Effect of Coal Blending on Ash Fusibility and Slurryability of Xinjiang Low-Rank Coal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Coal Water Slurry
2.3. Measurement of Coal Water Slurry Property
2.3.1. Ash Fusion Temperatures of Coal (AFTs)
2.3.2. CWS Concentration
2.3.3. CWS Viscosity
2.3.4. CWS Stability
2.3.5. CWS Fluidity
2.4. FactSage Calculations
3. Results and Discussion
3.1. Influence of Coal Blending on Ash Fusibility
3.2. Slurryability of Four Low-Rank Coals
3.3. Influence of Blending on Slurryability of Coal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, Q. Application status and development prospect of coal water mixture technology in china. Coal Sci. Technol. 2015, 43, 129–133. [Google Scholar]
- Das, D.; Panigrahi, S.; Misra, P.K.; Nayak, A. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant. Energy Fuels 2008, 22, 1865–1872. [Google Scholar]
- Su, X. Experimental Study on the Effect of Particle Size Distribution on the slurryability of Shenhua Coal. Coal Chem. Ind. 2020, 48, 36–40. [Google Scholar]
- Zhou, Y. Three peak fractal grading coal water slurry concentration technology. Clean Coal Technol. 2018, 24, 63–68, 73. [Google Scholar]
- Cheng, J.; Zhou, J.; Li, Y.; Liu, J.; Cen, K. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat. Energy Fuels 2008, 22, 2422–2428. [Google Scholar] [CrossRef]
- Guo, Z.; Feng, R.; Zheng, Y.; Fu, X. Improvement in properties of coal water slurry by combined use of new additive and ultrasonic irradiation. Ultrason Sonochem. 2007, 14, 583–588. [Google Scholar] [CrossRef]
- Das, D.; Dash, U.; Meher, J.; Misra, P.K. Improving stability of concentrated coal–water slurry using mixture of a natural and synthetic surfactants. Fuel Process. Technol. 2013, 113, 41–51. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, G.; Li, J.; Zhao, F. Synthesis, adsorption and dispersion of a dispersant based on starch for coal–water slurry. Colloids Surf. A Physicochem. Eng. Asp. 2013, 422, 165–171. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Cen, K. Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal. Ind. Eng. Chem. Res. 2014, 53, 4511–4517. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Liu, Q.; Zhang, J. Effects of Hydrothermal Dewatering of Lignite on Rheology of Coal Water Slurry. Can. J. Chem. Eng. 2019, 97, 323–329. [Google Scholar] [CrossRef]
- Xu, R.; He, Q.; Cai, J.; Pan, Y.; Shen, J.; Hu, B. Effects of chemicals and blending petroleum coke on the properties of low-rank Indonesian coal water mixtures. Fuel Process. Technol. 2008, 89, 249–253. [Google Scholar] [CrossRef]
- Wang, D.; Liang, Q.; Gong, X.; Liu, H.; Liu, X. Influence of coal blending on ash fusion property and viscosity. Fuel 2017, 189, 15–22. [Google Scholar] [CrossRef]
- Lv, D.; Yuchi, W.; Bai, Z.; Bai, J.; Kong, L.; Guo, Z.; Yan, J.; Li, W. An approach for utilization of direct coal liquefaction residue: Blending with low-rank coal to prepare slurries for gasification. Fuel 2015, 145, 143–145. [Google Scholar] [CrossRef]
- Gu, T.; Wu, G.; Li, Q.; Sun, Z.; Zeng, F.; Wang, G.; Meng, X. Blended coals for improved coal water slurries. J. China Univ. Min. Technol. 2008, 18, 50–54. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y.; Zhou, J.; Du, C.; Ye, L.; Cheng, J.; Cen, K. Study on the Effects of Coal Blending on the Slurry Ability of Shenmu Coals. Manuf. Sci. Technol. 2012, 383–390, 3011–3016. [Google Scholar] [CrossRef]
