Deep Transfer Learning for Approximate Model Predictive Control
Abstract
:1. Introduction
- A non-comprehensive survey of the work done on approximate MPC formulations.
- A case study on a multiple-input multiple-output (MIMO) system to show how deep learning and transfer learning can be used to develop an approximate MPC controller.
1.1. Previous Work on Approximate MPC Formulations
1.2. Transfer Learning
- Instances-based;
- Mapping-based;
- Adversarial-based;
- Network-based.
2. Materials and Methods
3. Results and Discussion
Algorithm 1 A framework for approximate MPC using LSTM networks and transfer learning. |
|
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ljung, L. Perspectives on system identification. Annu. Rev. Control 2010, 34, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Geiger, J.; Pohjalainen, J.; Mousa, A.E.D.; Jin, W.; Schuller, B. Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments. ACM Trans. Intell. Syst. Technol. 2018, 9, 49:1–49:28. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Al Seyab, R.; Cao, Y. Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation. J. Process Control 2008, 18, 568–581. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.C.; Chee, E.; Li, J.; Wang, X. Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical Manufacturing. Mathematics 2018, 6, 242. [Google Scholar] [CrossRef] [Green Version]
- Schwedersky, B.B.; Flesch, R.C.C.; Dangui, H.A.S. Nonlinear MIMO system identification with echo-state networks. J. Control Autom. Electr. Syst. 2022, 33, 743–754. [Google Scholar] [CrossRef]
- Schweidtmann, A.M.; Esche, E.; Fischer, A.; Kloft, M.; Repke, J.U.; Sager, S.; Mitsos, A. Machine Learning in Chemical Engineering: A Perspective. Chem. Ing. Tech. 2021, 93, 2029–2039. [Google Scholar] [CrossRef]
- Henao, C.A.; Maravelias, C.T. Surrogate-based superstructure optimization framework. AICHE J. 2011, 57, 1216–1232. [Google Scholar] [CrossRef]
- Fahmi, I.; Cremaschi, S. Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models. Comput. Chem. Eng. 2012, 46, 105–123. [Google Scholar] [CrossRef]
- Boukouvala, F.; Hasan, M.M.F.; Floudas, C.A. Global optimization of general constrained grey-box models: New method and its application to constrained PDEs for pressure swing adsorption. J. Glob. Optim. 2017, 67, 3–42. [Google Scholar] [CrossRef]
- Wilson, Z.T.; Sahinidis, N.V. The ALAMO approach to machine learning. Comput. Chem. Eng. 2017, 106, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Grossmann, I.E.; Sundaramoorthy, A.; Pinto, J.M. Data-driven construction of convex region surrogate models. Optim. Eng. 2016, 17, 289–332. [Google Scholar] [CrossRef]
- Zomorodi, H.; Landers, R.G. Extrusion based additive manufacturing using Explicit Model Predictive Control. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 1747–1752. [Google Scholar] [CrossRef]
- Mu, J.; Rees, D. Approximate model predictive control for gas turbine engines. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 6, pp. 5704–5709. [Google Scholar] [CrossRef]
- Yang, S.; Wan, M.P.; Chen, W.; Ng, B.F.; Dubey, S. Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control. Appl. Energy 2021, 288, 116648. [Google Scholar] [CrossRef]
- Pon Kumar, S.S.; Tulsyan, A.; Gopaluni, B.; Loewen, P. A Deep Learning Architecture for Predictive Control. IFAC-PapersOnLine 2018, 51, 512–517. [Google Scholar] [CrossRef]
- Alessio, A.; Bemporad, A. A survey on explicit model predictive control. In Nonlinear Model Predictive Control; Springer: Berlin/Heidelberg, Germany, 2009; pp. 345–369. [Google Scholar]
- Tøndel, P.; Johansen, T.A.; Bemporad, A. An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica 2003, 39, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Csekő, L.H.; Kvasnica, M.; Lantos, B. Explicit MPC-based RBF neural network controller design with discrete-time actual Kalman filter for semiactive suspension. IEEE Trans. Control Syst. Technol. 2015, 23, 1736–1753. [Google Scholar] [CrossRef]
- Grosso, J.M.; Ocampo-Martínez, C.; Puig, V. Learning-based tuning of supervisory model predictive control for drinking water networks. Eng. Appl. Artif. Intell. 2013, 26, 1741–1750. [Google Scholar] [CrossRef]
