Production and Evaluation of Gluten-Free Pasta and Pan Bread from Spirulina Algae Powder and Quinoa Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Quinoa Flour (QF)
2.2.2. Blends Preparation
2.2.3. Rheological Properties
2.2.4. Preparation and Evaluation of Cooking Quality and Sensory Properties of Pasta
2.2.5. Preparation and Evaluation of Baking Quality and Sensory Properties of Pan Bread
2.2.6. Color Determinations
2.2.7. Proximate Composition
2.2.8. Mineral Content
2.2.9. Texture Properties of Pasta and Pan Bread
2.2.10. Anthropometric Parameters Measurements
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. The Chemical Composition
3.2. Mineral Contents of Raw Materials and Their Products
3.3. Rheological Parameters
3.3.1. Farinograph Parameters
3.3.2. Extensograph Parameters
3.3.3. Viscoamylograph Measurements
3.4. Physical Properties
3.4.1. A. Color and Cooking Quality of Pasta
3.4.2. Color, Baking Quality, and Staling of Pan Bread
3.4.3. Sensory Properties
3.4.4. Texture Profile
3.4.5. Anthropometric
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schober, T.J.; Messerschmidt, M.; Bean, S.R.; Park, S.H.; Arendt, E.K. Gluten free bread from sorghum: Quality differences among hybrids. Cereal Chem. 2005, 82, 394–404. [Google Scholar] [CrossRef]
- Moore, M.M.; Heinbockel, M.; Dockery, P.; Ulmer, H.M.; Arendt, E.K. Network Formation in Gluten-Free Bread with Application of Trans glutaminase. Cereal Chem. 2006, 83, 28–36. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; And Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Subramaiam, H.; Chu, W.L.; Radhakrishnan, A.K.; Chakravarthi, S.; Selvaduray, K.R.; Kok, Y.Y. Evaluating anticancer and immunomodulatory effects of spirulina (Arthrospira) platensis and gamma-tocotrienol supplementation in a syngeneic mouse model of breast cancer. Nutrients 2021, 13, 2320. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Hamza, H.A.; Salem, M.L.; Kamal, S.; Alhasani, R.H.; Alsharif, I.; Mahrous, H.; Abdella, A. Synergistic Hypolipidemic and Immunomodulatory Activity of Lactobacillus and Spirulina platensis. Fermentation 2022, 8, 220. [Google Scholar] [CrossRef]
- Bohórquez-Medina, S.L.; Bohórquez-Medina, A.L.; Zapata, V.A.B.; Cconchoy, F.I.; Huamanchumo, C.J.T.; Quispe, G.B.; Hernandez, A.V. Spirulina Supplementation and Obesity Related Metabolic Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Metab. Clin. Exp. 2021, 25, 21–30. [Google Scholar] [CrossRef]
- Hatami, E.; Ghalishourani, S.S.; Najafgholizadeh, A.; Pourmasoumi, M.; Hadi, A.; Clark, C.C.; Assaroudi, M.; Salehi-Sahlabadi, A.; Joukar, F.; Mansour-Ghanaei, F. The effect of spirulina on type 2 diabetes: A systematic review and meta-analysis. J. Diabetes Metab. Disord. 2021, 20, 883–892. [Google Scholar] [CrossRef]
- Calella, P.; Di Dio, M.; Cerullo, G.; Di Onofrio, V.; Galle, F.; Liguori, G. Antioxidant, immunomodulatory, and anti-inflammatory effects of Spirulina in disease conditions: A systematic review. Int. J. Food Sci. Nutr. 2022, 73, 1047–1056. [Google Scholar] [CrossRef]
- Calella, P.; Cerullo, G.; Di Dio, M.; Liguori, F.; Di Onofrio, V.; Gallè, F.; Liguori, G. Antioxidant, anti-inflammatory and immunomodulatory effects of spirulina in exercise and sport: A systematic review. Front. Nutr. 2022, 9, 1048258. [Google Scholar] [CrossRef]
