Python in Chemistry: Physicochemical Tools
Abstract
:1. Introduction
2. Classical Physical Chemistry
2.1. Kinetic Models Based on Transition State Theory
2.2. Other Kinetic Approaches
2.3. Thermodynamic Models
3. Quantum Chemistry
3.1. Quantum Chemistry
3.2. Spectroscopic Application
3.3. Molecular Mechanics
4. Material Science
5. Python in Software and Hardware
6. Educational Projects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chirila, D.B.; Lohmann, G. Introduction to Modern FORTRAN for the Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783642370083. [Google Scholar]
- Pitt-Francis, J.; Whiteley, J. Guide to Scientific Computing in C++; Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319731315. [Google Scholar]
- Wong, K.W.W.; Barford, J.P. Teaching Excel VBA as a Problem Solving Tool for Chemical Engineering Core Courses. Educ. Chem. Eng. 2010, 5, e72–e77. [Google Scholar] [CrossRef]
- Kaess, M.; Easter, J.; Cohn, K. Visual Basic and Excel in Chemical Modeling. J. Chem. Educ. 1998, 75, 642. [Google Scholar] [CrossRef]
- Lafita, A.; Bliven, S.; Prlić, A.; Guzenko, D.; Rose, P.W.; Bradley, A.; Pavan, P.; Myers-Turnbull, D.; Valasatava, Y.; Heuer, M.; et al. BioJava 5: A Community Driven Open-Source Bioinformatics Library. PLoS Comput. Biol. 2019, 15, e1006791. [Google Scholar] [CrossRef] [PubMed]
- Artrith, N.; Butler, K.T.; Coudert, F.-X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A. Best Practices in Machine Learning for Chemistry. Nat. Chem. 2021, 13, 505–508. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2018. [Google Scholar]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Pérez, F.; Granger, B.E. IPython: A system for interactive scientific computing. Comput. Sci. Eng. 2007, 9, 21–29. [Google Scholar] [CrossRef]
- Perkel, J.M. Programming: Pick up Python. Nature 2015, 518, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Rossant, C. Learning Ipython for Interactive Computing and Data Visualization; Createspace: Scotts Valley, CA, USA, 2015; ISBN 9781508599432. [Google Scholar]
- Morita, S. Chemometrics and Related Fields in Python. Anal. Sci. 2020, 36, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Machado, H.G.; Sanches-Neto, F.O.; Coutinho, N.D.; Mundim, K.C.; Palazzetti, F.; Carvalho-Silva, V.H. “Transitivity”: A Code for Computing Kinetic and Related Parameters in Chemical Transformations and Transport Phenomena. Molecules 2019, 24, 3478. [Google Scholar] [CrossRef]
- Dzib, E.; Cabellos, J.L.; Ortíz-Chi, F.; Pan, S.; Galano, A.; Merino, G. Eyringpy: A Program for Computing Rate Constants in the Gas Phase and in Solution. Int. J. Quantum Chem. 2019, 119, e25686. Available online: https://www.theochemmerida.org/eyringpy (accessed on 25 September 2023). [CrossRef]
- Hermes, E.D.; Janes, A.N.; Schmidt, J.R. Micki: A Python-Based Object-Oriented Microkinetic Modeling Code. J. Chem. Phys. 2019, 151, 014112. [Google Scholar] [CrossRef]
- Gao, C.W.; Allen, J.W.; Green, W.H.; West, R.H. Reaction Mechanism Generator: Automatic Construction of Chemical Kinetic Mechanisms. Comput. Phys. Commun. 2016, 203, 212–225. [Google Scholar] [CrossRef]
- Dana, A.G.; Johnson, M.S.; Allen, J.W.; Sharma, S.; Raman, S.; Liu, M.; Gao, C.W.; Grambow, C.A.; Goldman, M.J.; Ranasinghe, D.S.; et al. Automated Reaction Kinetics and Network Exploration (Arkane): A Statistical Mechanics, Thermodynamics, Transition State Theory, and Master Equation Software. Int. J. Chem. Kinet. 2023, 55, 300–323. [Google Scholar] [CrossRef]
- Liu, M.; Grinberg Dana, A.; Johnson, M.S.; Goldman, M.J.; Jocher, A.; Payne, A.M.; Grambow, C.A.; Han, K.; Yee, N.W.; Mazeau, E.J.; et al. Reaction Mechanism Generator v3.0: Advances in Automatic Mechanism Generation. J. Chem. Inf. Model. 2021, 61, 2686–2696. [Google Scholar] [CrossRef] [PubMed]
- Ghysels, A.; Verstraelen, T.; Hemelsoet, K.; Waroquier, M.; Van Speybroeck, V. TAMkin: A Versatile Package for Vibrational Analysis and Chemical Kinetics. J. Chem. Inf. Model. 2010, 50, 1736–1750. Available online: https://molmod.github.io/tamkin/ (accessed on 25 September 2023). [CrossRef] [PubMed]
- Zhang, R.M.; Xu, X.; Truhlar, D.G. TUMME: Tsinghua University Minnesota Master Equation Program. Comput. Phys. Commun. 2022, 270, 108140. [Google Scholar] [CrossRef]
- Ferro-Costas, D.; Truhlar, D.G.; Fernández-Ramos, A. Pilgrim: A Thermal Rate Constant Calculator and a Chemical Kinetics Simulator. Comput. Phys. Commun. 2020, 256, 107457. Available online: https://comp.chem.umn.edu/pilgrim/ (accessed on 25 September 2023). [CrossRef]