- Katz, J.; Pappas, I.; Avraamidou, S.; Pistikopoulos, E.N. Integrating deep learning models and multiparametric programming. Comput. Chem. Eng. 2020, 136, 106801. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Tong, L.; Peng, L.; Kang, Y. A backpropagation neural network-based explicit model predictive control for DC–DC converters with high switching frequency. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2124–2142. [Google Scholar] [CrossRef]
- Zheng, C.; Dragičević, T.; Blaabjerg, F. Model predictive control-based virtual inertia emulator for an islanded alternating current microgrid. IEEE Trans. Ind. Electron. 2020, 68, 7167–7177. [Google Scholar] [CrossRef]
- Moness, M.; Moustafa, A.M. Real-time switched model predictive control for a cyber-physical wind turbine emulator. IEEE Trans. Ind. Inform. 2019, 16, 3807–3817. [Google Scholar] [CrossRef]
- Wang, S.; Dragicevic, T.; Gontijo, G.F.; Chaudhary, S.K.; Teodorescu, R. Machine learning emulation of model predictive control for modular multilevel converters. IEEE Trans. Ind. Electron. 2020, 68, 11628–11634. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J. Nonlinear model predictive control based on collective neurodynamic optimization. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Dragicevic, T. Supervised imitation learning of finite-set model predictive control systems for power electronics. IEEE Trans. Ind. Electron. 2020, 68, 1717–1723. [Google Scholar] [CrossRef]
- Hofer, M.; Muehlebach, M.; D’Andrea, R. Application of an approximate model predictive control scheme on an unmanned aerial vehicle. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2952–2957. [Google Scholar]
- Pin, G.; Filippo, M.; Pellegrino, F.; Fenu, G.; Parisini, T. Approximate model predictive control laws for constrained nonlinear discrete-time systems: Analysis and offline design. Int. J. Control 2013, 86, 804–820. [Google Scholar] [CrossRef]
- Gan, M.; Hou, H.; Wu, X.; Liu, B.; Yang, Y.; Xie, C. Machine learning algorithm selection for real-time energy management of hybrid energy ship. Energy Rep. 2022, 8, 1096–1102. [Google Scholar] [CrossRef]
- Wang, G.; Jia, Q.S.; Qiao, J.; Bi, J.; Zhou, M. Deep learning-based model predictive control for continuous stirred-tank reactor system. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3643–3652. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges. Appl. Energy 2020, 269, 115036. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Z.; Zheng, Y.; Samuelson, H.; Norford, L. Transfer learning with deep neural networks for model predictive control of HVAC and natural ventilation in smart buildings. J. Clean. Prod. 2020, 254, 119866. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Liu, H.; Qiao, J. Knowledge-data-driven model predictive control for a class of nonlinear systems. IEEE Trans. Syst. Man, Cybern. Syst. 2019, 51, 4492–4504. [Google Scholar] [CrossRef]
- Chen, B.; Cai, Z.; Bergés, M. Gnu-rl: A precocial reinforcement learning solution for building hvac control using a differentiable mpc policy. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; pp. 316–325. [Google Scholar]
- Zhu, L.; Takami, G.; Kawahara, M.; Kanokogi, H.; Matsubara, T. Alleviating parameter-tuning burden in reinforcement learning for large-scale process control. Comput. Chem. Eng. 2022, 158, 107658. [Google Scholar] [CrossRef]
- Koycegiz, C.; Buyukyildiz, M. Calibration of SWAT and Two Data-Driven Models for a Data-Scarce Mountainous Headwater in Semi-Arid Konya Closed Basin. Water 2019, 11, 147. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, Y.; Niu, J.; Gui, D.; Hu, B.X. Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change. Agriculture 2022, 12, 657. [Google Scholar] [CrossRef]
- Forghanparast, F.; Mohammadi, G. Using Deep Learning Algorithms for Intermittent Streamflow Prediction in the Headwaters of the Colorado River, Texas. Water 2022, 14, 2972. [Google Scholar] [CrossRef]
- Privara, S.; Široky, J.; Ferkl, L.; Cigler, J. Model predictive control of a building heating system: The first experience. Energy Build. 2011, 43, 564–572. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Y.; Dai, W.; Pan, S.J. Transfer Learning; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Carbonell, J.G. A computational model of analogical problem solving. In Proceedings of the IJCAI—7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; Volume 81, pp. 147–152. [Google Scholar]
