Special Issue: “The Design and Optimization of Fire Protection Processes”
- Contribution 1. Shao, L.; He, J.; Lu, X.; Liu, W. Optimization Study of Inert Gas Distribution for Multiple-Bay Fuel Tank. Processes 2023, 11, 2441. https://doi.org/10.3390/pr11082441
- Contribution 2. Markova, I.; Giertlova, Z.; Jadudova, J.; Turekova, I. Monitoring the Ignition of Hay and Straw by Radiant Heat. Processes 2023, 11, 2741. https://doi.org/10.3390/pr11092741
- Contribution 3. Jaďuďová, J.; Marková, I.; Šťastná, M.; Giertlová, Z. The Evaluation of the Fire Safety of the Digestate as An Alternative Bedding Material. Processes 2023, 11, 2609. https://doi.org/10.3390/pr11092609
- Contribution 4. Martinka, J.; Rantuch, P.; Martinka, F.; Wachter, I.; Štefko, T. Improvement of Heat Release Rate Measurement from Woods Based on Their Combustion Products Temperature Rise. Processes 2023, 11, 1206. https://doi.org/10.3390/pr11041206
- Contribution 5. Leitner, B.; Ballay, M.; Kvet, M.; Kvet, M. Optimization of Fire Brigade Deployment by Means of Mathematical Programming. Processes 2023, 11, 1262. https://doi.org/10.3390/pr11041262
- Contribution 6. Ballay, M.; Leitner, B.; Jakubovičová, L. Design and Optimization of the Training Device for the Employment of Hydraulic Rescue Tools in Traffic Accidents. Processes 2023, 11, 1103. https://doi.org/10.3390/pr11041103
Author Contributions
Funding
Conflicts of Interest
References
- Kuracina, R.; Szabová, Z.; Buranská, E.; Kosár, L.; Rantuch, P.; Blinová, L.; Měřínská, D.; Gogola, P.; Jurina, F. Study into the Fire and Explosion Characteristics of Polymer Powders Used in Engineering Production Technologies. Polymers 2023, 15, 4203. [Google Scholar] [CrossRef] [PubMed]
- Gerasimov, I.E.; Bolshova, T.A.; Osipova, K.N.; Dmitriev, A.M.; Knyazkov, D.A.; Shmakov, A.G. Flame Structure at Elevated Pressure Values and Reduced Reaction Mechanisms for the Combustion of CH4/H2 Mixtures. Energies 2023, 16, 7489. [Google Scholar] [CrossRef]
- Osvaldová, L.M.; Kubás, J.; Hollá, K.; Klouda, K.; Bátrlová, K. The Influence of Mechanical, Physical and Chemical Influences on Protective Clothing. Appl. Sci. 2023, 13, 9123. [Google Scholar] [CrossRef]
- Vandličkova, M.; Markova, I.; Holla, K.; Gašpercová, S. Evaluation of Marblewood Dust’s (Marmaroxylon racemosum) Effect on Ignition Risk. Appl. Sci. 2021, 11, 6874. [Google Scholar] [CrossRef]
- Küçükarslan, A.B.; Köksal, M.; Ekmekci, I. A Model Proposal for Measuring Performance in Occupational Health and Safety in Forest Fires. Sustainability 2023, 15, 14729. [Google Scholar] [CrossRef]
- Kiverin, A.; Tyurnin, A.; Yakovenko, I. On the Critical Condition for Flame Acceleration in Hydrogen-Based Mixtures. Materials 2023, 16, 2813. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Antov, P.; Kristak, L.; Reh, R.; Lubis, M.A.R. Application of Wood Composites III. Appl. Sci. 2023, 13, 6712. [Google Scholar] [CrossRef]
- Gašpercová, S.; Marková, I.; Vandlíčková, M.; Osvaldová, L.M.; Svetlík, J. Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator. Appl. Sci. 2023, 13, 3371. [Google Scholar] [CrossRef]
- Rantuch, P.; Martinka, J.; Ház, A. The Evaluation of Torrefied Wood Using a Cone Calorimeter. Polymers 2021, 13, 1748. [Google Scholar] [CrossRef]