- Van Herck, J.; Harrisson, S.; Hutchinson, R.A.; Russell, G.T.; Junkers, T. A Machine-Readable Online Database for Rate Coefficients in Radical Polymerization. Polym. Chem. 2021, 12, 3688–3692. [Google Scholar] [CrossRef]
- Tsai, S.-M.; Lyons, J.R.; Grosheintz, L.; Rimmer, P.B.; Kitzmann, D.; Heng, K. VULCAN: An Open-Source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres. Astrophys. J. Suppl. Ser. 2017, 228, 20. [Google Scholar] [CrossRef]
- Suleimanov, Y.V.; Allen, J.W.; Green, W.H. RPMDrate: Bimolecular Chemical Reaction Rates from Ring Polymer Molecular Dynamics. Comput. Phys. Commun. 2013, 184, 833–840. Available online: https://greengroup.mit.edu/rpmdrate (accessed on 25 September 2023). [CrossRef]
- Fabregat, R.; Fabrizio, A.; Meyer, B.; Hollas, D.; Corminboeuf, C. Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry. J. Chem. Theory Comput. 2020, 16, 3084–3094. [Google Scholar] [CrossRef]
- Cohen, M.; Vlachos, D.G. Chemical Kinetics Bayesian Inference Toolbox (CKBIT). Comput. Phys. Commun. 2021, 265, 107989. [Google Scholar] [CrossRef]
- Niemeyer, K.E.; Curtis, N.J.; Sung, C.-J. PyJac: Analytical Jacobian Generator for Chemical Kinetics. Comput. Phys. Commun. 2017, 215, 188–203. Available online: https://slackha.github.io/pyJac/ (accessed on 25 September 2023). [CrossRef]
- Sucre-Rosales, E.; Fernández-Terán, R.; Carvajal, D.; Echevarría, L.; Hernández, F.E. Experience-Based Learning Approach to Chemical Kinetics: Learning from the COVID-19 Pandemic. J. Chem. Educ. 2020, 97, 2598–2605. [Google Scholar] [CrossRef]
- Coppola, C.M.; Kazandjian, M.V. Matrix Formulation of the Energy Exchange Problem of Multi-Level Systems and the Code FRIGUS. Rend. Lincei Sci. Fis. Nat. 2019, 30, 707–714. [Google Scholar] [CrossRef]
- Lym, J.; Wittreich, G.R.; Vlachos, D.G. A Python Multiscale Thermochemistry Toolbox (PMuTT) for Thermochemical and Kinetic Parameter Estimation. Comput. Phys. Commun. 2020, 247, 106864. Available online: https://vlachosgroup.github.io/pMuTT/ (accessed on 25 September 2023). [CrossRef]
- Kundu, S.; Bhattacharjee, S.; Lee, S.-C.; Jain, M. PASTA: Python Algorithms for Searching Transition StAtes. Comput. Phys. Commun. 2018, 233, 261–268. [Google Scholar] [CrossRef]
- Hjorth Larsen, A.; Jørgen Mortensen, J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.; Hargus, C.; et al. The Atomic Simulation Environment—A Python Library for Working with Atoms. J. Phys. Condens. Matter 2017, 29, 273002. Available online: https://wiki.fysik.dtu.dk/ase/ (accessed on 25 September 2023). [CrossRef] [PubMed]
- Friedrich, R.; Esters, M.; Oses, C.; Ki, S.; Brenner, M.J.; Hicks, D.; Mehl, M.J.; Toher, C.; Curtarolo, S. Automated Coordination Corrected Enthalpies with AFLOW-CCE. Phys. Rev. Mater. 2021, 5, 043803. [Google Scholar] [CrossRef]
- Ong, S.P.; Richards, W.D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V.L.; Persson, K.A.; Ceder, G. Python Materials Genomics (Pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Comput. Mater. Sci. 2013, 68, 314–319. Available online: https://pymatgen.org/ (accessed on 25 September 2023). [CrossRef]
- Chanussot, L.; Das, A.; Goyal, S.; Lavril, T.; Shuaibi, M.; Riviere, M.; Tran, K.; Heras-Domingo, J.; Ho, C.; Hu, W.; et al. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catal. 2021, 11, 6059–6072. [Google Scholar] [CrossRef]
- Wittreich, G.R.; Vlachos, D.G. Python Group Additivity (PGrAdd) Software for Estimating Species Thermochemical Properties. Comput. Phys. Commun. 2022, 273, 108277. Available online: https://pypi.org/project/pgradd/ (accessed on 25 September 2023). [CrossRef]
- Martin, C.; Ranalli, J.; Moore, J. PYroMat: A Python Package for Thermodynamic Properties. J. Open Source Softw. 2022, 7, 4757. Available online: http://pyromat.org/ (accessed on 25 September 2023). [CrossRef]
- Cascioli, A.; Baratieri, M. Enhanced Thermodynamic Modelling for Hydrothermal Liquefaction. Fuel 2021, 298, 120796. [Google Scholar] [CrossRef]
- Kozharin, A.S.; Levashov, P.R. Thermodynamic Coefficients of Ideal Fermi Gas. Contrib. Plasma Phys. 2021, 61, e202100139. [Google Scholar] [CrossRef]
- Gajula, K.; Sharma, V.; Mishra, D.R.; Dumka, P. First Law of Thermodynamics for Closed System: A Python Approach. Res. Appl. Therm. Eng. 2022, 5, 1–10. [Google Scholar]
- DDBST—DDBST GmbH. Available online: http://www.ddbst.com (accessed on 16 August 2023).
- Cheméo. Available online: https://www.chemeo.com/ (accessed on 16 August 2023).