- Bielecka, J.; Markiewicz-Żukowska, R.; Puścion-Jakubik, A.; Grabia, M.; Nowakowski, P.; Soroczyńska, J.; Socha, K. Gluten-free cereals and pseudocereals as a potential source of exposure to toxic elements among polish residents. Nutrients 2022, 14, 2342. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.-B.; Shim, J.-H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides from Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fern, A.; Caboni, M.F. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection–electrospray ionization–time-of-flight mass spectrometer methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef]
- Stikic, R.; Glamoclija, D.; Demin, M.; Vucelic-Radovic, B.; Jovanovic, Z.; Milojkovic-Opsenica, D.; Jacobsen, S.; Milovanovic, M. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci. 2012, 55, 132–138. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Mohamed, S.E.; Shehata, M.G.; Mehany, T.; Zaitoun, M.A. Compositional Analysis and Functional Characteristics of Quinoa Flour. Annu. Res. Rev. Biol. 2018, 22, 1–11. [Google Scholar] [CrossRef]
- El-Sohaimy, A.S.; Shehata, G.M.; Djapparovec, T.A.; Mehany, T.; Zeitoun, A.M. Development and characterization of functional pan bread supplemented with quinoa flour. J. Food Process. Preserv. 2021, 45, e15180. [Google Scholar] [CrossRef]
- Bhaduri, S. A Comprehensive Study on Physical Properties of Two Gluten-Free Flour Fortified Muffins. J. Food Proc. Technol. 2013, 4, 4–7. [Google Scholar] [CrossRef]
- Dinu, M.; Vlasceanu, G.; Dune, A.; Rotaru, G. Researches concerning the growth of nutritive value of the bread products through the spirulina adding. J. Environ. Prot. Ecol. 2012, 13, 660–665. [Google Scholar]
- Achour, H.Y.; Doumandji, A.; Sadi, S.; Saadi, S. Evaluation of nutritional and sensory properties of bread enriched with spirulina. Ann. Food Sci. Technol. 2014, 15, 270–275. [Google Scholar]
- Oliviero, T.; Fogliano, V. Food design strategies to increase vegetable intake: The case of vegetable enriched pasta. Trends Food Sci. Technol. 2016, 51, 58–64. [Google Scholar] [CrossRef]
- Hussein, A.S.; Fouad, M.; El-Shenawy, M. Production of functional Pan Bread from Mixture of Tiger Nut Flour, Milk Permeate and Hard Wheat Flour. Egypt. J. Chem. 2022, 65, 517–525. [Google Scholar]
- Olaoya, O.A.A.; Onilude, A.A.; Idown, O.A. Quality characteristics of bread produced from composite flours of wheat and soy beans. Afr. J. Bioethanol. 2006, 5, 1102–1106. [Google Scholar]
- AACC. Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; ISBN 13 9781891127120. [Google Scholar]
- Hussein, A.; Ibrahim, G.; Kamil, M.; El-Shamarka, M.; Mostafa, S.; Mohamed, D. Spirulina-Enriched Pasta as Functional Food Rich in Protein and Antioxidant. Biointerface Res. Appl. Chem. 2021, 11, 4736–14750. [Google Scholar]
- Zaky, A.A.; Hussein, A.S.; Mostafa, S.; Abd El-Aty, A.M. Impact of Sunflower Meal Protein Isolate Supplementation on Pasta Quality. Separations 2022, 9, 429. [Google Scholar] [CrossRef]
- AACC. Approved Method of the American Association of Cereal Chemists, 11th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 20th ed.; AOAC International: Gaithersburg, MA, USA, 2016. [Google Scholar]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Ocimum tenuiflorum seeds and Salvia hispanica seeds: Mineral and amino acid composition, physical properties, and use in gluten-free bread. CyTA-J. Food 2019, 17, 804–813. [Google Scholar] [CrossRef]
- Jelliffe, D.B. The assessment of the nutritional status of the community (with special reference to field surveys in developing regions of the world). Monogr. Ser. World Health Organ. 1966, 53, 3–271. [Google Scholar]
- Ortega-Calvo, J.; Mazuelos, C.; Hermosin, B.; Sáiz-Jiménez, C. Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain. J. Appl. Phycol. 1993, 5, 425–435. [Google Scholar] [CrossRef]