- Winston, P.H. Learning and reasoning by analogy. Commun. ACM 1980, 23, 689–703. [Google Scholar] [CrossRef]
- Forbus, K.D.; Gentner, D.; Markman, A.B.; Ferguson, R.W. Analogy just looks like high level perception: Why a domain-general approach to analogical mapping is right. J. Exp. Theor. Artif. Intell. 1998, 10, 231–257. [Google Scholar] [CrossRef]
- Thrun, S.; Pratt, L. Learning to learn: Introduction and overview. In Learning to Learn; Springer: New York, NY, USA, 1998; pp. 3–17. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Enshaeifar, S.; Hilton, A.; Dijk, D.J.; Wells, K. Transfer Learning for Clinical Sleep Pose Detection Using a Single 2D IR Camera. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 290–299. [Google Scholar] [CrossRef]
- Alotaibi, A. Automated and Intelligent System for Monitoring Swimming Pool Safety Based on the IoT and Transfer Learning. Electronics 2020, 9, 2082. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Artificial Neural Networks and Machine Learning—ICANN 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 270–279. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Pan, R.; Li, J. Bi-weighting domain adaptation for cross-language text classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Bi-Weighting Domain Adaptation for Cross-Language Text Classification, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Matasci, G.; Volpi, M.; Kanevski, M.; Bruzzone, L.; Tuia, D. Semisupervised Transfer Component Analysis for Domain Adaptation in Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3550–3564. [Google Scholar] [CrossRef]
- Li, W.; Gu, S.; Zhang, X.; Chen, T. Transfer learning for process fault diagnosis: Knowledge transfer from simulation to physical processes. Comput. Chem. Eng. 2020, 139, 106904. [Google Scholar] [CrossRef]
- Hedengren, J.D. Level Regulation with MPC. 2018. Available online: https://apmonitor.com/do/index.php/Main/LevelControl (accessed on 15 November 2021).
- Burchell, J.; le Roux, J.; Craig, I. Nonlinear model predictive control for improved water recovery and throughput stability for tailings reprocessing. Control Eng. Pract. 2023, 131, 105385. [Google Scholar] [CrossRef]
- Beal, L.; Hill, D.; Martin, R.; Hedengren, J. GEKKO Optimization Suite. Processes 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Hedengren, J.D.; Shishavan, R.A.; Powell, K.M.; Edgar, T.F. Nonlinear modeling, estimation and predictive control in APMonitor. Comput. Chem. Eng. 2014, 70, 133–148. [Google Scholar] [CrossRef]
- Oliveira, P.M.; Hedengren, J.D. An APMonitor Temperature Lab PID Control Experiment for Undergraduate Students. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019. [Google Scholar] [CrossRef]
- Park, J.; Martin, R.A.; Kelly, J.D.; Hedengren, J.D. Benchmark temperature microcontroller for process dynamics and control. Comput. Chem. Eng. 2020, 135, 106736. [Google Scholar] [CrossRef]
- Mejía, C.; Salazar, E.; Camacho, O. A comparative experimental evaluation of various Smith predictor approaches for a thermal process with large dead time. Alex. Eng. J. 2022, 61, 9377–9394. [Google Scholar] [CrossRef]
- Yerolla, R.; Besta, C.S. Development of tuning free SISO PID controllers for First Order Plus Time Delay (FOPTD) and First Order Lag Plus Integral Plus Time Delay model (FOLIPD) systems based on partial model matching and experimental verification. Results Control Optim. 2021, 5, 100070. [Google Scholar] [CrossRef]
- Sharma, S.; Padhy, P.K. An indirect approach for online identification of continuous time-delay systems. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2947. [Google Scholar] [CrossRef]
- De Moura Oliveira, P.B.; Hedengren, J.D.; Solteiro Pires, E.J. Swarm-Based Design of Proportional Integral and Derivative Controllers Using a Compromise Cost Function: An Arduino Temperature Laboratory Case Study. Algorithms 2020, 13, 315. [Google Scholar] [CrossRef]
- De Moura Oliveira, P.; Hedengren, J.D.; Rossiter, J. Introducing Digital Controllers to Undergraduate Students using the TCLab Arduino Kit. IFAC-PapersOnLine 2020, 53, 17524–17529. [Google Scholar] [CrossRef]
- Hedengren, J.D. Temperature Control Lab. 2021. Available online: http://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl (accessed on 15 November 2021).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 13 November 2022).
