CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China
Abstract
:1. Introduction
2. Methodology
2.1. Random Forest Algorithm
2.2. Gradient Boosting Decision Tree Algorithm
2.3. Bayesian Optimization Algorithm
3. Establishment of the Model
3.1. Geological Background of the Study Area
3.2. Dataset Preparation
3.3. Modeling Process
4. Results and Discussion
4.1. Feature Selection
4.2. Ensemble Tree Models Based on Manual Research
4.3. Ensemble Tree Models Based on the Bayesian Optimization Method
4.4. Model Comparison
4.5. Model Application on the Gas Content Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, Q.F.; Liu, D.M.; Cai, Y.D.; Yao, Y.B.; Lu, Y.J.; Zhou, Y.F. Variation of adsorption effects in coals with different particle sizes induced by differences in microscopic adhesion. Chem. Eng. J. 2023, 52, 139511. [Google Scholar] [CrossRef]
- Sun, Q.P.; Zhao, Q.; Jiang, X.C.; Mu, F.Y.; Kang, L.X.; Wang, W.Z.; Yang, Q.; Zhao, Y. Prospects and strategies of CBM exploration and development in China under the new situation. J. China Coal Soc. 2021, 46, 56–76. (In Chinese) [Google Scholar]
- Li, Z.; Liu, D.; Wang, Y.; Si, G.; Cai, Y.; Wang, Y. Evaluation of multistage characteristics for coalbed methane desorption-diffusion and their geological controls: A case study of the northern Gujiao Block of Qinshui Basin, China. J. Petrol. Sci. Eng. 2021, 204, 108704. [Google Scholar] [CrossRef]
- Lin, H.; Long, H.; Li, S.; Bai, Y.; Xiao, T.; Qin, A. CH4 Adsorption and Diffusion Characteristics in Stress-Loaded Coal Based on Molecular Simulation. Fuel 2023, 333, 126478. [Google Scholar] [CrossRef]
- Fu, X.H.; Zhang, X.D.; Wei, C.T. Review of research on testing, simulation and prediction of coalbed methane content. J. China U Min Technol. 2021, 50, 13–31. (In Chinese) [Google Scholar]
- Liu, D.; Yao, Y.; Chang, Y. Measurement of Adsorption Phase Densities with Respect to Different Pressure: Potential Application for Determination of Free and Adsorbed Methane in Coalbed Methane Reservoir. Chem. Eng. J. 2022, 446, 137103. [Google Scholar] [CrossRef]
- Feng, R. A Method to Evaluated Gas Content with Coalbed Methane Reservoir Based on Adsorption Theory and Production Analysis. Geofluids 2022, 2022, 7341886. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Z.; Guo, G.; Xiao, H.; Zhu, L.; Zhang, C.; Tang, X.; Zhou, X.; Zhang, Y.; Wang, C. Evaluation of Coalbed Methane Content by Using Kernel Extreme Learning Machine and Geophysical Logging Data. Geofluids 2022, 2022, 3424367. [Google Scholar] [CrossRef]
- Pashin, J.C.; McIntyre-Redden, M.R.; Mann, S.D.; Kopaska-Merkel, D.C.; Varonka, M.; Orem, W. Relationships between Water and Gas Chemistry in Mature Coalbed Methane Reservoirs of the Black Warrior Basin. Int. J. Coal Geol. 2014, 126, 92–105. [Google Scholar] [CrossRef]
- Shen, J.; Du, L.; Qin, Y.; Yu, P.; Fu, X.H.; Chen, G. Three-phase gas content model of deep low-rank coals and its implication for CBM exploration:a case study from the Jurassic coal in the Junggar Basin. J. Nat. Gas Sci. Eng. 2015, 35, 30–35. (In Chinese) [Google Scholar]
- Crosdale, P.J.; Beamish, B.; Valix, M. Coalbed methane sorption related to coal composition. Int. J. Coal Geol. 1988, 35, 147–158. [Google Scholar] [CrossRef]
- Moore, T. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Liu, D.M.; Jia, Q.F.; Cai, Y.D.; Gao, C.J.; Qiu, F.; Zhao, Z.; Chen, S.Y. A new insight into coalbed methane occurrence and accumulation in the Qinshui Basin, China. Gondwana Res. 2022, 111, 280–297. [Google Scholar] [CrossRef]