- Sun, Q.; Berkelbach, T.C.; Blunt, N.S.; Booth, G.H.; Guo, S.; Li, Z.; Liu, J.; McClain, J.D.; Sayfutyarova, E.R.; Sharma, S.; et al. Py SCF: The Python-based Simulations of Chemistry Framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1340. Available online: https://pyscf.org/ (accessed on 25 September 2023). [CrossRef]
- Stair, N.H.; Evangelista, F.A. QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular Electronic Structure. J. Chem. Theory Comput. 2022, 18, 1555–1568. Available online: https://github.com/evangelistalab/qforte (accessed on 25 September 2023). [CrossRef]
- Boguslawski, K.; Leszczyk, A.; Nowak, A.; Brzęk, F.; Żuchowski, P.S.; Kędziera, D.; Tecmer, P. Pythonic Black-Box Electronic Structure Tool (PyBEST). An Open-Source Python Platform for Electronic Structure Calculations at the Interface between Chemistry and Physics. Comput. Phys. Commun. 2021, 264, 107933. Available online: http://pybest.fizyka.umk.pl/ (accessed on 25 September 2023). [CrossRef]
- Smith, D.G.A.; Burns, L.A.; Sirianni, D.A.; Nascimento, D.R.; Kumar, A.; James, A.M.; Schriber, J.B.; Zhang, T.; Zhang, B.; Abbott, A.S.; et al. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development. J. Chem. Theory Comput. 2018, 14, 3504–3511. Available online: https://github.com/psi4/psi4numpy (accessed on 25 September 2023). [CrossRef]
- Turney, J.M.; Simmonett, A.C.; Parrish, R.M.; Hohenstein, E.G.; Evangelista, F.A.; Fermann, J.T.; Mintz, B.J.; Burns, L.A.; Wilke, J.J.; Abrams, M.L.; et al. Psi4: An Open-Source Ab Initio Electronic Structure Program: Psi4: An Electronic Structure Program. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 556–565. Available online: https://psicode.org/ (accessed on 25 September 2023). [CrossRef]
- Parrish, R.M.; Burns, L.A.; Smith, D.G.A.; Simmonett, A.C.; DePrince, A.E., III.; Hohenstein, E.G.; Bozkaya, U.; Sokolov, A.Y.; Di Remigio, R.; Richard, R.M.; et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.A.; Burns, L.A.; Simmonett, A.C.; Parrish, R.M.; Schieber, M.C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; et al. PSI4 1.4: Open-Source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152, 184108. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N.S.; Bogdanov, N.A.; Booth, G.H.; Chen, J.; Cui, Z.-H.; et al. Recent Developments in the PySCF Program Package. J. Chem. Phys. 2020, 153, 024109. [Google Scholar] [CrossRef] [PubMed]
- Čertík, O.; Pask, J.E.; Vackář, J. Dftatom: A Robust and General Schrödinger and Dirac Solver for Atomic Structure Calculations. Comput. Phys. Commun. 2013, 184, 1777–1791. [Google Scholar] [CrossRef]
- Mei, Y.; Yu, J.; Chen, Z.; Su, N.Q.; Yang, W. LibSC: Library for Scaling Correction Methods in Density Functional Theory. J. Chem. Theory Comput. 2022, 18, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.-J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D.A.; et al. The Molpro Quantum Chemistry Package. J. Chem. Phys. 2020, 152, 144107. Available online: https://www.molpro.net/ (accessed on 25 September 2023). [CrossRef] [PubMed]
- Kim, T.D.; Richer, M.; Sánchez-Díaz, G.; Miranda-Quintana, R.A.; Verstraelen, T.; Heidar-Zadeh, F.; Ayers, P.W. Fanpy: A Python Library for Prototyping Multideterminant Methods in Ab Initio Quantum Chemistry. J. Comput. Chem. 2023, 44, 697–709. [Google Scholar] [CrossRef]
- Atz, K.; Isert, C.; Böcker, M.N.A.; Jiménez-Luna, J.; Schneider, G. Δ-Quantum Machine-Learning for Medicinal Chemistry. Phys. Chem. Chem. Phys. 2022, 24, 10775–10783. [Google Scholar] [CrossRef]
- Khorshidi, A.; Peterson, A.A. Amp: A Modular Approach to Machine Learning in Atomistic Simulations. Comput. Phys. Commun. 2016, 207, 310–324. [Google Scholar] [CrossRef]
- Dral, P.O. MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning. J. Comput. Chem. 2019, 40, 2339–2347. [Google Scholar] [CrossRef]
- Tamayo-Mendoza, T.; Kreisbeck, C.; Lindh, R.; Aspuru-Guzik, A. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock. ACS Cent. Sci. 2018, 4, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Kasim, M.F.; Lehtola, S.; Vinko, S.M. DQC: A Python Program Package for Differentiable Quantum Chemistry. J. Chem. Phys. 2022, 156, 084801. [Google Scholar] [CrossRef] [PubMed]
- Rubin, N.C.; DePrince, A.E., III. P†q: A Tool for Prototyping Many-Body Methods for Quantum Chemistry. Mol. Phys. 2021, 119, e1954709. [Google Scholar] [CrossRef]
- Nath, S.R.; Kurup, S.S.; Joshi, K.A. PyGlobal: A Toolkit for Automated Compilation of DFT-Based Descriptors: Software News and Updates. J. Comput. Chem. 2016, 37, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Fiedler, L.J.; Alecu, I.M.; Truhlar, D.G. Computational Thermochemistry: Automated Generation of Scale Factors for Vibrational Frequencies Calculated by Electronic Structure Model Chemistries. Comput. Phys. Commun. 2017, 210, 132–138. [Google Scholar] [CrossRef]