- Soni, R.A.; Sudhakar, K.; Rana, R. Spirulina—From growth to nutritional product: A review. Trends Food Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef]
- Şahin, O.I. Functional and sensorial properties of cookies enriched with SPIRULINA and DUNALIELLA biomass. J. Food Sci. Technol. 2020, 57, 3639–3646. [Google Scholar] [CrossRef]
- Farg, H.; El-Makhzangy, A.; El-Shawaf, A.G. Chemical and technological studies on micro algae extracts and its utilization in some food products. Chemical, biochemical characteristics and nutritional value of spirulina algae. J. Product. Dev. 2021, 26, 107–117. [Google Scholar] [CrossRef]
- Jancurová, M.; Minarovicová, L.; Dandar, A. Quinoa—A review. Czech J. Food Sci. 2009, 27, 71–79. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Refaay, T.M.; Zaytoun, M.A.M. Physicochemical and functional properties of quinoa protein isolate. Ann. Agric. Sci. 2015, 60, 297–305. [Google Scholar] [CrossRef]
- Miranda-Ramos, K.C.; Haros, C.M. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods 2020, 9, 1859. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.; Ali, S.H.; Al-Khalifa, A. Quality Assessment of Some Spring Bread Wheat Cultivars. Asian J. Crop Sci. 2018, 10, 10–21. [Google Scholar] [CrossRef]
- Lemes, A.C.; Takeuchi, K.P.; Carvalho, J.C.M.; Danesi, E.D.G. Fresh pasta production enriched with Spirulina platensis biomass. Braz. Arch. Biol. Technol. 2012, 55, 741–750. [Google Scholar] [CrossRef]
- Pagnussatt, F.A.; Spier, F.; Bertolin, T.E.; Costa, J.A.V.; Gutkoski, L.C. Technological and nutritional assessment of dry pasta with oatmeal and the microalga Spirulina platensis. Braz. J. Food Technol. 2014, 17, 296–304. [Google Scholar] [CrossRef]
- Özyurt, G.; Uslu, L.; Yuvka, I.; Gökdoğan, S.; Atci, G.; Ak, B.; Işik, O. Evaluation of the Cooking Quality Characteristics of Pasta Enriched with Spirulina Platensis. J. Food Qual. 2015, 38, 268–272. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food Funct. 2019, 10, 4685–4692. [Google Scholar] [CrossRef]
- Selmo, M.S.; Salas-Mellado, M.M. Technological quality of bread from rice flour with Spirulina. Int. Food Res. J. 2014, 21, 1523–1528. [Google Scholar]
- Shahbazizadeh, S.; Khosravi-Darani, K.; Sohrabvandi, S. Fortification of Iranian Traditional Cookies with Spirulina platensis. Annu. Res. Rev. Biol. 2015, 7, 144–154. [Google Scholar] [CrossRef]
- Gadallah, M.G.; Rizk, I.R.; Elsheshetawy, H.E.; Bedeir, S.H.; Abouelazm, A.M. Impact of partial replacement of wheat flour with sorghum or chickpea flours on rheological properties of composite blends. J. Agric. Vet. Sci. 2017, 10, 83–98. [Google Scholar]
- Alvarez-Jubete, L.; Auty, M.; Arendt, E.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in glutenfree bread formulations. Eur. Food Res. Technol. 2010, 230, 437–445. [Google Scholar] [CrossRef]
- Enriquez, V.; Peltzer, M.; Raimundi, A.; Tosi, V.; Pollio, M.L. Characterization of wheat and quinoa flour blends in relation to their breadmaking quality. J. Arg. Chem. Soc. 2003, 91, 47–54. [Google Scholar]
- Atef, A.; Abou-Zaid, A.; Wafaa, S.Y.; Emam, H. Use of Quinoa Meal to Produce Bakery Products to Celiac and Autism Stuffs. Int. J. Sci. Res. (IJSR) 2014, 3, 1344–1354. [Google Scholar]
- Sudha, M.L.; Vetrimani, R.; Leelavathi, K. Influence of fiber from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem. 2007, 100, 1365–1370. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Rababah, T.; Aludatt, M.; Al-Mahasneh, M.; Gammoh, S.; Al-Obaidy, M.; Ajouly, T.; Bartkute-Norkūniene, V. The effect of different flour extraction rates on physiochemical and rheological characteristics. Bulg. J. Agric. Sci. 2019, 25, 581–588. [Google Scholar]