- Cao, J.T.; Zhao, J.L.; Wang, Y.P.; Zhang, J.Y.; Xu, D.C. Review of influencing factors and prediction methods of gas content in coal seams and prospect of prediction methods. J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2013, 28, 28–34+94. (In Chinese) [Google Scholar]
- Yahya, S.I.; Rezaei, A.; Aghel, B. Forecasting of Water Thermal Conductivity Enhancement by Adding Nano-Sized Alumina Particles. J. Therm. Anal. Calorim. 2021, 145, 1791–1800. [Google Scholar] [CrossRef]
- Liu, A.H.; Fu, X.H.; Wang, K.X.; Peng, L.; Zhou, B.Y. Prediction of coalbed gas content based on support vector machine regression. J. Xian Univ. Sci. Technol. 2010, 30, 309–313. (In Chinese) [Google Scholar]
- Zhang, S.R.; Wang, B.T.; Li, X.E.; Chen, H. Research and application of improved gas concentration prediction model based on grey theory and BP neural network in digital mine. Procedia Cirp 2016, 56, 471–475. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, Z.S.; Zhang, C.M.; Zhou, X.Q.; Xiao, H.; Qin, R.B. The exploration of predicting CBM content by geophysical logging data: A case study based on slope correlation random forest method. Geophys. Geochem. Explor. 2021, 45, 18–28. (In Chinese) [Google Scholar]
- He, H.J.; Zhao, Y.N.; Zhang, Z.M.; Gao, Y.N.; Yang, L.W. Prediction of coalbed methane content based on uncertainty clustering method. Energ. Explor. Exploit. 2016, 34, 273–281. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, L.Q.; Qin, R.B.; Zhang, Z.S.; Li, L.; Huang, T. Combining K-Means Clustering and Random Forest to Evaluate the Gas Content of Coalbed Bed Methane Reservoirs. Geofluids 2021, 2021, 9321565. [Google Scholar] [CrossRef]
- Tang, Y.; Li, L.Z.; Jiang, S.X.; Zhong, M.H. Parameter selection and applicability of gas content logging interpretation methodology in coal seam. Coal Geol. Explor. 2015, 43, 94–98. (In Chinese) [Google Scholar]
- Hou, J.; Zou, C.C.; Yang, Y.Q.; Zhang, G.H.; Wang, W.W. Comparison study on evaluation methods of coalbed methane gas content with logging interpretation. Coal Sci. Technol. 2015, 43, 157–161. (In Chinese) [Google Scholar]
- Li, Z.C.; Du, W.F.; Hu, J.K.; Li, D. Interpretation method of gas content in logging of Linxing block in Ordos Basin. J. China Coal Soc. 2018, 42, 490–498. (In Chinese) [Google Scholar]
- Zou, Y.; Chen, Y.; Deng, H. Gradient Boosting Decision Tree for Lithology Identification with Well Logs: A Case Study of Zhaoxian Gold Deposit, Shandong Peninsula, China. Nat. Resour. Res. 2021, 30, 3197–3217. [Google Scholar] [CrossRef]
- Liu, Z.; Gilbert, G.; Cepeda, J.M.; Lysdahl, A.O.K.; Piciullo, L.; Hefre, H.; Lacasse, S. Modelling of Shallow Landslides with Machine Learning Algorithms. Geosci. Front. 2021, 12, 385–393. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS’11), New York, NY, USA, 12 December 2011; pp. 2546–2554. [Google Scholar]
- Zhu, J.; Zhao, Y.H.; Hu, Q.J.; Zhang, Y.; Shao, T.S.; Fan, B.; Jiang, Y.D.; Chen, Z.; Zhao, M. Coalbed Methane Production Model Based on Random Forests Optimized by a Genetic Algorithm. ACS Omega 2022, 7, 13083–13094. [Google Scholar] [CrossRef]
- Han, T.; Jiang, D.X.; Zhao, Q.; Wang, L.; Yin, K. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control 2017, 40, 1681–8693. [Google Scholar] [CrossRef]
- Owusu, E.B.; Tetteh, G.M.; Asante-Okyere, S.; Tsegab, H. Error Correction of Vitrinite Reflectance in Matured Black Shales: A Machine Learning Approach. Unconv. Resour. 2022, 2, 41–50. [Google Scholar] [CrossRef]
