Data Analysis and Optimization of Thermal Environment in Underground Commercial Building in Zhengzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Test Procedure
2.3. Model Description
2.3.1. Physical Model
2.3.2. Mathematical Model
2.3.3. Boundary Conditions
3. Results
3.1. Description of the Underground Thermal Environment
3.1.1. Temperature
3.1.2. Relative Humidity
3.2. Underground Air Quality
3.2.1. Underground Air Pollution Level in Different Merchandise Sections
3.2.2. Underground Air Pollution Level at Different Time Periods
3.3. Simulation Optimization of Ventilation and Air Distribution in Catering Area
3.3.1. Optimization Simulation of Air Distribution in the Catering Area
- (1)
- Scheme 1: Actual condition.
- (2)
- Scheme 2: Horizontal Exhaust.
- (3)
- Scheme 3: Side supply.
3.3.2. Model Validation
4. Discussion
4.1. Thermal Comfort Analysis of Underground Shopping Mall
4.1.1. Model Validation
4.1.2. Convection–Radiation Heat Dissipation Ratio and Human Thermal Comfort
4.2. Comparison of the Three Air Supply Schemes
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Chen, D.; Duan, H.; Yin, F.; Niu, Y. Characterizing urban building metabolism with a 4D-GIS model: A case study in China. J. Clean. Prod. 2019, 228, 1446–1454. [Google Scholar] [CrossRef]
- P.R.C. Ministry of Housing and Urban-Rural Development. China Urban Construction Statistical Yearbook; China Planning Press: Beijing, China, 2021.
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Franco, M.A.J.Q.; Pawar, P.; Wu, X. Green building policies in cities: A comparative assessment and analysis. Energy Build. 2020, 231, 110561. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2018, 657, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Mat, S.; Shamila, H.; Francesco, F.; Paul, O.; Ding, L.; Deo, P.; Zhai, X.; Wang, R. Urban heat island and overheating characteristics in sydney, australia. an analysis of multiyear measurements. Sustainability 2017, 9, 712. [Google Scholar]
- He, B.J.; Zhao, D.X.; Xiong, K.; Qi, J.; Prasad, D.K. A framework for addressing urban heat challenges and asso-ciated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in Chongqing, China. Sustain. Cities Soc. 2021, 75, 103361. [Google Scholar] [CrossRef]
- Yla, B.; Fei, L.A.; Cx, A.; Zo, A. Urban development and resource endowments shape natural resource utilization efficiency in Chinese cities. J. Environ. Sci. 2022, 126, 806–816. [Google Scholar]
- Li, C.; Wang, Z.; Li, B.; Peng, Z.-R.; Fu, Q. Investigating the relationship between air pollution variation and urban form. Build. Environ. 2019, 147, 559–568. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Pisoni, E.; Solazzo, E.; Guion, A.; Muntean, M.; Florczyk, A.; Schiavina, M.; Melchiorri, M.; Hutfilter, A.F. Global anthropogenic emissions in urban areas: Patterns, trends, and challenges. Environ. Res. Lett. 2021, 16, 074033. [Google Scholar] [CrossRef]
- Petroleum, B. BP Statistical Review of World Energy; British Petroleum: London, UK, 2021. [Google Scholar]
- Mele, C. Human settlements and sustainability: A crucial and open issue. E3S Web Conf. 2019, 119, 00012. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Ni, J.; Xie, D. Evaluation and Factor Analysis of the Intensive Use of Urban Land Based on Technical Efficiency Measurement—A Case Study of 38 Districts and Counties in Chongqing, China. Sustainability 2020, 12, 8623. [Google Scholar] [CrossRef]
- Yao, Y. Key Technologies for Environmental Quality Assurance of Urban Underground Space; China Architecture & Building Press: Beijing, China, 2010; p. 392. [Google Scholar]
- Zhao, J.-W.; Peng, F.-L.; Wang, T.-Q.; Zhang, X.-Y.; Jiang, B.-N. Advances in master planning of urban underground space (UUS) in China. Tunn. Undergr. Space Technol. 2016, 55, 290–307. [Google Scholar] [CrossRef]