- Cardone, G.; D’Incecco, P.; Casiraghi, M.C.; Marti, A. Exploiting Milling By-Products in Bread-Making: The Case of Sprouted Wheat. Foods 2020, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- El-Sherief, S.A.M. Studies on flour composite and its effect on balady bread making. Minia J. Agric. Res. Develop. 2010, 3, 413–424. [Google Scholar]
- Paraskevopoulou, A.; Provatidou, E.; Tsotsiou, D.; Kiosseoglou, V. Dough rheology and baking performance of wheat flour–lupin protein isolate blends. Food Res. Int. 2010, 43, 1009–1016. [Google Scholar] [CrossRef]
- Harra, N.M.; Lemm, T.; Smith, C.; Gee, D. Quinoa flour is an acceptable replacement for allpurpose flour in a peanut butter cookie. J. Am. Diet. Assoc. 2011, 111, 45–51. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L.; Arfat, Y.A. Functional, rheological, microstructural and antioxidant properties of quinoa flour in dispersions as influenced by particle size. Food Res. Int. 2019, 116, 302–311. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Fouad, M.T.; Hussein, A.S.; El-Shenawy, M.A. Production of pasta using tiger nut and fermented permeate with some probiotic bacteria. Egypt. J. Chem. 2022, 65, 569–578. [Google Scholar]
- El-Faham, S.Y.; Mohsen, M.; Sharaf, A.; Zaky, A.A. Utilization of mango peels as a source of polyphenolic antioxidants. Curr. Sci. Int. 2016, 5, 529–542. [Google Scholar]
- Kim, Y.S.; Ha, T.Y.; Lee, S.H.; Lee, H.Y. Effect of rice bran dietary fiber on flour rheology and quality of wet noodles. Korean J. Food Sci. Technol. 1997, 20, 90–95. [Google Scholar]
- Koç, B.; Atar Kayabaşi, G. Enrichment of White Wheat Bread with Pistachio Hulls and Grape Seeds: Effect on Bread Quality Characteristics. Appl. Sci. 2023, 13, 3431. [Google Scholar] [CrossRef]
- Ramy, A.; Salama, M.F.; Shouk, A.A. Pollards a potential source of dietary fiber for pasta manufacture. Egypt. J. Food Sci. 2002, 30, 313–330. [Google Scholar]
- Masoodi, F.; Bhawana, S.; Chauhan, G. Use of apple pomace as a source of dietary fiber in cakes. Plant Foods Hum. Nutr. 2002, 57, 32. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Magala, M.; Kuchtová, V. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chem. Pap. 2014, 68, 1059–1065. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Tang, X. Effects of whey and soy protein addition on bread rheological property of wheat flour. J. Texture Stud. 2018, 49, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.M.; Kamil, M.M.; Hegazy, N.A.; Abo El-Nor, S.A.H. Effect of Wheat Flour Supplemented with Barely and/or Corn Flour on Balady Bread Quality. Pol. J. Food Nutr. Sci. 2013, 63, 11–19. [Google Scholar] [CrossRef]
- Zen, C.K.; Tiepo, C.B.V.; da Silva, R.V.; Reinehr, C.O.; Gutkoski, L.C.; Oro, T.; Colla, L.M. Development of functional pasta with microencapsulated Spirulina: Technological and sensorial effects. J. Sci. Food Agric. 2020, 100, 2018–2026. [Google Scholar] [CrossRef]
- Bastidas, E.G.; Roura, R.; Rizzolo, D.A.D.; Massanés, T.; Gomis, R. Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. J. Nutr. Food Sci. 2016, 6, 497. [Google Scholar]
- De Marco, R.E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT—Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Raja, W.H.; Kumar, S.; Bhat, Z.F.; Kumar, P. Effect of ambient storage on the quality characteristics of aerobically packaged fish curls incorporated with different flours. SpringerPlus 2014, 3, 106. [Google Scholar] [CrossRef]
- Jaworska, D.; Królak, M.; Przybylski, W.; Jezewska-Zychowicz, M. Acceptance of Fresh Pasta with βGlucan Addition: Expected Versus Perceived Liking. Foods 2020, 9, 869. [Google Scholar] [CrossRef]