- Iraola, M.; Mañes, J.L.; Bradlyn, B.; Horton, M.K.; Neupert, T.; Vergniory, M.G.; Tsirkin, S.S. IrRep: Symmetry Eigenvalues and Irreducible Representations of Ab Initio Band Structures. Comput. Phys. Commun. 2022, 272, 108226. [Google Scholar] [CrossRef]
- Christensen, A.S.; Hamelryck, T.; Jensen, J.H. FragBuilder: An Efficient Python Library to Setup Quantum Chemistry Calculations on Peptides Models. PeerJ 2014, 2, e277. [Google Scholar] [CrossRef]
- Zapata, F.; Ridder, L.; Hidding, J.; Jacob, C.R.; Infante, I.; Visscher, L. QMflows: A Tool Kit for Interoperable Parallel Workflows in Quantum Chemistry. J. Chem. Inf. Model. 2019, 59, 3191–3197. [Google Scholar] [CrossRef]
- Sumita, M.; Terayama, K.; Tamura, R.; Tsuda, K. QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization. J. Chem. Inf. Model. 2022, 62, 4427–4434. [Google Scholar] [CrossRef]
- Olsen, J.M.H.; Reine, S.; Vahtras, O.; Kjellgren, E.; Reinholdt, P.; Hjorth Dundas, K.O.; Li, X.; Cukras, J.; Ringholm, M.; Hedegård, E.D.; et al. Dalton Project: A Python Platform for Molecular- and Electronic-Structure Simulations of Complex Systems. J. Chem. Phys. 2020, 152, 214115. [Google Scholar] [CrossRef]
- Jacob, C.R.; Beyhan, S.M.; Bulo, R.E.; Gomes, A.S.P.; Götz, A.W.; Kiewisch, K.; Sikkema, J.; Visscher, L. PyADF—A Scripting Framework for Multiscale Quantum Chemistry. J. Comput. Chem. 2011, 32, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Ingman, V.M.; Schaefer, A.J.; Andreola, L.R.; Wheeler, S.E. QChASM: Quantum Chemistry Automation and Structure Manipulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1510. [Google Scholar] [CrossRef]
- Hermann, G.; Pohl, V.; Tremblay, J.C.; Paulus, B.; Hege, H.-C.; Schild, A. ORBKIT: A Modular Python Toolbox for Cross-Platform Postprocessing of Quantum Chemical Wavefunction Data. J. Comput. Chem. 2016, 37, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Hermann, G.; Pohl, V.; Tremblay, J.C. An Open-Source Framework for Analyzing N -Electron Dynamics. II. Hybrid Density Functional Theory/Configuration Interaction Methodology. J. Comput. Chem. 2017, 38, 2378–2387. [Google Scholar] [CrossRef] [PubMed]
- Mucelini, J.; Quiles, M.G.; Prati, R.C.; Da Silva, J.L.F. Correlation-Based Framework for Extraction of Insights from Quantum Chemistry Databases: Applications for Nanoclusters. J. Chem. Inf. Model. 2021, 61, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Hutcheon, M.J.; Teale, A.M. Topological Analysis of Functions on Arbitrary Grids: Applications to Quantum Chemistry. J. Chem. Theory Comput. 2022, 18, 6077–6091. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, V.; Kavathekar, R.; Rahalkar, A.; Gadre, S.R. WebProp: Web Interface Forab Initio Calculation of Molecular One-Electron Properties. J. Comput. Chem. 2008, 29, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.N.; Ward, L.; Ellis, S.; Pritchard, B.P.; Crawford, T.D. The MolSSI QCA Rchive Project: An Open-source Platform to Compute, Organize, and Share Quantum Chemistry Data. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1491. [Google Scholar] [CrossRef]
- Yesiltepe, Y.; Nuñez, J.R.; Colby, S.M.; Thomas, D.G.; Borkum, M.I.; Reardon, P.N.; Washton, N.M.; Metz, T.O.; Teeguarden, J.G.; Govind, N.; et al. An Automated Framework for NMR Chemical Shift Calculations of Small Organic Molecules. J. Cheminform. 2018, 10, 52. [Google Scholar] [CrossRef]
- Fritzsching, K.J.; Yang, Y.; Schmidt-Rohr, K.; Hong, M. Practical Use of Chemical Shift Databases for Protein Solid-State NMR: 2D Chemical Shift Maps and Amino-Acid Assignment with Secondary-Structure Information. J. Biomol. NMR 2013, 56, 155–167. [Google Scholar] [CrossRef]
- Fino, R.; Byrne, R.; Softley, C.A.; Sattler, M.; Schneider, G.; Popowicz, G.M. Introducing the CSP Analyzer: A Novel Machine Learning-Based Application for Automated Analysis of Two-Dimensional NMR Spectra in NMR Fragment-Based Screening. Comput. Struct. Biotechnol. J. 2020, 18, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Fucci, I.J.; Byrd, R.A. Nightshift: A Python Program for Plotting Simulated NMR Spectra from Assigned Chemical Shifts from the Biological Magnetic Resonance Data Bank. Protein Sci. 2022, 31, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Fossi, M.; Linge, J.; Labudde, D.; Leitner, D.; Nilges, M.; Oschkinat, H. Influence of Chemical Shift Tolerances on NMR Structure Calculations Using ARIA Protocols for Assigning NOE Data. J. Biomol. NMR 2005, 31, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Pandurangan, G.; Bailey-Kellogg, C. Contact Replacement for NMR Resonance Assignment. Bioinformatics 2008, 24, i205–i213. [Google Scholar] [CrossRef] [PubMed]
- Bhandari Neupane, J.; Neupane, R.P.; Luo, Y.; Yoshida, W.Y.; Sun, R.; Williams, P.G. Characterization of Leptazolines A–D, Polar Oxazolines from the Cyanobacterium Leptolyngbya Sp., Reveals a Glitch with the “Willoughby–Hoye” Scripts for Calculating NMR Chemical Shifts. Org. Lett. 2019, 21, 8449–8453. [Google Scholar] [CrossRef] [PubMed]
