kg, i.p.) treatment significantly attenuated this increase: p < 0.01 versus oxaliplatin group | ||||
Tonkin et al. (2018) [37] | C57BL/6J mice (spinal cord) | D0, D2, D4, D6 (4 times)/20 mg/kg (i.p.) | Ast. | Oxaliplatin induced mechanical allodynia (von Frey test, 4g): D13, 2.1 folds; D16, 1.5 folds (p < 0.05 versus control) Cx43 mimetic (Peptide 5, 20 μM) injection had no effect on response rate: p > 0.05 versus control |
A significant increase in Cx43 protein levels in oxaliplatin treated mice:D13, 2.2 folds, p < 0.05 versus control | ||||
Wahlman et al. (2018) [38] | SD rat & C57BL/6J mice | D0–4 (5 times)/10 mg/kg (rats, i.p.), D0–4, D10–14 (10 times)/30 mg/kg (mice, i.p.) | Ast. | Oxaliplatin induced mechanical allodynia (von Frey test): D11, D17, and D25, p < 0.05 versus control Oxaliplatin induced mechanical hyperalgesia (paw pressure test): D11, D17, and D25, p < 0.05 versus control ABT-702 (30 nmol, i.t.) injection prevented these pain signs, but A3AR antagonist injection (MRS1523, 1 nmol, i.t.) blocked the effect: D11, D17, and D25, p < 0.05 versus oxaliplatin |
Increased GFAP expression after oxaliplatin treatment in the spinal dorsal horn: D25, p < 0.05 versus control Increased ADK expression in spinal dorsal horn after oxaliplatin injection: D11 and D25, p < 0.05 versus control No change in the percentage of ADK+ GFAP (co-localization) expression in the spinal cord: 44.49% ± 5.72 (control); 44.97% ± 12.23 (oxaliplatin, p = 0.95 versus control); but the cellular volume of astrocytes occupied by ADK (ADK+ voxels/GFAP+ voxels) increased: 0.20 ± 0.09 (control); 0.42 ± 0.08 (p < 0.05 versus control) Increased ADK signal was found in the astrocyte nucleus and cytoplasm in somas that expanded into processes | ||||
Hao et al. (2019) [39] | SD rat (spinal cord) | D0–4, D7–11, D14–18 (15 times)/36 mg/kg (i.p.) | Ast. Mic. | Oxaliplatin induced cold allodynia (acetone spray test): D7–21, p < 0.01 versus control Oxaliplatin induced thermal hyperalgesia (hot plate test): D7–21, p < 0.01 versus control Oxaliplatin induced mechanical allodynia (von Frey test): D7–21, p < 0.01 versus control Single Huachansu (2.5 g/kg, i.p.) injection alleviated cold allodynia (D21, p < 0.01 versus oxaliplatin), mechanical allodynia (D7, D14, D21, p < 0.01 versus oxaliplatin), and thermal hyperalgesia (D7, D14, D21, p < 0.01 versus oxaliplatin) D0–19 Huachansu (2.5 g/kg, i.p.) treatment alleviated cold allodynia (D21, p < 0.01 versus oxaliplatin), mechanical allodynia (D21, p < 0.01 versus oxaliplatin), and thermal hyperalgesia (D21, p < 0.01 versus oxaliplatin) |
Increased GFAP expression in the spinal cord after oxaliplatin injection: D21, p < 0.001 versus control Increased Iba1 expression in the spinal cord after oxaliplatin injection: D21, p < 0.001 versus control D0-19 Huachansu (2.5 g/kg, i.p.) treatment decreased upregulated GFAP expression: p < 0.01 versus oxaliplatin Huachansu failed to block the activation of Iba1 positive cells: p > 0.01 versus oxaliplatin | ||||
Saika et al. (2019) [40] | Transgenic mice (spinal cord) | D0, D2, D4, D6 (4 times)/20 mg/kg (i.p.) | Mic. | Oxaliplatin-induced mechanical allodynia (von Frey test) Single CNO (10 mg/kg, i.p.) injection did not prevent pain development in male and female CX3CR1-hM4Di mice |
HA-hM4Di was highly expressed in the SDH of CX3CR1-hM4Di mice In CX3CR1-hM4Di mice, HA-hM4Di overlapped with Iba1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Kim, W. The Role of Satellite Glial Cells, Astrocytes, and Microglia in Oxaliplatin-Induced Neuropathic Pain. Biomedicines 2020, 8, 324. https://doi.org/10.3390/biomedicines8090324
Lee JH, Kim W. The Role of Satellite Glial Cells, Astrocytes, and Microglia in Oxaliplatin-Induced Neuropathic Pain. Biomedicines. 2020; 8(9):324. https://doi.org/10.3390/biomedicines8090324
Chicago/Turabian StyleLee, Ji Hwan, and Woojin Kim. 2020. "The Role of Satellite Glial Cells, Astrocytes, and Microglia in Oxaliplatin-Induced Neuropathic Pain" Biomedicines 8, no. 9: 324. https://doi.org/10.3390/biomedicines8090324
APA StyleLee, J. H., & Kim, W. (2020). The Role of Satellite Glial Cells, Astrocytes, and Microglia in Oxaliplatin-Induced Neuropathic Pain. Biomedicines, 8(9), 324. https://doi.org/10.3390/biomedicines8090324