- Kim, J.E.; O’Connor, L.E.; Sands, L.P.; Slebodnik, M.B.; Campbell, W.W. Effects of dietary protein intake on body composition changes after weight loss in older adults: A systematic review and meta-analysis. Nutr. Rev. 2016, 74, 210–224. [Google Scholar] [CrossRef]
- Moon, J.; Koh, G. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. J. Obes. Metab. Syndr. 2020, 30, 166–173. [Google Scholar] [CrossRef]
- Pesta, D.H.; Samuel, V.T. A high-protein diet for reducing body fat: Mechanisms and possible caveats. Nutr. Metab. 2014, 11, 53. [Google Scholar] [CrossRef] [PubMed]
Samples | Moisture | Protein | Fat | Ash | Fiber | Carbohydrates |
---|---|---|---|---|---|---|
SAP | 6.85 d ± 0.14 | 63.65 a ± 1.22 | 6.18 b ± 0.17 | 12.50 a ± 0.13 | 4.15 a ± 0.0.15 | 13.52 d ± 0.32 |
QF | 10.52 c ± 0.01 | 15.60 b ± 0.06 | 6.65 a ± 0.03 | 3.60 b ± 0.03 | 4.05 a ± 0.02 | 70.10 c ± 0.04 |
WF | 11.20 b ± 0.17 | 10.50 d ± 0.11 | 1.15 d ± 0.08 | 0.79 c ± 0.01 | 0.43 c ± 0.02 | 86.70 a ± 0.56 |
SF | 11.85 a ± 0.09 | 13.11 c ± 0.10 | 1.58 c ± 0.05 | 0.82 c ± 0.04 | 0.75 b ± 0.01 | 83.74 b ± 0.82 |
LSD at 0.05 | 0.09427 | 0.88082 | 0.32932 | 0.43128 | 0.30274 | 0.39541 |
Pasta | ||||||
100% SF | 5.75 d ± 0.22 | 13.25 e ± 0.38 | 1.05 d ± 0.05 | 0.88 e ± 0.01 | 0.83 e ± 0.03 | 83.99 a ± 0.72 |
100% QF | 6.15 c ± 0.05 | 15.92 d ± 0.13 | 5.35 c ± 0.08 | 3.22 d ± 0.13 | 3.88 ab ± 0.01 | 71.63 b ± 0.62 |
5% SAP + 95% QF | 6.01 cd ± 0.03 | 18.95 c ± 0.07 | 5.18 c ± 0. 04 | 3.31 c ± 0.06 | 3.81 b ± 0.002 | 68.75 c ± 0.72 |
10% SAP + 90% QF | 6.50 b ± 0.06 | 22.11 b ± 0.15 | 5.60 b ± 0.07 | 4.12 b ± 0.03 | 3.95 ab ± 0.005 | 64.22 d ± 0.59 |
15% SAP + 85% QF | 6.86 a ± 0.11 | 25.25 a ± 0.13 | 5.79 a ± 0.08 | 4.62 a ± 0.07 | 4.02 a ± 0.06 | 60.32 e ± 0.69 |
LSD at 0.05 | 0.23661 | 0.40000 | 0.15186 | 0.08646 | 0.16151 | 0.17835 |
Pan bread | ||||||
100% WF | 34.11 e ± 0.17 | 10.86 e ± 0.76 | 6.58 c ± 0.43 | 2.11 d ± 0.24 | 0.50 c ± 0.06 | 79.95 a ± 2.68 |
100% QF | 38.37 d ± 0.43 | 16.80 d ± 0.43 | 8.45 b ± 0.43 | 3.35 c ± 0.43 | 4.02 b ± 0.13 | 67.38 b ± 1.43 |
5% SAP + 95% QF | 39.50 c ± 0.43 | 18.95 c ± 0.43 | 8.50 b ± 0.43 | 3.75 c ± 0.43 | 4.07 ab ± 0.19 | 64.73 c ± 1.05 |
10% SAP + 90% QF | 41.70 b ± 0.43 | 21.90 b ± 0.43 | 8.60 a ± 0.43 | 4.20 b ± 0.43 | 4.09 ab ± 0.26 | 61.21 d ± 0.96 |
15% SAP + 85% QF | 43.20 a ± 0.43 | 24.05 a ± 0.43 | 8.75 a ± 0.43 | 4.55 a ± 0.43 | 4.11 a ± 0.35 | 58.54 e ± 1.16 |
LSD at 0.05 | 0.14043 | 0.14212 | 0.18492 | 0.09687 | 0.07876 | 0.138/73 |
Samples | Ca | P | K | Na | Fe | Zn |
---|---|---|---|---|---|---|
SAP | 165.1 a ± 2.15 | 790.42 a ± 7.12 | 165.1 d ± 3.11 | 762 b ± 5.10 | 56.6 a ± 1.15 | 4.5 b ± 0.35 |
QF | 82.0 b ± 1.11 | 518.0 b ± 5.15 | 681 a ± 4.15 | 1428.58 a ± 10.12 | 30.0 b ± 0.86 | 6.6 a ± 0.41 |
WF | 50.89 d ± 1.17 | 120 d ± 2.17 | 205.33 b ± 3.05 | 630.18 c ± 3.25 | 2.35 c ± 0.22 | 3.36 c ± 0.21 |
SF | 65 c ± 0.52 | 136 c ± 3.25 | 186 c ± 1.65 | 560 d ± 2.70 | 1.75 c ± 0.11 | 1.03 d ± 0.10 |
LSD at 0.05 | 5.22403 | 9.65991 | 6.47022 | 5.93813 | 2.96878 | 0.29511 |
Pasta | ||||||
100% SF | 65 e ± 0.18 | 136 d ± 1.15 | 186 e ± 0.65 | 560 e ± 2.16 | 1.75 d ± 0.10 | 1.03 b ± 0.03 |
100% QF | 82 d ± 0.25 | 143 cd ± 1.49 | 680 a ± 0.72 | 1412.50 a ± 5.17 | 30.86 c ± 1.12 | 6.5 a ± 0.31 |
5% SAP + 95% QF | 90 c ± 0.50 | 150 bc ± 1.35 | 650 b ± 1.16 | 1350 b ± 4.11 | 35.0 bc ± 1.18 | 6.0 a ± 0.15 |
10% SAP + 90% QF | 105 b ± 1.05 | 156 ab ± 1.42 | 620 c ± 2.25 | 1300 c ± 3.55 | 40.0 ab ± 1.35 | 5.70 a ± 0.22 |