- Icazatti, A.A.; Martin, O.A.; Villegas, M.; Szleifer, I.; Vila, J.A. 13Check_RNA: A Tool to Evaluate 13C Chemical Shift Assignments of RNA. Bioinformatics 2018, 34, 4124–4126. [Google Scholar] [CrossRef]
- Ciach, M.A.; Miasojedow, B.; Skoraczyński, G.; Majewski, S.; Startek, M.; Valkenborg, D.; Gambin, A. Masserstein: Linear Regression of Mass Spectra by Optimal Transport. Rapid Commun. Mass Spectrom. 2021, e8956. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, D.R.; Volmer, D.A. Constellation: An Open-Source Web Application for Unsupervised Systematic Trend Detection in High-Resolution Mass Spectrometry Data. J. Am. Soc. Mass Spectrom. 2022, 33, 382–389. [Google Scholar] [CrossRef]
- Parsons, L.M.; Cipollo, J.F. Assign-MALDI—A Free Software for Assignment of MALDI-TOF MS Spectra of Glycans Derivatized Using Common and Novel Labeling Strategies. Proteomics 2023, 23, 2200320. [Google Scholar] [CrossRef]
- Blumer, M.R.; Chang, C.H.; Brayfindley, E.; Nunez, J.R.; Colby, S.M.; Renslow, R.S.; Metz, T.O. Mass Spectrometry Adduct Calculator. J. Chem. Inf. Model. 2021, 61, 5721–5725. [Google Scholar] [CrossRef]
- Sibaev, M.; Crittenden, D.L. PyVCI: A Flexible Open-Source Code for Calculating Accurate Molecular Infrared Spectra. Comput. Phys. Commun. 2016, 203, 290–297. Available online: https://github.com/dlc62/pyvci (accessed on 25 September 2023). [CrossRef]
- Rehn, D.R.; Rinkevicius, Z.; Herbst, M.F.; Li, X.; Scheurer, M.; Brand, M.; Dempwolff, A.L.; Brumboiu, I.E.; Fransson, T.; Dreuw, A.; et al. Gator: A Python-driven Program for Spectroscopy Simulations Using Correlated Wave Functions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1528. [Google Scholar] [CrossRef]
- Rinkevicius, Z.; Li, X.; Vahtras, O.; Ahmadzadeh, K.; Brand, M.; Ringholm, M.; List, N.H.; Scheurer, M.; Scott, M.; Dreuw, A.; et al. VeloxChem: A Python-driven Density-functional Theory Program for Spectroscopy Simulations in High-performance Computing Environments. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1457. [Google Scholar] [CrossRef]
- Lukin, S.; Užarević, K.; Halasz, I. Raman Spectroscopy for Real-Time and in Situ Monitoring of Mechanochemical Milling Reactions. Nat. Protoc. 2021, 16, 3492–3521. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, M.; Reinholdt, P.; Kjellgren, E.R.; Haugaard Olsen, J.M.; Dreuw, A.; Kongsted, J. CPPE: An Open-Source C++ and Python Library for Polarizable Embedding. J. Chem. Theory Comput. 2019, 15, 6154–6163. [Google Scholar] [CrossRef] [PubMed]
- Field, M.J. The PDynamo Program for Molecular Simulations Using Hybrid Quantum Chemical and Molecular Mechanical Potentials. J. Chem. Theory Comput. 2008, 4, 1151–1161. Available online: https://www.pdynamo.org/ (accessed on 25 September 2023). [CrossRef] [PubMed]
- Martí, S. QMCube (QM 3): An All-purpose Suite for Multiscale QM/MM Calculations. J. Comput. Chem. 2021, 42, 447–457. Available online: https://github.com/sergio-marti/qm3 (accessed on 25 September 2023). [CrossRef]
- Lu, Y.; Farrow, M.R.; Fayon, P.; Logsdail, A.J.; Sokol, A.A.; Catlow, C.R.A.; Sherwood, P.; Keal, T.W. Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. J. Chem. Theory Comput. 2019, 15, 1317–1328. [Google Scholar] [CrossRef]
- Yao, K.; Herr, J.E.; Toth, D.W.; Mckintyre, R.; Parkhill, J. The TensorMol-0.1 Model Chemistry: A Neural Network Augmented with Long-Range Physics. Chem. Sci. 2018, 9, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Zahariev, F.; De Silva, N.; Gordon, M.S.; Windus, T.L.; Pérez García, M. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to Ab Initio Data. J. Chem. Inf. Model. 2017, 57, 391–396. [Google Scholar] [CrossRef]
- Samways, M.L.; Bruce Macdonald, H.E.; Essex, J.W. Grand: A Python Module for Grand Canonical Water Sampling in OpenMM. J. Chem. Inf. Model. 2020, 60, 4436–4441. Available online: https://github.com/essex-lab/grand (accessed on 25 September 2023). [CrossRef] [PubMed]
- Lervik, A.; Riccardi, E.; van Erp, T.S. PyRETIS: A Well-Done, Medium-Sized Python Library for Rare Events. J. Comput. Chem. 2017, 38, 2439–2451. [Google Scholar] [CrossRef]
- Macchiagodena, M.; Karrenbrock, M.; Pagliai, M.; Procacci, P. Virtual Double-System Single-Box for Absolute Dissociation Free Energy Calculations in GROMACS. J. Chem. Inf. Model. 2021, 61, 5320–5326. [Google Scholar] [CrossRef] [PubMed]
- McGibbon, R.T.; Beauchamp, K.A.; Harrigan, M.P.; Klein, C.; Swails, J.M.; Hernández, C.X.; Schwantes, C.R.; Wang, L.-P.; Lane, T.J.; Pande, V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528–1532. Available online: https://www.mdtraj.org/ (accessed on 25 September 2023). [CrossRef] [PubMed]
