Low-Cost Activated Carbon for Petroleum Products Clean-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Activated Carbon Synthesis
2.1.2. Material Characterization
2.2. Experimental Procedure
2.2.1. Activated Carbon Yield
2.2.2. Sorption Kinetics
2.2.3. Real Environment Simulation
3. Results and Discussion
3.1. Material Characterization
3.1.1. Activated Carbon Yield
3.1.2. BET Analysis
3.1.3. SEM Micrographs
3.2. Sorption Evaluation
3.2.1. Sorption Capacity
3.2.2. Sorption Kinetics
3.2.3. Real Environment Simulation
3.3. Reuse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cozzarelli, I.M.; Mckelvie, J.R.; Baehr, A.L. Volatile Hydrocarbons and Fuel Oxygenates. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2013; Volume 11, pp. 439–480. ISBN 9780080983004. [Google Scholar]
- Gad, S.C. Diesel Fuel; Wexler, P., Ed.; Elsevier: New York, NY, USA, 2005; pp. 19–22. ISBN 978-0-12-369400-3. [Google Scholar]
- Gong, Y.; Zhao, X.; Cai, Z.; O’Reilly, S.E.; Hao, X.; Zhao, D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Mar. Pollut. Bull. 2014, 79, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Abdulredha, M.M.; Siti Aslina, H.; Luqman, C.A. Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arab. J. Chem. 2020, 13, 3403–3428. [Google Scholar] [CrossRef]
- Doshi, B.; Sillanpää, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Murawski, S.A.; Schlüter, M.; Paris, C.B.; Aman, Z.M. Summary of Contemporary Research on the Use of Chemical Dispersants for Deep-Sea Oil Spills BT—Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War; Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., Wetzel, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 494–512. ISBN 978-3-030-12963-7. [Google Scholar]
- Sivagami, K.; Anand, D.; Divyapriya, G.; Nambi, I. Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process. Ultrason. Sonochem. 2019, 51, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Montewka, J.; Weckström, M.; Kujala, P. A probabilistic model estimating oil spill clean-up costs – A case study for the Gulf of Finland. Mar. Pollut. Bull. 2013, 76, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.F.; Mourad, A.A.-H.I.; Galiwango, E.; Lwisa, E.G.; Al-Marzouqi, A.H.; El-Naas, M.H.; Van der Bruggen, B.; Al-Marzouqi, M.H. Effective and sustainable adsorbent materials for oil spill cleanup based on a multistage desalination process. J. Environ. Manage. 2021, 299, 113652. [Google Scholar] [CrossRef] [PubMed]
- Nazifa, T.H.; Uddin, A.S.M.S.; Islam, R.; Hadibarata, T.; Salmiati; Aris, A. Oil Spill Remediation by Adsorption Using Two Forms of Activated Carbon in Marine Environment. In Proceedings of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16–17 August 2018; pp. 162–167. [Google Scholar]
- Navarathna, C.M.; Bombuwala Dewage, N.; Keeton, C.; Pennisson, J.; Henderson, R.; Lashley, B.; Zhang, X.; Hassan, E.B.; Perez, F.; Mohan, D.; et al. Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal. ACS Appl. Mater. Interfaces 2020, 12, 9248–9260. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Liu, Y.; Chen, M.; Ma, L.; Yang, B.; Li, L.; Liu, Q. Optimized preparation of activated carbon from coconut shell and municipal sludge. Mater. Chem. Phys. 2020, 241, 122327. [Google Scholar] [CrossRef]