- Lee, C.-M.; Jung, B.-G.; Choi, J.-H. Experimental Study on Prediction for Combustion Optimal Control of Oil-Fired Boilers of Ships Using Color Space Image Feature Analysis and Support Vector Machine. J. Mar. Sci. Eng. 2023, 11, 1993. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, D. Research on Oxygenation Components under a High-Pressure Oxygen Environment. Appl. Sci. 2023, 13, 7703. [Google Scholar] [CrossRef]
- Martin, J.; Armbruster, W.; Suslov, D.; Stützer, R.; Hardi, J.S.; Oschwald, M. Flame Characteristics and Response of a High-Pressure LOX/CNG Rocket Combustor with Large Optical Access. Aerospace 2022, 9, 410. [Google Scholar] [CrossRef]
- Perka, B.; Piwowarski, K. A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire. Energies 2023, 14, 7260. [Google Scholar] [CrossRef]
- Gaff, M.; Čekovská, H.; Bouček, J.; Kačíková, D.; Kubovský, I.; Tribulová, T.; Zhang, L.; Marino, S.; Kačík, F. Flammability Characteristics of Thermally Modified Meranti Wood Treated with Natural and Synthetic Fire Retardants. Polymers 2021, 13, 2160. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.; Guede-Fernández, F.; Valente de Almeida, R.; Gamboa, H.; Vieira, P. Real-Time Integration of Segmentation Techniques for Reduction of False Positive Rates in Fire Plume Detection Systems during Forest Fires. Remote Sens. 2022, 14, 2701. [Google Scholar] [CrossRef]
- Tureková, I.; Marková, I. Ignition of Deposited Wood Dust Layer by Selected Sources. Appl. Sci. 2020, 10, 5779. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Tsai, K.-C. Effects of Time to Unactuate Air Conditioning on Fire Growth. Energies 2021, 14, 3100. [Google Scholar] [CrossRef]
- Bala-Litwiniak, A.; Musiał, D.; Nabiałczyk, M. Computational and Experimental Studies on Combustion and Co-Combustion of Wood Pellets with Waste Glycerol. Materials 2023, 16, 7156. [Google Scholar] [CrossRef]
- Li, G.; Qu, F.; Wang, Z.; Xiong, X.; Xu, Y. Experimental Study of Thermal and Fire Reaction Properties of Glass Fiber/Bismaleimide Composites for Aeronautic Application. Polymers 2023, 15, 2275. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Cao, X.; Wei, H. Study on the Characteristics and Influence Factor of Methane and Coal Dust Gas/Solid Two-Phase Mixture Explosions. Fire 2023, 6, 359. [Google Scholar] [CrossRef]
- Mitu, M.; Razus, D.; Boldor, D.; Marculescu, C. Flammability Properties of the Pyrolysis Gas Generated from Willow Wood. Processes 2023, 11, 2103. [Google Scholar] [CrossRef]
- Sonnier, R.; Dumazert, L.; Regazzi, A.; Deborde, L.; Lanos, C. Flammability of Thick but Thermally Thin Materials including Bio-Based Materials. Molecules 2023, 28, 5175. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Hwang, D.J.; Park, J.; Kim, J.S.; Kim, S.; Keel, S.I.; Kim, T.K.; Noh, D.S. Edge flame instability in low-strain-rate counterflow diffusion flames. Combust. Flame 2006, 146, 612–619. [Google Scholar] [CrossRef]
- Ivanov, M.L.; Peng, W.; Chow, W.K. Sustainable Smoke Extraction System for Atrium: A Numerical Study. Sustainability 2022, 13, 13. [Google Scholar] [CrossRef]
- Li, Y.Z.; Wang, Z.L.; Huang, X.Y. An exploration of equivalent scenarios for building facade fire standard tests. J. Build. Eng. 2022, 52, 104399. [Google Scholar] [CrossRef]
- Ou, J.; Wang, X.; Ming, Y.; Sun, X. Study on the Influence of Ventilation Speed on Smoke and Temperature Characteristics of Complex Underground Spaces. Fire 2023, 6, 436. [Google Scholar] [CrossRef]