- Li, H.; Zhao, H.; Wufuer, Y.; Lu, Q.; Wang, W.; Feng, S.; Zhang, B. Analysis on development trend and prospects of scientific mining for coal resources in Xinjiang. Coal Eng. 2017, 49, 20–22. [Google Scholar]
- Ge, L.; Zhang, Y.; Wang, Z.; Zhou, J.; Cen, K. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals. Energy Convers. Manag. 2013, 71, 84–91. [Google Scholar] [CrossRef]
- Kobayashi, N.; Fujimori, A.; Tanaka, M.; Piao, G.; Itaya, Y. Study of Coal Gasification Using High Ash Fusion Temperature Coal in an Entrained Flow Gasifier. J. Chem. Eng. Jpn. 2015, 48, 22–28. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Zhou, J.; Cheng, J.; Zhang, G.; Feng, Y.; Cen, K. An investigation on the rheological and sulfur-retention character istics of desulfurizing coal water slurry with calcium-based additives. Fuel Process. Technol. 2009, 90, 91–98. [Google Scholar] [CrossRef]
- Bouhamed, H.; Boufi, S.; Magnin, A. Alumina interaction with AMPS−MPEG copolymers produced by RAFT polymerization: Stability and rheological behavior. J. Colloid Interface Sci. 2009, 333, 209–220. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Wang, R.; Zhou, J.; Cen, K. Effect of hydrothermal dewatering on theslurryability of brown coals. Energy Convers. Manag. 2012, 57, 8–12. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, J.; Kong, L.; Bai, J.; Ni, Z.; Li, H.; Bai, Z.; Li, W. Comparison study of fusibility between coal ash and synthetic ash. Fuel Process. Technol. 2021, 211, 106593. [Google Scholar] [CrossRef]
- Kong, L.; Bai, J.; Li, H.; Chen, X.; Wang, J.; Bai, Z.; Guo, Z.; Li, W. The mineral evolution during coal washing and its effect on ash fusion characteristics of Shanxi high ash coals. Fuel 2018, 212, 268–273. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Fang, Y.; Wang, Y. The effects of leaching and floatation on the ash fusion temperatures of three selected lignites. Fuel 2011, 90, 2377–2383. [Google Scholar] [CrossRef]
- Bai, J.; Li, W.; Li, B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere. Fuel 2008, 87, 583–591. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%, ad) | Calorific Value(kJ/g) | Ultimate Analysis (%) | HGI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Qgr,v,ad | Cad | Had | Oad | Nad | St,ad | O/C | ||
KG | 2.83 | 21.70 | 28.52 | 46.95 | 24,950 | 57.73 | 3.35 | 8.03 | 0.72 | 0.21 | 0.14 | 73 |
HS | 3.24 | 5.30 | 37.44 | 54.02 | 30,790 | 69.13 | 3.9 | 11.24 | 0.98 | 0.55 | 0.16 | 75 |
YK | 4.27 | 19.38 | 29.73 | 46.62 | 24,900 | 57.13 | 3.30 | 8.93 | 0.89 | 0.33 | 0.16 | 72 |
SH | 6.34 | 9.01 | 31.02 | 57.63 | 26,080 | 61.45 | 2.75 | 13.13 | 0.72 | 0.45 | 0.21 | 83 |
Al2O3 | CaO | Fe2O3 | MgO | Na2O | K2O | P2O5 | SO3 | TiO2 | SiO2 | |
---|---|---|---|---|---|---|---|---|---|---|
KG | 20.55 | 8.16 | 5.43 | 2.08 | 1.11 | 2.30 | 0.23 | 2.94 | 0.91 | 55.53 |
HS | 12.96 | 30.84 | 11.32 | 4.02 | 0.54 | 0.77 | 0.11 | 13.74 | 0.48 | 24.88 |
YK | 23.86 | 4.00 | 4.10 | 1.76 | 2.04 | 1.41 | 0.17 | 2.07 | 1.14 | 58.40 |
SH | 11.63 | 24.70 | 7.24 | 5.39 | 3.70 | 0.96 | 0.14 | 14.13 | 0.57 | 31.55 |
<1400 μm | <900 μm | <450 μm | <125 μm | <7 6μm | <44 μm | |
---|---|---|---|---|---|---|
KG | 100 | 99.97 | 99.06 | 63.04 | 55.43 | 36.56 |
HS | 100 | 99.73 | 97.56 | 63.37 | 55.18 | 34.06 |
YK | 100 | 99.27 | 98.20 | 58.06 | 51.62 | 33.82 |
SH | 100 | 99.58 | 98.39 | 74.50 | 55.91 | 38.75 |
DT | ST | HT | FT | |
---|---|---|---|---|
KG | 1220 | 1260 | 1270 | 1320 |
HS | 1280 | 1300 | 1310 | 1320 |
YK | 1230 | 1360 | 1370 | 1400 |
SH | 1240 | 1260 | 1280 | 1290 |
Samples | Proportion | Al2O3 | CaO | Fe2O3 | MgO | Na2O | K2O | P2O5 | SO3 | TiO2 | SiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