15% SAP + 85% QF | 120 a ± 1.15 | 162 a ± 1.65 | 580 d ± 3.16 | 1260 d ± 2.82 | 45.0 a ± 1.42 | 5.40 a ± 0.17 |
LSD at 0.05 | 6.90756 | 10.92181 | 16.87293 | 17.10697 | 9.26782 | 1.33491 |
Pan bread | ||||||
100% WF | 36.54 e ± 0.22 | 120 d ± 0.65 | 205 d ± 1.56 | 625 e ± 2.56 | 2.50 e ± 0.10 | 3.20 c ± 0.10 |
100% QF | 82 d ± 0.53 | 126 cd ± 0.72 | 680 a ± 2.90 | 1410 a± 3.70 | 30.86 d ± 0.16 | 4.96 b ± 0.19 |
5% SAP + 95% QF | 91 c ± 0.65 | 132 bc ± 0.81 | 665 a ± 3.20 | 1360 b ± 3.22 | 35.0 c ± 0.22 | 6.0 a ± 0.32 |
10% SAP + 90% QF | 106 b ± 0.72 | 138 ab ± 0.65 | 640 b ± 3.50 | 1310 c ± 3.10 | 40.0 b ± 0.29 | 5.70 ab ± 0.41 |
15% SAP + 85% QF | 118 a ± 0.78 | 142 a ± 0.56 | 610 c ± 3.65 | 1270 d ± 3.05 | 45.0 a ± 0.33 | 5.40 ab ± 0.36 |
LSD at 0.05 | 6.30576 | 8.46000 | 17.83525 | 20.91368 | 4.36947 | 1.29407 |
Parameter | Control | QF Containing SAP (%) | ||||
---|---|---|---|---|---|---|
SF | WF | QF | 5 | 10 | 15 | |
Farinograph parameters | ||||||
Water absorption (%) | 57.5 | 59.8 | 65.5 | 67.5 | 69.5 | 71.5 |
Arrival time (min) | 6.5 | 1.5 | 3.0 | 3.5 | 4.0 | 4.5 |
Development time (min) | 10.5 | 3.0 | 5.5 | 4.0 | 4.5 | 5.0 |
Stability (min) | 11 | 8.0 | 3.5 | 4.0 | 6.0 | 7.5 |
Weakening (BU) | 55 | 70 | 160 | 140 | 120 | 110 |
Mixing tolerance index (BU) | 25 | 40 | 60 | 55 | 50 | 40 |
Extinsograph parameters | ||||||
Extensibility (E) (mm) | - | 140 | 105 | 120 | 130 | 140 |
Elasticity (BU) | - | 350 | 550 | 485 | 450 | 420 |
Ratio (R/E) | - | 2.5 | 5.24 | 4.04 | 3.46 | 3.00 |
Energy (cm2) | - | 110 | 77 | 80 | 90 | 100 |
Viscoamylograph parameters | ||||||
Temp. of transition (°C) | 64.7 | 61.8 | 67.5 | 69.5 | 71.5 | 73.0 |
Max. of viscosity (BU) | 560 | 525 | 3010 | 2800 | 2600 | 2400 |
Temp. of max. viscosity | 88.7 | 86.5 | 94.5 | 92.5 | 90.0 | 88.0 |
Breakdown viscosity (BU) | 2913 | 608 | 3000 | 3700 | 2400 | 2200 |
Setback viscosity (BU) | 592 | 196 | 3030 | 2970 | 2900 | 2710 |
Parameter | Control | QF Containing SAP (%) | LSD at 0.05 | |||||
---|---|---|---|---|---|---|---|---|
SF | WF | QF | 5 | 10 | 15 | |||
Color attributes of raw pasta | ||||||||
Lightness (L*) | 74.97 b ± 2.12 | - | 76.11 a ± 0.22 | 71.11 c ± 0.14 | 67.15 d ± 0.30 | 64.55 e ± 1.53 | 0.30659 | |
Redness (a*) | 3.10 e ± 0.03 | - | 3.75 d ± 0.05 | 4.12 c ± 0.12 | 4.60 b ± 0.124 | 5.05 a ± 0.07 | 0.21328 | |
Yellowness (b*) | 14.73 e ± 0.28 | - | 17.22 d ± 0.12 | 22.97 c ± 0.56 | 23.57 b ± 0.03 | 24.09 a ± 0.07 | 0.16052 | |
Color attributes of cooked pasta | ||||||||
Lightness (L*) | 77.41 a ± 0.97 | - | 69.15 b ± 0.30 | 66.12 c ± 0.22 | 62.17 d ± 0.23 | 59.38 e ± 0.35 | 0.32838 | |
Redness (a*) | 2.23 e ± 0.11 | - | 2.90 d ± 0.09 | 3.65 b ± 0.07 | 4.02 c ± 0.02 | 4.31 a ± 0.02 | 0.21328 | |
Yellowness (b*) | 19.46 c ± 0.64 | - | 16.01 d ± 0.15 | 23.17 b ± 0.17 | 23.55 a ± 0.07 | 23.76 a ± 0.05 | 0.28841 | |
Cooking quality of pasta | ||||||||
Weight increase (%) | 220 d ± 2.82 | - | 230 cd ± 1.65 | 235 c ± 0.31 | 255 b ± 0.65 | 275 a ± 0.80 | 12.86118 | |
Volume increase (%) | 165 d ± 4.42 | - | 170 d ± 2.10 | 180 c ± 0.50 | 195 b ± 1.50 | 210 a ± 1.25 | 9.18125 | |
Cooking loss (%) | 3.5 c ± 0.14 | - | 6.0 a ± 0.55 | 5.5 a ± 0.22 | 5.0 b ± 0.25 | 4.03 c ± 0.20 | 0.50587 | |
Color attributes of pan bread crust | ||||||||
Lightness (L*) | - | 42.65 a ± 1.13 | 36.22 b ± 1.53 | 34.05 c ± 1.7 | 33.25 d ± 1.62 | 31.17 e ± 1.1 | 0.12162 | |
Redness (a*) | - | 10.57 e ± 0.61 | 11.31 d ± 0.83 | 12.05 c ± 0.77 | 13.13 b ± 0.69 | 14.69 a ± 0.87 | 0.15902 | |
Yellowness (b*) | - | 25.23 a ± 1.76 | 18.34 d ± 1.66 | 19.82 b ± 1.95 | 18.75 c ± 1.87 | 17.88 e ± 1.69 | 0.25536 | |