- Wang, D.; Ju, X.Y.; Yang, L.Z. Experimental Study of the Effect of Opening Factor on Self-Extinguishing and Blue Ghosting Flame in Under-Ventilated Compartment Fire. Fire Technol. 2022; early access. [Google Scholar]
- Jiang, Y.Q.; Zhang, T.H.; Huang, X.Y. Full-scale fire tests in the underwater tunnel section model with sidewall smoke extraction. Tunneling Undergr. Space Technol. 2022, 122, 104374. [Google Scholar] [CrossRef]
- Un, C.; Aydın, K. Modernization of Fire Vehicles with New Technologies and Chemicals. Vehicles 2023, 5, 682–697. [Google Scholar] [CrossRef]
- Dréan, V.; Girardin, B.; Fateh, T. Numerical Investigation of the Thermal Exposure of Facade During BS 8414 Test Series: Influence of Wind and Fire Source. Fire Technol. 2023, 59, 217–246. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Hu, M.; Zhou, C.; Su, L.; Cao, P. Investigation on the Performance of Fire and Smoke Suppressing Asphalt Materials for Tunnels. Processes 2023, 11, 3038. [Google Scholar] [CrossRef]
- Marto, T.; Bernardino, A.; Cruz, G. Fire and Smoke Segmentation Using Active Learning Methods. Remote Sens. 2023, 15, 4136. [Google Scholar] [CrossRef]
- Bai, Z.P.; Yao, H.W.; Zhang, H.H. Experimental study on fire characteristics in cable compartment of utility tunnel with natural ventilation. PLoS ONE 2022, 17, 4. [Google Scholar] [CrossRef]
- Wiatowski, M.; Kapusta, K.; Strugała-Wilczek, A.; Stańczyk, K.; Castro-Muñiz, A.; Suárez-García, F.; Paredes, J.I. Large-Scale Experimental Simulations of In Situ Coal Gasification in Terms of Process Efficiency and Physicochemical Properties of Process By-Products. Energies 2023, 16, 4455. [Google Scholar] [CrossRef]
- Drysdale, D. An Introducction to Fire Dynamics, 3rd ed.; Brithis Library: London, UK, 2011. [Google Scholar]
- Cheng, H.; Hadjisophocleous, G.V. Dynamic modeling of fire spread in building. Fire Saf. J. 2011, 46, 211–224. [Google Scholar] [CrossRef]
- Huang, X.J.; Wang, J.K.; Fangrat, J. A Global Model for Heat Release Rate Prediction of Cable Burning on Vertical Cable Tray in Different Fire Scenarios. Fire Technol. 2022, 58, 3119–3138. [Google Scholar] [CrossRef]
- Park, J.W.; Lim, O.K.; You, W.J. Analysis on the Fire Growth Rate Index Considering of Scale Factor, Volume Fraction, and Ignition Heat Source for Polyethylene Foam Pipe Insulation. Energies 2020, 13, 3644. [Google Scholar] [CrossRef]
- Pöhler, C.M.; Hamza, M.; Kolb, T.; Bachtiar, E.V.; Yan, L.; Kasal, B. Design of Experiments-Based Fire Performance Optimization of Epoxy and Carbon-Fiber-Reinforced Epoxy Polymer Composites. Polymers 2023, 15, 4096. [Google Scholar] [CrossRef] [PubMed]
- Cantizano, A.; Ayala, P.; Gutiérrez-Montes, C. Numerical and experimental investigation on the effect of heat release rate in the evolution of fire whirls. Case Stud. Therm. Eng. 2023, 41, 102513. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Bi, H.Q.; Wang, H.L. Influence of the primary components of the high-speed train on fire heat release rate. Arch. Thermodyn. 2023, 44, 37–61. [Google Scholar]
- Manescau, B.; Wang, H.Y.; Acherar, L. Impact of Fuel Type on Fire Dynamics in Mechanically Ventilated Compartment as a Consequence of Closing Inlet Vent. Fire Technol. 2022, 58, 1509–1544. [Google Scholar] [CrossRef]
