Metal Recovery and Electricity Generation from Wastewater Treatment: The State of the Art
Abstract
:1. Introduction
2. Microbial Fuel Cells
2.1. Chromium
2.2. Vanadium
2.3. Cobalt
2.4. Copper
2.5. Silver and Gold
3. MFC–MEC Coupling System
4. Photo Fuel Cells
5. Coupled Redox Fuel Cells
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Rejeb, Z.B.; Zaoui, A.; Park, C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 2022, 292, 133102. [Google Scholar]
- Najafi, A.; Asjadi, F.; Safari, A.A. Effect of sulfide and hydroxide on the removal of heavy metal ions from hydrometallurgical zinc effluent. Int. J. Environ. Anal. Chem. 2022. [Google Scholar] [CrossRef]
- Luchcinska, S.; Lach, J.; Wrobel, K.; Lukomska, A.; Los, P. The recovery of metals as high value powders and nanopowders from industrial wastewaters using potential-controlled electrolysis. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Wang, H.W.; Yu, T.T.; Li, Y.H.; Liu, L.F.; Gao, C.F.; Ding, J. Self-sustained bioelectrical reduction system assisted iron-manganese doped metal-organic framework membrane for the treatment of electroplating wastewater. J. Clean. Prod. 2022, 331, 129972. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, A.K.; Kumar, P.S.; Hoang, T.K.A.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater—A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef]
- Chadha, U.; Selvaraj, S.K.; Thanu, S.V.; Cholapadath, V.; Abraham, A.M.; Mohammed, Z.M.; Manoharan, M.; Paramsivam, V. A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater. Mater. Res. Expr. 2022, 9, 012003. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Adekunle, A.; Raghavan, V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. J. Environ. Manag. 2022, 317, 115333. [Google Scholar] [CrossRef]
- Hemdan, B.; Garlapati, V.K.; Sharma, S.; Bhadra, S.; Maddirala, S.; Varsha, K.M.; Motru, V.; Goswami, P.; Sevda, S.; Aminabhavi, T.M. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. Environ. Res. 2022, 204, 112346. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.A.D.; Babel, S. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: A review. Environ. Sci. Pollut. Res. 2021, 28, 63480–63494. [Google Scholar] [CrossRef]
- Kaushik, A.; Singh, A. Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production. J. Environ. Manag. 2020, 270, 110826. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Z.J. Bioelectrochemical metal recovery from wastewater: A review. Water Res. 2014, 66, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, L.; Zhang, Y. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol. Lett. 2008, 30, 1959–1966. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, Y.; Li, F.B.; Feng, C.H. In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour. Technol. 2011, 102, 2468–2473. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y.; Li, D.L. Accelerated hexavalent chromium [Cr (VI)] reduction with electrogenerated hydrogen peroxide in microbial fuel cells. Renew. Sustain. Energy II 2012, 512–515, 1525–1528. [Google Scholar] [CrossRef]
- Miran, W.; Jang, J.; Nawaz, M.; Shahzad, A.; Jeong, S.E.; Jeon, C.O.; Lee, D.S. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere 2017, 189, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Abourached, C.; Catal, T.; Liu, H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014, 51, 228–233. [Google Scholar] [CrossRef]