Color attributes of pan bread crumb | ||||||||
Lightness (L*) | - | 71.62 a ± 2.20 | 64.76 b ± 1.92 | 51.90 c ± 1.99 | 47.39 d ± 1.69 | 38.55 e ± 1.52 | 0.14653 | |
Redness (a*) | - | 3.45 a ± 0.08 | 1.09 b ± 0.05 | 0.94 c ± 0.03 | 0.91 c ± 0.02 | 1.02 bc ± 0.04 | 0.13287 | |
Yellowness (b*) | - | 22.23 a ± 1.00 | 15.41 b ± 0.97 | 15.58 b ± 0.96 | 14.38 c ± 0.90 | 14.05 d ± 0.82 | 0.19538 | |
Baking quality of pan bread | ||||||||
Weight (g) | - | 70.1 e ± 1.2 | 72.2 d ± 1.5 | 75.1 c ± 1.9 | 77.1 b ± 1.2 | 79.0 a ± 1.8 | 0.95423 | |
Volume (cm3) | - | 232 a ± 3.15 | 207 b ± 2.19 | 185 c ± 3.1 | 165 d ± 3.91 | 150 e ± 4.25 | 8.55348 | |
Specific volume (cm3/g) | - | 3.3 a ± 0.11 | 2.88 b ± 0.10 | 2.47 c ± 0.08 | 2.14 d ± 0.09 | 1.90 d ± 0.77 | 0.27601 | |
Freshness of pan bread | ||||||||
Zero time | - | 359.0 a ± 2.16 | 164.51 e ± 1.15 | 177.55 d ± 2.16 | 182.06 c ± 1.21 | 190.87 b ± 0.65 | 1.32390 | |
1 days | - | 322 a ± 3.15 | 158.99 e ± 1.05 | 165.16 d ± 1.66 | 172.31 c ± 0.68 | 177.82 b ± 0.50 | 2.53003 | |
2 days | - | 298 a ± 2.05 | 150.73 e ± 0.96 | 155.82 d ± 0.82 | 165.62 c ± 1.09 | 169.89 b ± 0.44 | 1.27107 | |
3 days | - | 265 a ± 1.78 | 144.32 e ± 0.68 | 147.34 c ± 0.78 | 153.89 b ± 1.22 | 158.31 b ± 0.39 | 6.30866 |
Parameter | Control | QF Containing SAP (%) | LSD at 0.05 | ||||
---|---|---|---|---|---|---|---|
SF | WF | QF | 5 | 10 | 15 | ||
Organoleptic characteristics of pasta | |||||||
Color (10) | 9.75 a ± 0.35 | - | 8.9 c ± 0.42 | 9.01 b ± 0.44 | 8.12 c ± 0.52 | 6.44 d ± 0.70 | 0.18748 |
Flavor (10) | 9.83 a ± 0.28 | - | 9.33 b ± 0.57 | 9.33 b± 0.45 | 8.44 c ± 0.37 | 7.35 d ± 0.41 | 0.2584 |
Mouthfeel (10) | 9.70 ± 0.23 a | - | 9.01 ± 0.42a | 9.41 a ± 0.52 | 8.80 a ± 0.55 | 6.82 c ± 0.56 | 0.22944 |
Elasticity (10) | 9.81 a ± 0.25 | - | 8.50 b ± 0.35 | 9.50 b ± 0.41 | 9.21 c ± 0.37 | 9.01 d ± 0.61 | 0.26394 |
Overall-acceptability (10) | 9.55 a ± 0.52 | - | 8.95 c ± 0.46 | 9.11 b ± 0.35 | 8.80 d ± 0.42 | 7.35 e ± 0.33 | 0.13045 |
Total score (50) | 47.81 a ± 1.02 | - | 44.18 c ± 1.25 b | 46.36 b ± 1.28 | 43.37 d ± 1.51 | 36.97 e ± 1.12 | 0.07671 |
Organoleptic characteristics of pan bread | |||||||
Taste (20) | - | 18.70 a ± 0.15 | 17.30 b ± 0.10 | 16.78 c ± 0.10 | 16.55 c ± 0.17 | 14.65 d ± 0.09 | 0.29684 |
Aroma (20) | - | 19.22 a ± 0.11 | 17.53 b ± 0.12 | 16.11 c ± 0.12 | 15.25 d ± 0.15 | 13.75 e ± 0.07 | 0.14043 |
Crumb color (10) | - | 9.20 a ± 0.13 | 7.14 b ± 0.17 | 7.11 b ± 0.15 | 7.05 b ± 0.13 | 5.31 c ± 0.01 | 0.12485 |
Crust color (10) | - | 8.95 a ± 0.10 | 6.97 b ± 0.11 | 6.50 b ± 0.09 | 6.35 c ± 0.09 | 5.30 d ± 0.011 | 0.16101 |
Crumb texture (15) | - | 14.36 a ± 0.17 | 13.12 c ± 0.09 | 13.04 c ± 0.17 | 13.55 b ± 0.06 | 11.66 d ± 0.12 | 0.11420 |
Break and shred (10) | - | 9.50 a ± 0.09 | 8.24 b ± 0.12 | 7.45 c ± 0.10 | 7.30 c ± 0.04 | 7.11 d ± 0.09 | 0.17924 |
Mouth feel (10) | - | 9.12 a ± 0.07 | 8.62 b ± 0.13 | 8.00 c ± 0.08 | 7.52 d ± 0.07 | 5.95 e ± 0.06 | 0.18145 |
Symmetry shape (5) | - | 4.6 a ± 0.05 | 4.01 b ± 0.09 | 3.56 c ± 0.07 | 3.15 d ± 0.05 | 2.94 d ± 0.03 | 0.26634 |
Parameter | Control | QF Containing SAP (%) | ||||
---|---|---|---|---|---|---|
SF | WF | QF | 5 | 10 | 15 | |
Texture profile analysis of raw pasta | ||||||
Hardness (N) | 73.10 | - | 53.13 | 53.90 | 53.70 | 47.55 |
Deformation at hardness (mm) | 0.26 | - | 0.23 | 6.22 | 5.54 | 8.30 |
% Deformation at hardness (%) | 0.90 | - | 0.80 | 20.70 | 18.50 | 27.70 |
Hardness work (mJ) | 0.40 | - | 13.20 | 39.10 | 50.90 | 63.70 |
Load at target (N) | 72.07 | - | 53.13 | 41.48 | 53.70 | 44.55 |
Peak stress (N/m2) | 36,704 | - | 27,060 | 21,127 | 27,350 | 22,690 |