- Seeber, M.; Felline, A.; Raimondi, F.; Muff, S.; Friedman, R.; Rao, F.; Caflisch, A.; Fanelli, F. Wordom: A User-Friendly Program for the Analysis of Molecular Structures, Trajectories, and Free Energy Surfaces. J. Comput. Chem. 2011, 32, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Sega, M.; Hantal, G.; Fábián, B.; Jedlovszky, P. Pytim: A Python Package for the Interfacial Analysis of Molecular Simulations. J. Comput. Chem. 2018, 39, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Summers, A.Z.; Gilmer, J.B.; Iacovella, C.R.; Cummings, P.T.; MCabe, C. MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. J. Chem. Theory Comput. 2020, 16, 1779–1793. [Google Scholar] [CrossRef] [PubMed]
- Nkhwashu, M.I.; Moropeng, M.L.; Agboola, O.; Mavhungu, A.; Moropeng, R.C.; Fayomi, O.S.I. Modelling and Simulation of the Volume Flow of NH3, K2CO3 and MEA for the Carbon Dioxide Absorption from Coal. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012060. [Google Scholar] [CrossRef]
- Arrigoni, M.; Madsen, G.K.H. Spinney: Post-Processing of First-Principles Calculations of Point Defects in Semiconductors with Python. Comput. Phys. Commun. 2021, 264, 107946. Available online: https://spinney.readthedocs.io/ (accessed on 25 September 2023). [CrossRef]
- Broberg, D.; Medasani, B.; Zimmermann, N.E.R.; Yu, G.; Canning, A.; Haranczyk, M.; Asta, M.; Hautier, G. PyCDT: A Python Toolkit for Modeling Point Defects in Semiconductors and Insulators. Comput. Phys. Commun. 2018, 226, 165–179. Available online: https://github.com/mbkumar/pycdt (accessed on 25 September 2023). [CrossRef]
- Li, J.; Liu, J.; Kooi, K. HPGe Detector Field Calculation Methods Demonstrated with an Educational Program, GeFiCa. Eur. Phys. J. C Part. Fields 2020, 80, 230. [Google Scholar] [CrossRef]
- Gil-Díaz, T.; Jara-Heredia, D.; Heberling, F.; Lützenkirchen, J.; Link, J.; Sowoidnich, T.; Ludwig, H.-M.; Haist, M.; Schäfer, T. Charge Regulated Solid-Liquid Interfaces Interacting on the Nanoscale: Benchmarking of a Generalized Speciation Code (SINFONIA). Adv. Colloid Interface Sci. 2021, 294, 102469. [Google Scholar] [CrossRef] [PubMed]
- Limami, H.; Guettioui, D.; Dahi, O.; Mehdi El Boustani, E.; Manssouri, I.; El Alami, A.; Khaldoun, A. Machine Learning Forecasting of Thermal, Mechanical and Physicochemical Properties of Unfired Clay Bricks with Plastic Waste Additives. Mater. Today 2023, 72, 3509–3513. [Google Scholar] [CrossRef]
- Clamons, S.; Qian, L.; Winfree, E. Programming and Simulating Chemical Reaction Networks on a Surface. J. R. Soc. Interface 2020, 17, 20190790. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, K.G.; Sunil, R.; Gupta, K.; Lee, S.-C. DJMol: An Open-source Modeling Platform for Computational Chemistry and Materials Science with a Python Interpreter. J. Comput. Chem. 2021, 42, 2116–2129. Available online: https://djmolprogram.github.io/ (accessed on 25 September 2023). [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. Available online: https://avogadro.cc/ (accessed on 25 September 2023). [CrossRef] [PubMed]
- O’Boyle, N.M.; Morley, C.; Hutchison, G.R. Pybel: A Python Wrapper for the OpenBabel Cheminformatics Toolkit. Chem. Cent. J. 2008, 2, 5. Available online: https://openbabel.org/ (accessed on 25 September 2023). [CrossRef]
- Verstraelen, T.; Adams, W.; Pujal, L.; Tehrani, A.; Kelly, B.D.; Macaya, L.; Meng, F.; Richer, M.; Hernández-Esparza, R.; Yang, X.D.; et al. IOData: A Python Library for Reading, Writing, and Converting Computational Chemistry File Formats and Generating Input Files. J. Comput. Chem. 2021, 42, 458–464. Available online: https://pypi.org/project/iodata/ (accessed on 25 September 2023). [CrossRef]
- Vargas, S.; Zamirpour, S.; Menon, S.; Rothman, A.; Häse, F.; Tamayo-Mendoza, T.; Romero, J.; Sim, S.; Menke, T.; Aspuru-Guzik, A. Team-Based Learning for Scientific Computing and Automated Experimentation: Visualization of Colored Reactions. J. Chem. Educ. 2020, 97, 689–694. [Google Scholar] [CrossRef]
- Duvvuri, H.; Wheeler, L.C.; Harms, M.J. Pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data. Biochemistry 2018, 57, 2578–2583. Available online: https://github.com/harmslab/pytc (accessed on 25 September 2023). [CrossRef]
- Tan, S.W.B.; Naraharisetti, P.K.; Chin, S.K.; Lee, L.Y. Simple Visual-Aided Automated Titration Using the Python Programming Language. J. Chem. Educ. 2020, 97, 850–854. [Google Scholar] [CrossRef]
- Yang, F.; Lai, V.; Legard, K.; Kozdras, S.; Prieto, P.L.; Grunert, S.; Hein, J.E. Augmented Titration Setup for Future Teaching Laboratories. J. Chem. Educ. 2021, 98, 876–881. [Google Scholar] [CrossRef]
- Jin, H.; Qin, Y.; Pan, S.; Alam, A.U.; Dong, S.; Ghosh, R.; Deen, M.J. Open-Source Low-Cost Wireless Potentiometric Instrument for PH Determination Experiments. J. Chem. Educ. 2018, 95, 326–330. [Google Scholar] [CrossRef]