- Ai, C.; Hou, S.; Yan, Z.; Zheng, X.; Amanze, C.; Chai, L.; Qiu, G.; Zeng, W. Recovery of metals from acid mine drainage by bioelectrochemical system inoculated with a novel exoelectrogen, Pseudomonas sp. E8. Microorganisms 2020, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Daud, N.N.M.; Ahmad, A.; Yaqoob, A.A.; Ibrahim, M.N.M. Application of rotten rice as a substrate for bacterial species to generate energy and the removal of toxic metals from wastewater through microbial fuel cells. Environ. Sci. Pollut. Res. 2021, 28, 62816–62827. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, B.; Liao, Z.; Zhou, L.; Yuan, Y. Autochthonous N-doped carbon nanotube/activated carbon composites derived from industrial paper sludge for chromate(VI) reduction in microbial fuel cells. Sci. Total Environ. 2020, 712, 136513. [Google Scholar] [CrossRef] [PubMed]
- Tandukar, M.; Huber, S.J.; Onodera, T.; Pavlostathis, S.G. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol. 2009, 43, 8159–8165. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.P.; Chai, X.L.; Cheng, S.A.; Chen, G.H. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J. 2011, 166, 652–661. [Google Scholar] [CrossRef]
- Huang, L.P.; Chai, X.L.; Chen, G.H.; Logan, B.E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ. Sci. Technol. 2011, 45, 5025–5031. [Google Scholar] [CrossRef]
- Revelo Romo, D.M.; Hurtado Gutierrez, N.H.; Ruiz Pazos, J.O.; Pabon Figueroa, L.V.; Ordonez Ordonez, L.A. Bacterial diversity in the Cr(VI) reducing biocathode of a microbial fuel cell with salt bridge. Rev. Argent Microbiol. 2019, 51, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chen, Z.J.; Khan, A.; Wang, J.C.; Kakade, A.; Kulshrestha, S.; Liu, P.; Li, X.K. Elevated Cr(VI) reduction in a biocathode microbial fuel cell without acclimatization inversion based on strain Corynebacterium vitaeruminis LZU47-1. Int. J. Hydrogen Energy 2020, 46, 3193–3203. [Google Scholar] [CrossRef]
- Gupta, S.; Yadav, A.; Verma, N. Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem. Eng. J. 2017, 307, 729–738. [Google Scholar] [CrossRef]
- Zhao, L.X.; Kong, F.Y.; Wang, X.; Wen, Q.; Sun, Q.; Wu, Y. Cr(VI)-containing wastewater treatment coupled with electricity generation using microbial fuel cell. Modern Chem. Ind. 2009, 29, 37–40. [Google Scholar]
- Cao, L.; Ma, Y.; Deng, D.; Jiang, H.C.; Wang, J.X.; Liu, Y. Electricity production of microbial fuel cells by degrading cellulose coupling with Cr(VI) removal. J. Hazard. Mater. 2020, 391, 122184. [Google Scholar] [CrossRef]
- Li, F.; Jin, C.J.; Choi, C.; Lim, B. Simultaneous removal and or recovery of Cr(VI) and Cr(III) using a double MFC technique. Environ. Eng. Manag. J. 2019, 18, 235–242. [Google Scholar]
- Yelton, A.P.; Williams, K.H.; Fournelle, J.; Wrighton, K.C.; Handley, K.M.; Banfield, J.F. Vanadate and acetate biostimulation of contaminated sediments decreases diversity, selects for specific taxa, and decreases aqueous V5+ concentration. Environ. Sci. Technol. 2013, 47, 6500–6509. [Google Scholar] [CrossRef]
- Li, H.R.; Feng, Y.L.; Zou, X.Y.; Luo, X. Study on microbial reduction of vanadium matallurgical waste water. Hydrometallurgy 2009, 99, 13–17. [Google Scholar] [CrossRef]
- Zhang, B.G.; Zhao, H.Z.; Shi, C.H.; Zhou, S.G.; Ni, J.R. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J. Chem. Technol. Biotechnol. 2009, 84, 1780–1786. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, B.G.; Cheng, M.; Cheng, C. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells. Bioresour. Technol. 2016, 201, 105–110. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, C.; Liu, Y.; Hao, L.; Liu, Y.; Feng, C.; Liu, Y.; Wang, Z. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells. Bioresour. Technol. 2015, 179, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Zhang, B.G.; Li, J.X.; Lv, Q.; Wang, S.; Gu, Q. Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode. J. Power Source 2017, 359, 379–383. [Google Scholar] [CrossRef]