- Innocent, J.; Sutherland, D.; Moinuddin, K. Field-Scale Physical Modelling of Grassfire Propagation on Sloped Terrain under Low-Speed Driving Wind. Fire 2023, 6, 406. [Google Scholar] [CrossRef]
- Li, J.; Liu, J. Claims Modelling with Three-Component Composite Models. Risks 2023, 11, 196. [Google Scholar] [CrossRef]
- Madrigal, J.; Rodríguez de Rivera, Ó.; Carrillo, C.; Guijarro, M.; Hernando, C.; Vega, J.A.; Martin-Pinto, P.; Molina, J.R.; Fernández, C.; Espinosa, J. Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest. Fire 2023, 6, 430. [Google Scholar] [CrossRef]
- Hossain, M.D.; Hassan, M.K.; Akl, M.; Pathirana, S.; Rahnamayiezekavat, P.; Douglas, G.; Bhat, T.; Saha, S. Fire Behaviour of Insulation Panels Commonly Used in High-Rise Buildings. Fire 2022, 5, 81. [Google Scholar] [CrossRef]
- Stejskalová, K.; Bujdoš, D.; Procházka, L.; Smetana, B.; Zlá, S.; Teslík, J. Mechanical, Thermal, and Fire Properties of Composite Materials Based on Gypsum and PCM. Materials 2022, 15, 1253. [Google Scholar] [CrossRef]
- Gianetti, G.G.; Lucchini, T.; D’Errico, G.; Onorati, A.; Soltic, P. Development and Validation of a CFD Combustion Model for Natural Gas Engines Operating with Different Piston Bowls. Energies 2023, 16, 971. [Google Scholar] [CrossRef]
- Gui, J.; Wang, D.; Yang, L.Z. Study on the Protection Effect of Sprinklers on Glass by Fire Scale in Building Fires. Fire 2022, 5, 4. [Google Scholar] [CrossRef]
- Tyas, D.; Bagshaw, D.; Nyogeri, L. Modelling the heat release rate of PRISME experimental cable fires in a confined, ventilation controlled, environment using FLASH-CAT and FDS. Fire Saf. J. 2023, 139, 103828. [Google Scholar] [CrossRef]
- Quintiere, J.G. Fundamentals of Fire Phenomena, 1st ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Jin, C.; Zheng, A.; Wu, Z.; Tong, C. Real-Time Fire Smoke Detection Method Combining a Self-Attention Mechanism and Radial Multi-Scale Feature Connection. Sensors 2023, 23, 3358. [Google Scholar] [CrossRef]
- Chwalek, P.; Chen, H.; Dutta, P.; Dimon, J.; Singh, S.; Chiang, C.; Azwell, T. Downwind Fire and Smoke Detection during a Controlled Burn—Analyzing the Feasibility and Robustness of Several Downwind Wildfire Sensing Modalities through Real World Applications. Fire 2023, 6, 356. [Google Scholar] [CrossRef]
- James, D. Fire Prevention Handbook, 1st ed.; Butterworths: London, UK, 1986. [Google Scholar]
- Fleming, R.S. Effective Fire and Emergency Services Administration; PenWell Corporation: Tulsa, OK, USA, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markova, I.; Bernatík, A. Special Issue: “The Design and Optimization of Fire Protection Processes”. Processes 2023, 11, 3338. https://doi.org/10.3390/pr11123338
Markova I, Bernatík A. Special Issue: “The Design and Optimization of Fire Protection Processes”. Processes. 2023; 11(12):3338. https://doi.org/10.3390/pr11123338
Chicago/Turabian StyleMarkova, Iveta, and Aleš Bernatík. 2023. "Special Issue: “The Design and Optimization of Fire Protection Processes”" Processes 11, no. 12: 3338. https://doi.org/10.3390/pr11123338
APA StyleMarkova, I., & Bernatík, A. (2023). Special Issue: “The Design and Optimization of Fire Protection Processes”. Processes, 11(12), 3338. https://doi.org/10.3390/pr11123338