SH:KG | 3:7 | 19.13 | 10.16 | 5.52 | 3.12 | 2.15 | 2.13 | 0.23 | 4.97 | 0.85 | 51.14 |
4:6 | 18.59 | 11.12 | 5.57 | 3.59 | 2.62 | 2.06 | 0.22 | 5.90 | 0.83 | 48.99 | |
5:5 | 17.82 | 12.05 | 5.62 | 4.16 | 3.19 | 1.97 | 0.22 | 7.00 | 0.80 | 46.55 | |
6:4 | 16.87 | 13.31 | 5.68 | 4.85 | 3.88 | 1.86 | 0.22 | 8.35 | 0.76 | 43.56 | |
7:3 | 15.80 | 14.88 | 5.76 | 5.72 | 4.74 | 1.72 | 0.22 | 10.04 | 0.72 | 39.83 | |
SH:YK | 3:7 | 21.96 | 6.76 | 4.40 | 3.00 | 3.09 | 1.35 | 0.17 | 4.52 | 1.04 | 52.85 |
4:6 | 20.84 | 7.98 | 4.63 | 3.54 | 3.56 | 1.32 | 0.18 | 5.60 | 1.00 | 50.81 | |
5:5 | 19.76 | 9.41 | 4.79 | 4.18 | 4.10 | 1.29 | 0.18 | 6.86 | 0.95 | 47.93 | |
6:4 | 18.46 | 11.12 | 4.97 | 4.94 | 4.75 | 1.25 | 0.18 | 8.37 | 0.89 | 44.71 | |
7:3 | 16.90 | 13.38 | 5.19 | 5.87 | 5.54 | 1.20 | 0.18 | 10.20 | 0.82 | 40.36 | |
SH:HS | 3:7 | 11.63 | 28.10 | 9.47 | 6.31 | 3.72 | 0.85 | 0.14 | 15.68 | 0.48 | 23.54 |
4:6 | 11.24 | 27.29 | 8.92 | 6.98 | 4.67 | 0.87 | 0.15 | 16.25 | 0.48 | 22.90 | |
5:5 | 10.86 | 26.52 | 8.40 | 7.62 | 5.56 | 0.89 | 0.16 | 16.79 | 0.47 | 22.38 | |
6:4 | 10.51 | 25.80 | 7.91 | 8.33 | 6.40 | 0.91 | 0.17 | 17.30 | 0.47 | 21.97 | |
7:3 | 10.28 | 25.11 | 7.44 | 8.80 | 7.20 | 0.93 | 0.18 | 17.79 | 0.47 | 21.53 |
Samples | Concentration (%) | Viscosity (mPa·s) | Fluidity (s) | Separation Ratio (%) | Penetration Ratio (%) |
---|---|---|---|---|---|
YK | 59.21 | 376 | 9.56 | 5 | 85 |
60.54 | 449 | 15.47 | 5 | 92 | |
62.84 | 579 | 35.60 | 4 | 95 | |
SH | 46.43 | 346 | 5.40 | 3 | 100 |
47.86 | 464 | 12.72 | 3 | 100 | |
48.56 | 611 | 40.56 | 3 | 100 | |
KG | 67.02 | 503 | 9.58 | 0 | 100 |
68.37 | 552 | 11.32 | 0 | 100 | |
69.72 | 605 | 14.06 | 0 | 100 | |
HS | 61.20 | 325 | 7.23 | 2 | 100 |
62.36 | 473 | 13.45 | 0 | 100 | |
63.56 | 584 | 26.32 | 0 | 100 |
Samples | Proportion | Concentration (%) | Viscosity (mPa·s) | Fluidity (s) | Separation Ratio (%) | Penetration Ratio (%) |
---|---|---|---|---|---|---|
KG:YK | 3:7 | 63.89 | 504 | 16.00 | 4 | 92 |
4:6 | 64.32 | 429 | 13.25 | 2 | 100 | |
5:5 | 64.98 | 402 | 13.35 | 2 | 100 | |
6:4 | 65.85 | 681 | 15.88 | 1 | 100 | |
7:3 | 67.12 | 501 | 12.14 | 1 | 100 | |
KG:SH | 3:7 | 52.17 | 431 | 12.41 | 2 | 100 |
4:6 | 53.54 | 451 | 13.15 | 1 | 100 | |
5:5 | 55.26 | 426 | 13.71 | 1 | 100 | |
6:4 | 57.74 | 469 | 15.22 | 0 | 100 | |
7:3 | 59.78 | 428 | 14.76 | 1 | 100 | |
KG:HS | 3:7 | 64.92 | 610 | 13.19 | 0 | 100 |
4:6 | 65.80 | 476 | 11.58 | 0 | 100 | |
5:5 | 66.63 | 591 | 15.84 | 0 | 100 | |
6:4 | 67.52 | 483 | 13.91 | 0 | 100 | |
7:3 | 68.00 | 496 | 12.13 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Song, X.; Li, G.; Kong, L.; Li, H.; Bai, J.; Li, W. Effect of Coal Blending on Ash Fusibility and Slurryability of Xinjiang Low-Rank Coal. Processes 2022, 10, 1693. https://doi.org/10.3390/pr10091693
Li H, Song X, Li G, Kong L, Li H, Bai J, Li W. Effect of Coal Blending on Ash Fusibility and Slurryability of Xinjiang Low-Rank Coal. Processes. 2022; 10(9):1693. https://doi.org/10.3390/pr10091693
Chicago/Turabian StyleLi, Hui, Xiaoling Song, Gang Li, Lingxue Kong, Huaizhu Li, Jin Bai, and Wen Li. 2022. "Effect of Coal Blending on Ash Fusibility and Slurryability of Xinjiang Low-Rank Coal" Processes 10, no. 9: 1693. https://doi.org/10.3390/pr10091693
APA StyleLi, H., Song, X., Li, G., Kong, L., Li, H., Bai, J., & Li, W. (2022). Effect of Coal Blending on Ash Fusibility and Slurryability of Xinjiang Low-Rank Coal. Processes, 10(9), 1693. https://doi.org/10.3390/pr10091693