- Zhang, B.G.; Feng, C.P.; Ni, J.R.; Zhang, J.; Huang, W. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Source 2012, 204, 34–39. [Google Scholar] [CrossRef]
- Liu, Y.X.; Shen, J.Y.; Huang, L.P.; Wu, D. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells. J. Hazard. Mater. 2013, 262, 1–8. [Google Scholar] [CrossRef]
- Huang, L.P.; Li, T.C.; Liu, C.; Quan, X.; Chen, L.; Wang, A.; Chen, G. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour. Technol. 2013, 128, 539–546. [Google Scholar] [CrossRef]
- Huang, L.P.; Liu, Y.X.; Yu, L.H.; Quan, X.; Chen, G.H. A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. J. Clean Prod. 2015, 86, 441–446. [Google Scholar] [CrossRef]
- Heijne, A.T.; Liu, F.; Weijden, R.; Weijma, J.; Buisman, C.J.N.; Hamelers, H.V.M. Copper recovery combined with electricity production in a microbial fuel cell. Environ. Sci. Technol. 2010, 44, 4376–4381. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lim, B.S.; Lu, H.; Fan, J.; Choi, C.S. Cathodic reduction of Cu2+. Bull. Korean Chem. Soc. 2010, 31, 2025–2030. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Tao, H.C.; Li, S.F.; Li, W.; Zhang, L.J.; Ni, J.R. Treatment of Cu2+-containing wastewater by microbial fuel cell with excess sludge as anodic substrate. Environ. Sci. 2011, 32, 179–185. [Google Scholar]
- Tao, H.C.; Li, W.; Liang, M.; Xu, N.; Ni, J.R.; Wu, W.M. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresour. Technol. 2011, 102, 4774–4778. [Google Scholar] [CrossRef]
- Tao, H.C.; Liang, M.; Li, W.; Zhang, L.J.; Ni, J.R.; Wu, W.M. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J. Hazard. Mater. 2011, 189, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Tao, H.C.; Wei, X.Y.; Lei, T.; Li, J.B.; Wang, A.J.; Wu, W.M. Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere 2012, 89, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.A.; Wang, B.S.; Wang, Y.H. Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour. Technol. 2013, 147, 332–337. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, X.; Jin, M.; Li, Y.; Li, S.; Kong, F.Y.; Nan, J.; Wang, A.J. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour. Technol. 2018, 253, 372–377. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Jin, M.; Kong, F.Y.; Qi, H.; Nan, J. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresour. Technol. 2019, 283, 129–137. [Google Scholar] [CrossRef]
- Liu, S.H.; Lai, C.Y.; Chang, P.H.; Lin, C.W.; Chen, Y.H. Enhancing copper recovery and electricity generation from wastewater using low-cost membrane-less microbial fuel cell with a carbonized clay cup as cathode. J. Clean. Prod. 2020, 247, 119118. [Google Scholar] [CrossRef]
- Choi, C.; Cui, Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2012, 107, 522–525. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, B.S.; Pan, B.; Chen, Q.Y.; Yan, W. Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl. Energy 2013, 112, 1337–1341. [Google Scholar] [CrossRef]
- Ali, J.; Wang, L.; Waseem, H.; Sharif, H.M.A.; Djellabi, R.; Zhang, C.; Pan, G. Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation. J. Clean. Prod. 2019, 235, 1425–1437. [Google Scholar] [CrossRef]
- Choi, C.; Hu, N.X. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour. Technol. 2013, 133, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Kalathil, S.; Lee, J.; Cho, M.H. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging. ChemSusChem 2013, 6, 246–250. [Google Scholar] [CrossRef]