Strain at peak load | 0.01 | - | 0.01 | 0.21 | 0.18 | 0.28 |
Fracturability (N) | 72.07 | - | 53.13 | 29.92 | 32.91 | 36.03 |
Fracture load drop off (N) | 64.02 | - | 45.83 | 28.53 | 28.93 | 27.30 |
1st fracture work done (mJ) | 11.90 | - | 7.40 | 3.30 | 5.00 | 7.90 |
1st fracture deformation (mm) | 0.26 | - | 0.23 | 0.17 | 0.23 | 0.32 |
1st fracture % deformation (%) | 0.90 | - | 0.80 | 0.60 | 0.80 | 1.10 |
Texture profile analysis of cooked pasta | ||||||
Hardness (N) | 7.02 | - | 7.05 | 6.93 | 5.49 | 6.88 |
Deformation at hardness (mm) | 8.56 | - | 8.79 | 10.78 | 10.57 | 11.12 |
% Deformation at hardness (%) | 85.60 | - | 87.90 | 107.80 | 105.70 | 111.20 |
Hardness work (mJ) | 22.50 | - | 22.90 | 33.80 | 25.20 | 39.60 |
Load at target (N) | 7.02 | - | 7.05 | 6.93 | 5.49 | 6.88 |
Peak stress (N/m2) | 3576 | - | 3591 | 3531 | 2797 | 3506 |
Strain at peak load | 0.86 | - | 0.88 | 1.08 | 1.06 | 1.11 |
Fracturability (N) | 0.37 | - | 0.31 | 0.21 | 0.42 | 0.58 |
Fracture load drop Off (N) | 0.15 | - | 0.08 | 0.17 | 0.12 | 0.13 |
1st fracture work done (mJ) | 0.02 | - | 0.03 | 0.02 | 0.10 | 0.13 |
1st fracture deformation (mm) | 0.20 | - | 0.30 | 0.20 | 1.00 | 1.30 |
1st fracture % deformation (%) | 7.02 | - | 7.05 | 12.93 | 12.01 | 11.54 |
Texture profile analysis of pan bread | ||||||
Hardness (N) | - | 586 | 516 | 525 | 535 | 550 |
Hardness work cycle 1 (mJ) | - | 21.80 | 20.80 | 21.10 | 21.50 | 21.90 |
Recoverable work cycle 1 (mJ) | - | 11.80 | 11.9 | 12.0 | 12.10 | 12.20 |
Hardness work cycle 2 (mJ) | - | 20.70 | 20.50 | 20.60 | 20.80 | 20.90 |
Recoverable work cycle 2 (mJ) | - | 9.10 | 11.0 | 11.40 | 11.75 | 12.05 |
Cohesiveness | - | 0.95 | 0.98 | 0.97 | 0.99 | 1.01 |
Adhesiveness (mJ) | - | 0.30 | 0.10 | 0.15 | 0.19 | 0.25 |
Springiness (mm) | - | 19.70 | 17.64 | 17.75 | 17.85 | 17.95 |
Springiness index | - | 0.95 | 0.96 | 1.0 | 1.15 | 1.30 |
Gumminess (g) | - | 556.4 | 508.6 | 520 | 535 | 550 |
Chewiness (gmm) | - | 4240 | 3885 | 4020 | 4125 | 4280 |
Resilience | - | 0.54 | 0.57 | 0.59 | 0.63 | 0.69 |
Parameters | Group (Pasta: 15% SAP + 85% QF) (n = 27) | Group (Pan Bread: 15% SAP + 85% QF) (n = 28) | ||
---|---|---|---|---|
Base | Last Day | Base | Last Day | |
Age (year) | 36.33 ± 1.70 | 31.72 ± 0.93 | ||
Sex | Females | Females | ||
BMI (kg/m2) | 33.0 ± 4.13 | 32.1 ± 4.08 | 35.71 ± 3.70 | 34.99 ± 2.61 |
% BF | 31.72 ± 2.98 | 28.07 ± 2.99 *a | 32.54 ± 3.67 | 30.39 ± 2.67 *b |
LBM | 44.70 ± 3.95 | 46.46 ± 3.54 | 42.88 ± 0.53 | 43.18 ± 0.61 |
BMR | 2082.26 ± 215.89 | 2152.84 ± 261.85 *a | 1979.53 ± 312.97 | 2127.00 ± 307.15 *b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, A.S.; Mostafa, S.; Fouad, S.; Hegazy, N.A.; Zaky, A.A. Production and Evaluation of Gluten-Free Pasta and Pan Bread from Spirulina Algae Powder and Quinoa Flour. Processes 2023, 11, 2899. https://doi.org/10.3390/pr11102899
Hussein AS, Mostafa S, Fouad S, Hegazy NA, Zaky AA. Production and Evaluation of Gluten-Free Pasta and Pan Bread from Spirulina Algae Powder and Quinoa Flour. Processes. 2023; 11(10):2899. https://doi.org/10.3390/pr11102899
Chicago/Turabian StyleHussein, Ahmed S., Sayed Mostafa, Suzanne Fouad, Nefisa A. Hegazy, and Ahmed A. Zaky. 2023. "Production and Evaluation of Gluten-Free Pasta and Pan Bread from Spirulina Algae Powder and Quinoa Flour" Processes 11, no. 10: 2899. https://doi.org/10.3390/pr11102899
APA StyleHussein, A. S., Mostafa, S., Fouad, S., Hegazy, N. A., & Zaky, A. A. (2023). Production and Evaluation of Gluten-Free Pasta and Pan Bread from Spirulina Algae Powder and Quinoa Flour. Processes, 11(10), 2899. https://doi.org/10.3390/pr11102899