- Hedengren, J.D.; Eaton, A.N. Overview of estimation methods for industrial dynamic systems. Optim. Eng. 2017, 18, 155–178. [Google Scholar] [CrossRef]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Park, J. Hybrid Machine Learning and Physics-Based Modeling Approaches for Process Control and Optimization. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2022. [Google Scholar]
Articles | MPC Informed for Equivalent Systems | Equivalent System with Neural Network | Transfer Learning for Similar Systems | Transfer Learning for Unique Systems |
---|---|---|---|---|
Explicit MPC: 329 Articles, 22 with Neural Networks or Deep Learning | ||||
Tøndel et al. [19] | x | |||
Alessio and Bemporad [18] | x | |||
Csekő et al. [20] | x | x | ||
Grosso et al. [21] | x | x | ||
Katz et al. [22] | x | x | ||
Chen et al. [23] | x | x | ||
MPC Emulation: 357 Articles, 10 with Neural Networks or Deep Learning | ||||
Zheng et al. [24] | x | |||
Moness and Moustafa [25] | x | |||
Wang et al. [26] | x | x | ||
Yan and Wang [27] | x | x | ||
Novak and Dragicevic [28] | x | x | ||
Approximate MPC: 24 Articles, 12 with Transfer Learning | ||||
Hofer et al. [29] | x | |||
Pin et al. [30] | x | x | ||
Yang et al. [16] | x | x | ||
Gan et al. [31] | x | x | ||
Wang et al. [32] | x | x | ||
Wang and Hong [33] | x | x | x | |
Chen et al. [34] | x | x | x | |
Han et al. [35] | x | x | x | |
Chen et al. [36] | x | x | x | |
This study | x | x | x | x |
Layer | Output Dimension | Number of Parameters |
---|---|---|
LSTM | 42,800 | |
Droput | 0 | |
LSTM | 80,400 | |
Droput | 0 | |
LSTM | 80,400 | |
Droput | 0 | |
Dense | 202 | |
Total trainable parameters | 203,802 |
Model | Linear MPC | LSTM Emulator | LSTM Transfer | LSTM Transfer Re-Train |
---|---|---|---|---|
MSE | 27.75 | 102.52 | 131.82 | 102.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz, S.A.; Park, J.; Stewart, C.M.; Martin, A.M.; Hedengren, J.D. Deep Transfer Learning for Approximate Model Predictive Control. Processes 2023, 11, 197. https://doi.org/10.3390/pr11010197
Munoz SA, Park J, Stewart CM, Martin AM, Hedengren JD. Deep Transfer Learning for Approximate Model Predictive Control. Processes. 2023; 11(1):197. https://doi.org/10.3390/pr11010197
Chicago/Turabian StyleMunoz, Samuel Arce, Junho Park, Cristina M. Stewart, Adam M. Martin, and John D. Hedengren. 2023. "Deep Transfer Learning for Approximate Model Predictive Control" Processes 11, no. 1: 197. https://doi.org/10.3390/pr11010197
APA StyleMunoz, S. A., Park, J., Stewart, C. M., Martin, A. M., & Hedengren, J. D. (2023). Deep Transfer Learning for Approximate Model Predictive Control. Processes, 11(1), 197. https://doi.org/10.3390/pr11010197