- Lu, L.; Ren, Z.J. Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresour. Technol. 2016, 215, 254–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Xue, H.; Zhou, Q.; Zhou, P.; Quan, X. Imaging and distribution of Cd (II) ions in electrotrophs and its response to current and electron transfer inhibitor in microbial electrolysis cells. Sensor Actuator B Chem. 2018, 255, 244–254. [Google Scholar] [CrossRef]
- Cai, W.F.; Fang, X.W.; Xu, M.X.; Liu, X.H.; Wang, Y.H. Sequential recovery of copper and nickel from wastewater without net energy input. Water Sci. Technol. 2015, 71, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.P.; Qin, B.Y.; Liu, G.L.; Zhang, R.D.; Tang, Y.B.; Hou, Y.P. Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Front. Environ. Sci. Eng. 2014, 9, 522–527. [Google Scholar] [CrossRef]
- Huang, L.P.; Yao, B.L.; Wu, D.; Quang, X. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell -Microbial electrolysis cell systems. J. Power Source 2014, 259, 54–64. [Google Scholar] [CrossRef]
- Shen, J.Y.; Sun, Y.L.; Huang, L.P.; Yang, J.H. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal. Front. Environ. Sci. Eng. 2015, 9, 1084–1095. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.H.; Wu, D.; Huang, L.P. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. J. Power Source 2015, 273, 1103–1113. [Google Scholar] [CrossRef]
- Wu, D. Dependency of Copper and Cobalt Recovery on Cathode Material of MECs in Self-Driven MFCs-MECs System. Doctoral Thesis, Dalian University of Technology, Dalian, China, 2015. [Google Scholar]
- Wang, Q.; Huang, L.; Pan, Y.; Zhou, P.; Quan, X.; Logan, B.E.; Chen, H.B. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresour. Technol. 2016, 200, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Li, M. Study of Pb(II) Removal of Microbial Electrolysis Cells Derived by Cr(VI)-Reduced Microbial Fuel Cells. Doctoral Thesis, South China University of Technology, Guangzhou, China, 2019. [Google Scholar]
- Li, M.; Zhou, S.Q.; Xu, Y.T. Performance of Pb(II) reduction on different cathodes of microbial electrolysis cell driven by Cr(VI)-reduced microbial fuel cell. J. Power Source 2019, 418, 1–10. [Google Scholar] [CrossRef]
- Pan, L.L.; Wu, D.J.; Liu, W.P. Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium. CIESC J. 2019, 70, 242–250. [Google Scholar]
- Kaneko, M.; Gokan, N.; Katakura, N.; Takei, Y.; Hoshino, M. Artificial photochemical nitrogen cycle to produce nitrogen and hydrogen from ammonia by platinized TiO2 and its application to a photofuel cell. Chem. Comm. 2005, 12, 1625–1627. [Google Scholar] [CrossRef]
- Liu, X.H.; Xing, Z.H.; Chen, Q.Y.; Wang, Y.H. Multi-functional photocatalytic fuel cell for simultaneous removal of organic pollutant and chromium (VI) accompanied with electricity production. Chemosphere 2019, 237, 124457. [Google Scholar] [CrossRef]
- Li, Y.; Lu, A.H.; Ding, H.R.; Jin, S.; Yan, Y.H.; Wang, C.Q.; Zen, C.P.; Wang, X. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem. Comm. 2009, 11, 1496–1499. [Google Scholar] [CrossRef]
- He, R. Water/Sand Environmental Decontamination Using Photocatalytic Fuel Cells and Photoelectrocatalysis-Microbial Fuel Cells. Doctoral Thesis, Dalian University of Technology, Dalian, China, 2018. [Google Scholar]
- Xu, W.; Zhang, H.; Li, G.; Wu, Z.C. A urine/Cr(VI) fuel cell-Electrical power from processing heavy metal and human urine. J. Electroanal. Chem. 2016, 764, 38–44. [Google Scholar] [CrossRef]
- Zhang, H.M. Fundamental Study on Harvest of Electricity and Removal of Cr(VI)/Cu(II)/Ni(II) vs Phenol/Urea Via Coupled Redox Fuel Cell. Doctoral Thesis, Zhejiang University, Hangzhou, China, 2014. [Google Scholar]