- Grinias, J.P.; Whitfield, J.T.; Guetschow, E.D.; Kennedy, R.T. An Inexpensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instrumentation. J. Chem. Educ. 2016, 93, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Urban, P.L. Universal Electronics for Miniature and Automated Chemical Assays. Analyst 2015, 140, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Chng, J.J.K.; Patuwo, M.Y. Building a Raspberry Pi Spectrophotometer for Undergraduate Chemistry Classes. J. Chem. Educ. 2021, 98, 682–688. [Google Scholar] [CrossRef]
- Navarre, E.C. Extensible Interface for a Compact Spectrophotometer for Teaching Molecular Absorption in the Undergraduate Laboratory. J. Chem. Educ. 2020, 97, 1500–1503. [Google Scholar] [CrossRef]
- Hinterberger, E.; Ackerly, E.; Chen, Y.; Li, Y.C. Development of a Low-Cost and Versatile Gas Chromatography System for Teaching Analytical Chemistry. J. Chem. Educ. 2021, 98, 4074–4077. [Google Scholar] [CrossRef]
- Green, M.; Chen, X. Data Functionalization for Gas Chromatography in Python. J. Chem. Educ. 2020, 97, 1172–1175. [Google Scholar] [CrossRef]
- Saldaña, M.; Valenzuela, S.A.; Moor, S.R.; Metola, P.; Anslyn, E.V. K-5 Thin-Layer Chromatography: Three-Dimensional Analysis of Pigments from Plant Materials Using an Interlocking Building-Block Photography Box. J. Chem. Educ. 2020, 97, 4414–4419. [Google Scholar] [CrossRef]
- Menke, E.J. Series of Jupyter Notebooks Using Python for an Analytical Chemistry Course. J. Chem. Educ. 2020, 97, 3899–3903. Available online: https://github.com/erik-menke/AnalyticalProjects (accessed on 25 September 2023). [CrossRef]
- Weiss, C.J.; Klose, A. Introducing Students to Scientific Computing in the Laboratory through Python and Jupyter Notebooks. In ACS Symposium Series: Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021; pp. 57–67. ISBN 9780841298194. [Google Scholar]
- Weiss, C.J. A Creative Commons Textbook for Teaching Scientific Computing to Chemistry Students with Python and Jupyter Notebooks. J. Chem. Educ. 2021, 98, 489–494. [Google Scholar] [CrossRef]
- Bougot-Robin, K.; Paget, J.; Atkins, S.C.; Edel, J.B. Optimization and Design of an Absorbance Spectrometer Controlled Using a Raspberry Pi to Improve Analytical Skills. J. Chem. Educ. 2016, 93, 1232–1240. [Google Scholar] [CrossRef]
- Thrall, E.S.; Lee, S.E.; Schrier, J.; Zhao, Y. Machine Learning for Functional Group Identification in Vibrational Spectroscopy: A Pedagogical Lab for Undergraduate Chemistry Students. J. Chem. Educ. 2021, 98, 3269–3276. [Google Scholar] [CrossRef]
- Fortenberry, R.C.; McDonald, A.R.; Shepherd, T.D.; Kennedy, M.; Sherrill, C.D. PSI4Education: Computational Chemistry Labs Using Free Software. In The Promise of Chemical Education: Addressing our Students’ Needs; American Chemical Society: Washington, DC, USA, 2015; pp. 85–98. ISBN 9780841230927. Available online: https://psicode.org/posts/psi4education/ (accessed on 25 September 2023).
- Magers, D.B.; Chávez, V.H.; Peyton, B.G.; Sirianni, D.A.; Fortenberry, R.C.; Ringer McDonald, A. PSI4EDUCATION: Free and Open-Source Programing Activities for Chemical Education with Free and Open-Source Software. In ACS Symposium Series: Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021; pp. 107–122. ISBN 9780841298194. [Google Scholar]
- van Staveren, M. Integrating Python into a Physical Chemistry Lab. J. Chem. Educ. 2022, 99, 2604–2609. [Google Scholar] [CrossRef]
- Srnec, M.N.; Upadhyay, S.; Madura, J.D. A Python Program for Solving Schrödinger’s Equation in Undergraduate Physical Chemistry. J. Chem. Educ. 2017, 94, 813–815. [Google Scholar] [CrossRef]
- Stewart, B.; Hylton, D.J.; Ravi, N. A Systematic Approach for Understanding Slater–Gaussian Functions in Computational Chemistry. J. Chem. Educ. 2013, 90, 609–612. [Google Scholar] [CrossRef]
- Grazioli, G.; Ingwerson, A.; Santiago, D., Jr.; Regan, P.; Cho, H. Foregrounding the Code: Computational Chemistry Instructional Activities Using a Highly Readable Fluid Simulation Code. J. Chem. Educ. 2023, 100, 1155–1163. [Google Scholar] [CrossRef]
- Spitznagel, B.; Pritchett, P.R.; Messina, T.C.; Goadrich, M.; Rodriguez, J. An Undergraduate Laboratory Activity on Molecular Dynamics Simulations: Undergraduate Lab Activity on MD Simulations. Biochem. Mol. Biol. Educ. 2016, 44, 130–139. [Google Scholar] [CrossRef]
- Miller, B.T.; Singh, R.P.; Schalk, V.; Pevzner, Y.; Sun, J.; Miller, C.S.; Boresch, S.; Ichiye, T.; Brooks, B.R.; Woodcock, H.L. Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial. PLoS Comput. Biol. 2014, 10, e1003719. [Google Scholar] [CrossRef]
- Hutchison, G.R. Integrating Python into an Undergraduate Mathematics for Chemists Course. In ACS Symposium Series: Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021; pp. 123–134. ISBN 9780841298194. Available online: https://github.com/ghutchis/chem1000 (accessed on 25 September 2023).