- Bobylev, N. Mainstreaming sustainable development into a city’s Master plan: A case of Urban Underground Space use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Broere, W. Urban underground space: Solving the problems of today’s cities. Tunn. Undergr. Space Technol. 2016, 55, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.-L.; Qiao, Y.-K.; Sabri, S.; Atazadeh, B.; Rajabifard, A. A collaborative approach for urban underground space development toward sustainable development goals: Critical dimensions and future directions. Front. Struct. Civ. Eng. 2021, 15, 20–45. [Google Scholar] [CrossRef]
- Strategic Consulting Center of Chinese Academy of Engineering. Blue Book of Urban Underground Space Development in China; Strategic Consulting Center of Chinese Academy of Engineering: Beijing, China, 2021. [Google Scholar]
- Li, X.; Xu, H.; Li, C.; Sun, L.; Wang, R. Study on the demand and driving factors of urban underground space use. Tunn. Undergr. Space Technol. 2016, 55, 52–58. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Guo, D.; Zhao, Z.; Lin, T.; Zhang, C. Underground space use of urban built-up areas in the central city of Nanjing: Insight based on a dynamic population distribution. Undergr. Space 2022, 7, 748–766. [Google Scholar] [CrossRef]
- Jian, P.; Flp, A.; Ny, B.; Tf, B. Factors in the development of urban underground space surrounding metro stations: A case study of Osaka, Japan. Tunn. Undergr. 2019, 91, 103009. [Google Scholar]
- Tan, Z.; Roberts, A.C.; Christopoulos, G.I.; Kwok, K.-W.; Car, J.; Li, X.; Soh, C.-K. Working in underground spaces: Architectural parameters, perceptions and thermal comfort measurements. Tunn. Undergr. Space Technol. 2018, 71, 428–439. [Google Scholar] [CrossRef]
- Li, W.J.; Liao, X.X.; Miao, G.Y.; Zhou, X.Z. Analysis on Built Environment in Underground Shopping Malls in Chongqing in P.R. China. Adv. Mater. Res. 2012, 599, 233–236. [Google Scholar] [CrossRef]
- Xie, Y.; Liao, J.; Guo, C.; Zhang, K.; Zhang, J.; Yang, K. Lighting environment analysis of Chengdu underground commercial spaces. IOP Conf. Series Mater. Sci. Eng. 2020, 741. [Google Scholar] [CrossRef]
- Chun, C.; Tamura, A. Thermal environment and human responses in underground shopping malls vs department stores in Japan. Build. Environ. 1998, 33, 151–158. [Google Scholar] [CrossRef]
- Ganesh, G.A.; Sinha, S.L.; Verma, T.N.; Dewangan, S.K. Numerical simulation for energy consumption and thermal comfort in a naturally ventilated indoor environment under different orientations of inlet diffuser. Build. Environ. 2022, 217, 109071. [Google Scholar] [CrossRef]
- Li, Y.; Geng, S.; Chen, F.; Li, C.; Zhang, X.; Dong, X. Evaluation of thermal sensation among customers: Results from field investigations in underground malls during summer in Nanjing, China. Build. Environ. 2018, 136, 28–37. [Google Scholar] [CrossRef]
- Abbaspour, M.; Jafari, M.J.; Mansouri, N.; Moattar, F.; Nouri, N.; Allahyari, M. Thermal comfort evaluation in Tehran metro using Relative Warmth Index. Int. J. Environ. Sci. Technol. 2008, 5, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Hong, T.; Lee, M.; Jeong, K. Analyzing the real-time indoor environmental quality factors considering the influence of the building occupants’ behaviors and the ventilation. Build. Environ. 2019, 156, 99–109. [Google Scholar] [CrossRef]
- Wen, Y.; Leng, J.; Shen, X.; Han, G.; Sun, L.; Yu, F. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review. Int. J. Environ. Res. Public Heal. 2020, 17, 1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagiyeva, N.; Sheikh, A. Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults. Expert Rev. Clin. Immunol. 2014, 10, 1611–1639. [Google Scholar] [CrossRef]