- Zhang, H.M.; Xu, W.; Wu, Z.C.; Zhou, M.H.; Jin, T. Removal of Cr(VI) with cogeneration of electricity by an alkaline fuel cell reactor. J. Phys. Chem. C 2013, 117, 14479–14484. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Fu, R.; Fang, X.W.; Cai, W.F.; Wang, Y.H.; Cheng, S.A. Cr-methanol fuel cell for efficient Cr(VI) removal and high power production. Appl. Energy 2015, 138, 31–35. [Google Scholar] [CrossRef]
- Zhang, H.M.; Xu, W.; Fan, Z.; Liu, X.; Wu, Z.C.; Zhou, M.H. Simultaneous removal of phenol and dichromate from aqueous solution through a phenol-Cr(VI) coupled redox fuel cell reactor. Sep. Purif. Technol. 2017, 172, 152–157. [Google Scholar] [CrossRef]
- Fan, Z.; Yu, B.B.; Xu, W.; Wu, X.X.; Yang, X.; Zheng, H.Y.; Wu, Z.C. Nano-nickel catalyst for the oxidation of bisphenol A to generate electricity via a fuel cell. Biointerface Res. App. Chem. 2016, 6, 1837–1841. [Google Scholar]
- Yu, B.B.; Zhang, H.M.; Xu, W.; Li, G.; Wu, Z.C. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell. Sci. Rep. 2014, 4, 5860–5865. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Ma, Q.; Pu, K.; Jing, D.W.; Wang, Y.H. Incorporation of silver recovery with electricity generation through methanol-Ag+ coupled redox fuel cell. Chem. Eng. Process. Process Intens. 2023, 183, 109222. [Google Scholar] [CrossRef]
- Zhang, H.M.; Fan, Z.; Xu, W.; Feng, X.; Wu, Z.C. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor. J. Hazard. Mater. 2017, 338, 194–208. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, W.; Li, G.; Liu, Z.; Wu, Z.; Li, B. Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval. Sci. Rep. 2016, 6, 21059. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Fan, Z.; Zhang, H.M.; Wu, Z.C. Energy harvest from contaminants via coupled redox fuel cells. Energy Proceedia 2017, 105, 1852–1857. [Google Scholar] [CrossRef]
Typical Ions | Reactions | Standard Oxidation Potential/V |
---|---|---|
Cr(VI) | Cr2O72− + 14H+ + 6e− → 2Cr3+ + 7H2O | 1.232 |
V(V) | VO2+ + 2H+ + e− → VO2+ + H2O | 0.991 |
Co(III) | CoO2− + 4H+ + e− → Co2+ + 2H2O | 1.61 |
Cu(II) | Cu2+ + 2e− → Cu | 0.341 |
Ag(I) | Ag+ + e− → Ag | 0.80 |
Au(III) | AuCl4− + 3e− → Au(s) + 4Cl− | 1.002 |
Hg(II) | Hg2+ + 2e− → Hg | 0.851 |
Cd(II) | Cd2+ + 2e− → Cd | −0.403 |
Ni(II) | Ni2+ + e− → Ni | −0.257 |
Zn(II) | Zn2+ + 2e− → Zn | −0.762 |
Pb(II) | Pb2+ + 2e− → Pb | −0.126 |
System | Power/W/m2 | Metal Removal/% | OCV/V | Cathodic Efficiency/% | Refs. No. |
---|---|---|---|---|---|
Phenol-Cr | 0.18 | 99 | 1.06 | >98 | [76] |
BPA-Cr | 0.78 | 95 | 1.08 | 91 | [77] |
Urea-Cr | 0.3 | 98.6 | 1.59 | 74.6 | [78] |
EtOH-Cr | 1.9 | 96 | 1.46 | 63 | [74] |
MeOH-Ag | 17.4 | 90 | 1.28 | 89 | [79] |
MeOH-Cr | 903 | 91 | 1.70 | / | [75] |
Urine-Cr | 3.4 | 90 | 1.30 | 98 | [72] |
EtOH-Au | 1.6 | 96.2 | 1.4 | / | [80] |
EtOH-Cu | 0.8 | 96.1 | 0.96 | / | [80] |
EtOH-[Ag(NH3)2]+ | 0.6 | 45.7 | 0.95 | / | [80] |
EtOH-[Cu(NH3)4]2+ | 0.5 | 55.8 | 0.92 | / | [80] |
NaBH4-Cu | 7.2 | 99.9 | 1.65 | 100 | [81,82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.-Y.; Lu, R.-C.; Zhu, Y.-C.; Wang, Y.-H. Metal Recovery and Electricity Generation from Wastewater Treatment: The State of the Art. Processes 2023, 11, 88. https://doi.org/10.3390/pr11010088
Chen Q-Y, Lu R-C, Zhu Y-C, Wang Y-H. Metal Recovery and Electricity Generation from Wastewater Treatment: The State of the Art. Processes. 2023; 11(1):88. https://doi.org/10.3390/pr11010088
Chicago/Turabian StyleChen, Qing-Yun, Ruo-Chen Lu, Yu-Cheng Zhu, and Yun-Hai Wang. 2023. "Metal Recovery and Electricity Generation from Wastewater Treatment: The State of the Art" Processes 11, no. 1: 88. https://doi.org/10.3390/pr11010088
APA StyleChen, Q.-Y., Lu, R.-C., Zhu, Y.-C., & Wang, Y.-H. (2023). Metal Recovery and Electricity Generation from Wastewater Treatment: The State of the Art. Processes, 11(1), 88. https://doi.org/10.3390/pr11010088