- Jameson, G.; Brüschweiler, R. Active Learning Approach for an Intuitive Understanding of the Boltzmann Distribution by Basic Computer Simulations. J. Chem. Educ. 2020, 97, 3910–3913. Available online: https://github.com/active-learning-boltzmann/boltzmann (accessed on 25 September 2023). [CrossRef]
- Weiss, C.J. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications. J. Chem. Educ. 2017, 94, 1904–1910. [Google Scholar] [CrossRef]
- Sydow, D.; Rodríguez-Guerra, J.; Volkamer, A. Teaching Computer-Aided Drug Design Using TeachOpenCADD. In ACS Symposium Series: Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021; pp. 135–158. ISBN 9780841298194. [Google Scholar]
- Sydow, D.; Morger, A.; Driller, M.; Volkamer, A. TeachOpenCADD: A Teaching Platform for Computer-Aided Drug Design Using Open Source Packages and Data. J. Cheminform. 2019, 11, 29. Available online: https://github.com/volkamerlab/TeachOpenCADD (accessed on 25 September 2023). [CrossRef]
Library | Kinetic Theory | Tunnel Effect | Phase | Molecularity |
---|---|---|---|---|
Transitivity [13] | TST CKT 1 | d-TST | Gas Solution, Surface reactions, Enzyme-catalyzed reactions | Uni/bi |
Eyringpy [14] | TST MT CKT | Wigner Eckart | Gas Solution | Uni/bi |
Micki [15] | TST | Wigner | Gas | Uni/bi |
RMG [16,17,18] (Arkane) | TST (RRKM) CKT | Wigner Eckart | Gas Solution | Uni/bi |
TAMkin [19] | TST (RRKM), VTST | Wigner Eckart | Gas | Uni/bi |
TUMME [20] | TST (RRKM), VTST | Wigner Eckart | Gas Surface reactions on catalyst | Uni/bi |
Pilgrim [21] | VTST, SCT | SCT | Gas Solution Condensed phases | Uni/bi |
Polymatter [22] | TST, VTST, other | – | Gas Plasma | Uni/bi |
Vulcan [23] | TST (RRKM), VTST | Small-curvature tunneling | Exoplanetary reactions | Uni/bi |
RPMDrate [24] | Polymer molecular Dynamics | RPMDrate | Gas | Uni/bi |
MORESIM [25] | REMD(H-RE, resRE) | – | Gas | Uni/bi |
CKBIT [26] | – | – | Gas Solution Solid | Uni/bi |
pyJac [27] | – | – | Gas Solution | Uni/bi |
SIR model [28] | Virus spread analog | – | – | – |
Library | Approach | DFT | Phase | Scope |
---|---|---|---|---|
pMuTT [30] | Statistical mechanics | GROMACS, Gaussian, Cantera | Gases, liquids, solids | Systems/ Reactions/Components |
Pasta [31] | Statistical mechanics (pMuTT) | Quantum Espresso, SIESTA, VASP | – | Transition states |
ASE 1 [32] | Statistical mechanics | ABINIT, CASTEP, CP2K, FHI-aims, Gaussian, GPAW, NWChem, Octopus, Quantum Espresso, VASP | Gases, liquids, solids | Systems/ Reactions/Components |
TAMkin [19] | Statistical mechanics based on NMA (MBH, PHVA, MC) | Gaussian, Q-Chem | Gas | Systems/ Reactions/Components |
AFLOW-CCE [33] | Statistical mechanics based on CCE (NMA—quasiharmonic Debye model) | VASP (LDA, PBE, SCAN), QUANTUM ESPRESSO, AIMS, ABINIT, ELK, CIF, | Ionic liquids or solids | Systems/ Reactions/Components |
Pymatgen [34] | Internal library | VASP, ABINIT, Gaussian | – | Systems/ Reactions/Components |
OC2020 [35] 2 | Machine learning model/Dataset | VASP, RPBE, Bader/LOBSTER | Solids | Systems |
RMG [16,17,18] | Machine learning model (parameters dataset) | – | Gas, Solution | Components |
pGrAdd [36] | Dataset of group additivity | – | Gas | Systems/ Reactions/Components |
PYroMat [37] | Models Dataset | – | Gas, liquids | Components/Systems |
ETM [38] | UNIFAC, SRK | – | Gas-liquid | Systems |
IFG [39] | Fermi–Dirac statistics | – | Gas | Systems/Components |
The First Law [40] | The First law of thermodynamics | – | Gas | Systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhkov, F.V.; Ryzhkova, Y.E.; Elinson, M.N. Python in Chemistry: Physicochemical Tools. Processes 2023, 11, 2897. https://doi.org/10.3390/pr11102897
Ryzhkov FV, Ryzhkova YE, Elinson MN. Python in Chemistry: Physicochemical Tools. Processes. 2023; 11(10):2897. https://doi.org/10.3390/pr11102897
Chicago/Turabian StyleRyzhkov, Fedor V., Yuliya E. Ryzhkova, and Michail N. Elinson. 2023. "Python in Chemistry: Physicochemical Tools" Processes 11, no. 10: 2897. https://doi.org/10.3390/pr11102897
APA StyleRyzhkov, F. V., Ryzhkova, Y. E., & Elinson, M. N. (2023). Python in Chemistry: Physicochemical Tools. Processes, 11(10), 2897. https://doi.org/10.3390/pr11102897