- Alam, M.M.; Hossain, M.A.; Hossain, M.D.; Johir, M.A.H.; Hossen, J.; Rahman, M.S.; Zhou, J.L.; Hasan, A.T.M.; Karmakar, A.K.; Ahmed, M.B. The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes 2020, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Kosheleva, R.I.; Mitropoulos, A.C.; Kyzas, G.Z. Synthesis of activated carbon from food waste. Environ. Chem. Lett. 2019, 17, 429–438. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 490, 74–83. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Martínez-Alonso, A.; Suárez-García, F.; Tascón, J.M.D. Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon N. Y. 2005, 43, 2857–2868. [Google Scholar] [CrossRef]
- Puziy, A.; Poddubnaya, O.; Martínez-Alonso, A.; Suarez-Garcıa, F.; Tascón, J. Synthetic carbons activated with phosphoric - Acid I. Surface chemistry and ion binding properties. Carbon N. Y. 2002, 40, 1493–1505. [Google Scholar] [CrossRef]
- Li, Z.; Kim, J.; Chaudhari, V.; Suseeladevi, M.; Campos, L. Degradation of metaldehyde in water by nanoparticle catalysts and powdered activated carbon. Environ. Sci. Pollut. Res. Int. 2017, 24, 17861–17873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, W.Y.; Bobra, M.; Bobra, A.M.; Maijanen, A.; Suntio, L.; Mackay, D. The water solubility of crude oils and petroleum products. Oil Chem. Pollut. 1990, 7, 57–84. [Google Scholar] [CrossRef]
- Khosravi, M.; Azizian, S. A new kinetic model for absorption of oil spill by porous materials. Microporous Mesoporous Mater. 2016, 230, 25–29. [Google Scholar] [CrossRef]
- Ogolo, N.A.; Adesina, D.O.; Akinboro, G.O.; Onyekonwu, M.O. Effect of Water Salinity on Crude Oil Viscosity in Porous Media at Varying Temperatures. SPE Niger. Annu. Int. Conf. Exhib. 2019, D023S010R002. [Google Scholar]
- Qu, G.; Kou, L.; Wang, T.; Liang, D.; Hu, S. Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column. J. Environ. Manage. 2017, 201, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Kosheleva, R.I.; Karapantsios, T.D.; Kostoglou, M.; Mitropoulos, A.C. A novel device for in situ study of gas adsorption under rotation. Rev. Sci. Instrum. 2021, 92, 45106. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Specific Surface Area m2/g | Micropore Volume cm3/g | Mesopore Volume cm3/g | Total Pore Volume cm3/g |
---|---|---|---|---|
ACp-350 | 542 | 0.081 | 0.362 | 0.669 |
ACp-400 | 899 | 0.092 | 0.357 | 0.737 |
ACp-450 | 942 | 0.087 | 0.348 | 0.994 |
ACp-500 | 998 | 0.071 | 0.342 | 1.582 |
ACp-550 | 1025 | 0.068 | 0.339 | 2.321 |
ACp-600 | 1052 | 0.052 | 0.333 | 2.959 |
ACp-650 | 1032 | 0.031 | 0.251 | 2.733 |
ACp-700 | 221 | 0.030 | 0.125 | 0.586 |
ACp-750 | 112 | 0.021 | 0.089 | 0.342 |
ACp-800 | 5 | 0.002 | 0.003 | 0.005 |
System | Model | mmax (g/g) | β (s−1) | α | D’ | R2 |
---|---|---|---|---|---|---|
ACp-600 | FL-LDF | 72.87 | - | 0.49 | 0.021 | 0.998 |
LDF | 75.43 | 0.037 | - | - | 0.993 | |
ACp-600sw | FL-LDF | 16.23 | - | 0.9 | 0.009 | 0.991 |
LDF | 16.89 | 0.075 | - | - | 0.907 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosheleva, R.I.; Kyzas, G.Z.; Kokkinos, N.C.; Mitropoulos, A.C. Low-Cost Activated Carbon for Petroleum Products Clean-Up. Processes 2022, 10, 314. https://doi.org/10.3390/pr10020314
Kosheleva RI, Kyzas GZ, Kokkinos NC, Mitropoulos AC. Low-Cost Activated Carbon for Petroleum Products Clean-Up. Processes. 2022; 10(2):314. https://doi.org/10.3390/pr10020314
Chicago/Turabian StyleKosheleva, Ramonna I., George Z. Kyzas, Nikolaos C. Kokkinos, and Athanasios C. Mitropoulos. 2022. "Low-Cost Activated Carbon for Petroleum Products Clean-Up" Processes 10, no. 2: 314. https://doi.org/10.3390/pr10020314
APA StyleKosheleva, R. I., Kyzas, G. Z., Kokkinos, N. C., & Mitropoulos, A. C. (2022). Low-Cost Activated Carbon for Petroleum Products Clean-Up. Processes, 10(2), 314. https://doi.org/10.3390/pr10020314