- Luo, F.; Guo, H.; Yu, H.; Li, Y.; Feng, Y.; Wang, Y. PM2.5 organic extract mediates inflammation through the ERβ pathway to contribute to lung carcinogenesis in vitro and vivo. Chemosphere 2020, 263, 127867. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.; Hill, D.; Deo, H.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Falk, R.; Farchi, S.; Figueiras, A.; et al. Resi-dential radon and lung cancer—Detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14 208 persons without lung cancer from 13 epidemiologic studies in Europe. Scand. J. Work. Environ. Health 2006, 32, 1–84. [Google Scholar] [PubMed]
- Gao, J.M.; Chen, L.; Zhang, Y.; Jin, F.; Li, B.Z. Occurrence and pollution source of TVOC in underground stores in Chongqing. J. Cent. South Univ. (Sci. Technol.) 2012, 43, 4554–4558. [Google Scholar]
- Yang, J.; Wu, X.; Chan, K.T.; Yang, X. Investigation of Indoor Air Quality in the Underground Shopping Mall. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Tao, H.; Fan, Y.; Li, X.; Zhang, Z.; Hou, W. Investigation of formaldehyde and TVOC in underground malls in Xi’an, China: Concentrations, sources, and affecting factors. Build. Environ. 2015, 85, 85–93. [Google Scholar] [CrossRef]
- Wen, Y.; Leng, J.; Yu, F.; Yu, C.W. Integrated design for underground space environment control of subway stations with atriums using piston ventilation. Indoor Built Environ. 2020, 29, 1300–1315. [Google Scholar] [CrossRef]
- Dong, L.; He, Y.; Qi, Q.; Wang, W. Optimization of daylight in atrium in underground commercial spaces: A case study in Chongqing, China. Energy Build. 2021, 256, 111739. [Google Scholar] [CrossRef]
- Aflaki, A.; Esfandiari, M.; Mohammadi, S. A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance. Sustainability 2021, 13, 12721. [Google Scholar] [CrossRef]
- da Graça, G.C.; Martins, N.R.; Horta, C.S. Thermal and airflow simulation of a naturally ventilated shopping mall. Energy Build. 2012, 50, 177–188. [Google Scholar] [CrossRef]
- Kim, G.; Schaefer, L.; Lim, T.S.; Kim, J.T. Thermal comfort prediction of an underfloor air distribution system in a large indoor environment. Energy Build. 2013, 64, 323–331. [Google Scholar] [CrossRef]
- Liu, C.; Li, A.; Yang, C.; Zhang, W. Simulating air distribution and occupants’ thermal comfort of three ventilation schemes for subway platform. Build. Environ. 2017, 125, 15–25. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, M.; Wang, J. Air purification of urban underground space. Build. Energy Effic. 2015, 43, 27–29. [Google Scholar]
- Guo, H.X.; Deng, M.R.; Li, Y. Effect of sunken plaza on ventilation performance of underground commercial buildings. J. South China Univ. Technol. Nat. Sci. 2014, 42, 114–120. [Google Scholar]
- Chen, Z.; Xin, J.; Liu, P. Air quality and thermal comfort analysis of kitchen environment with CFD simulation and experimental calibration. Build. Environ. 2020, 172, 106691. [Google Scholar] [CrossRef]
- Li, Q.; Yoshino, H.; Mochida, A.; Lei, B.; Meng, Q.; Zhao, L.; Lun, Y. CFD study of the thermal environment in an air-conditioned train station building. Build. Environ. 2009, 44, 1452–1465. [Google Scholar] [CrossRef] [Green Version]
- CN-CECS402-2015; Operation and Management Standard of Urban Underground Space. China Planning Press: Beijing, China, 2015.
- Cheng, L.; Li, B.; Cheng, Q.; Baldwin, A.N.; Shang, Y. Investigations of indoor air quality of large department store buildings in China based on field measurements. Build. Environ. 2017, 118, 128–143. [Google Scholar] [CrossRef]
- GB/T18883-2002; Indoor Air Quality Standard, (In Chinese). Health Department: Beijing, China, 2002.
- Zhang, K.; Zhang, X.; Li, S.; Wang, G. Numerical Study on the Thermal Environment of UFAD System with Solar Chimney for the Data Center. Energy Procedia 2014, 48, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Amodio, M.; Dambruoso, P.R.; de Gennaro, G.; de Gennaro, L.; Loiotile, A.D.; Marzocca, A.; Stasi, F.; Trizio, L.; Tutino, M. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC). Environ. Sci. Pollut. Res. 2014, 21, 13186–13195. [Google Scholar] [CrossRef] [PubMed]
- Brohus, H.; Nielsen, P.V. Dispersal of exhaled air and personal exposure in displacement ventilated rooms. Indoor Air 2010, 12, 147–164. [Google Scholar]
- Cheng, Y.H.; Yan, J.W. Comparisons of particulate matter, co, and co 2 levels in underground and ground-level stations in the taipei mass rapid transit system. Atmos. Environ. 2011, 45, 4882–4891. [Google Scholar] [CrossRef]
- Shang, Y.; Li, B.; Baldwin, A.; Ding, Y.; Yu, W.; Cheng, L. Investigation of indoor air quality in shopping malls during summer in Western China using subjective survey and field measurement. Build. Environ. 2016, 108, 1–11. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. Ashrae Handbook of Fundamentals; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.: Atlanta, GA, USA, 1972. [Google Scholar]
Instrument Name | Monitored Parameters | Standard Value | Measurement Range | Accuracy | Photos |
---|---|---|---|---|---|
RC-4HC data logger | Air temperature and relative humidity | / | −30~+60 °C | ±0.6 °C | |
/ | 0~99% RH | ±5% RH | |||
Fluke 923 hot-wire anemometer | Air velocity | / | 0.20~20.00 m/s | ±5% | |
SMART-126 gas detector | Formaldehyde | 0.1 | 0~3.000 mg/m3 | ±0.03 mg/m3 | |
CO2 | 1000 | 0~5000 ppm | ±45 ppm | ||
PM2.5 | 75 | 0~999 μg/m3 | ±20 μg/m3 | ||
TVOC | 0.6 | 0~9.999 mg/m3 | ±0.03 mg/m3 |
Scheme 1: Actual Condition | Scheme 2: Exhaust Vents Are Arranged Horizontally (Short for Horizontal Exhaust) | Scheme 3: Side Supply Upper Return (Short for Side Supply) |
---|---|---|
The exhaust vents and air supply out-lets are arranged in the ceiling in the shape of a plum, with two columns (the direction along the depth of the room) of air supply outlets as a group, and the exhaust vents are arranged verti-cally. | The exhaust vents and air supply outlets are arranged in the ceiling in the shape of a plum, with two rows (the direction along the span of the room) of air supply outlets as a group, and the exhaust vents are arranged horizontally. | Based on the actual condition, the exhaust vents are still arranged vertically. The air supply lower outlets are arranged on the suspended ceiling of the counter on both sides as the side supply scheme. |
Supply Scheme | Condition | Tave (°C) | Vave (m/s) | KT | Kv |
---|---|---|---|---|---|
Actual condition | Summer: Winter: | 24.5 22.2 | 0.109 0.119 | 0.0183 0.0242 | 0.137 0.158 |
Horizontal exhaust | Summer: Winter: | 24.5 22.3 | 0.11 0.117 | 0.0171 0.0231 | 0.131 0.156 |
Side supply | Summer: Winter: | 24.1 22.7 | 0.118 0.122 | 0.0173 0.0233 | 0.128 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, C.; Zhu, J.; Chen, Y.; Lu, J. Data Analysis and Optimization of Thermal Environment in Underground Commercial Building in Zhengzhou, China. Processes 2022, 10, 2584. https://doi.org/10.3390/pr10122584
Zhao X, Li C, Zhu J, Chen Y, Lu J. Data Analysis and Optimization of Thermal Environment in Underground Commercial Building in Zhengzhou, China. Processes. 2022; 10(12):2584. https://doi.org/10.3390/pr10122584
Chicago/Turabian StyleZhao, Xi, Cheng Li, Jiayin Zhu, Yu Chen, and Jifu Lu. 2022. "Data Analysis and Optimization of Thermal Environment in Underground Commercial Building in Zhengzhou, China" Processes 10, no. 12: 2584. https://doi.org/10.3390/pr10122584
APA StyleZhao, X., Li, C., Zhu, J., Chen, Y., & Lu, J. (2022). Data Analysis and Optimization of Thermal Environment in Underground Commercial Building in Zhengzhou, China. Processes, 10(12), 2584. https://doi.org/10.3390/pr10122584