- Hariharan, S.; Mandal, D.; Tirodkar, S.; Kumar, V.; Bhattacharya, A.; Lopez-Sanchez, J.M. A Novel Phenology Based Feature Subset Selection Technique Using Random Forest for Multitemporal PolSAR Crop Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4244–4258. [Google Scholar] [CrossRef]
- Song, S.; He, R.; Shi, Z.; Zhang, W. Variable Importance Measure System Based on Advanced Random Forest. CMES 2021, 128, 65–85. [Google Scholar] [CrossRef]
- Guo, G.S.; Guo, J.H.; Sun, L.C.; Liu, L.F.; Tian, Y.J. 3D fine modeling of coal seam gas content based on random forest algorithm. China Offshore Oil Gas 2022, 34, 156–163. [Google Scholar]
- Liu, W.; Fan, H.; Xia, M. Step-wise multi-grained augmented gradient boosting decision trees for credit scoring. Eng. Appl. Artif. Intell. 2021, 97, 104036. [Google Scholar] [CrossRef]
- Huan, J.; Li, H.; Li, M.; Chen, B. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of chang Zhou fishery demonstration base, China. Comput. Electron. Agric. 2020, 175, 105530. [Google Scholar] [CrossRef]
- Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms. Mathematics 2020, 8, 765. [Google Scholar] [CrossRef]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Xia, Y.F.; Liu, C.Z.; Li, Y.Y.; Liu, N.N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. 2017, 78, 225–241. [Google Scholar] [CrossRef]
- Injadat, M.; Salo, F.; Nassif, A.B.; Essex, A.; Shami, A. Bayesian optimization with machine learning algorithms towards anomaly detection. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R. Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 4, 2951–2959. [Google Scholar]
- Cai, Y.D.; Liu, D.M.; Yao, Y.B.; Li, J.Q.; Qiu, Y.K. Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin, North China. Int. J. Coal Geol. 2011, 800, 101–112. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.B.; Huang, C.C.; Liu, D.M.; Cai, Y.D. Fault Development Characteristics and Their Effects on Current Gas Content and Productivity of No. 3 Coal Seam in the Zhengzhuang Field, Southern Qinshui Basin, North China. Energ Fuel. 2021, 35, 2268–2281. [Google Scholar] [CrossRef]
- Liu, D.M.; Yao, Y.B.; Wang, H. Structural Compartmentalization and Its Relationships with Gas Accumulation and Gas Production in the Zhengzhuang Field, Southern Qinshui Basin. Int. J. Coal Geol. 2022, 259, 104055. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.M.; Li, W.; Zhong, H.Q.; Wang, Y.H. Tectonic evolution and reservoir formation of coalbed methane in Zhengzhuang block of Qinshui basin. J. China Univ. Min. Technol. 2012, 41, 425–431. (In Chinese) [Google Scholar]
- Fu, X.H.; Qin, Y.; Wang, G.G.X.; Rudolph, V. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel 2009, 88, 2269–2277. [Google Scholar] [CrossRef]
- Liu, Z.D.; Wang, J.; Yang, X.C.; Chen, C.H.; Zhang, J.K. Analyzing on applicability of expanding influence correction method of density logging in the coalbed methane reservoir. Prog. Geophys. 2014, 29, 2219–2223. (In Chinese) [Google Scholar]
- Li, B.T. A New Correction Method for Acoustic Log. Well Logging Technol. 1990, 14, 305–310. (In Chinese) [Google Scholar]
- Finlay, S. Multiple classifier architectures and their application to credit risk assessment. Eur. J. Oper. Res. 2011, 210, 368–378. [Google Scholar] [CrossRef]
- Li, Y.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
Well | Depth (m) | AC (μm/s) | CAL (cm) | DEN (g/cm3) | GR (API) | RD (lg) | RS (lg) | RXo (lg) | Gas Content (cm3/t) |
---|---|---|---|---|---|---|---|---|---|
ZS86-1 | 425.15 | 399.74 | 29.66 | 1.28 | 63.87 | 3.09 | 3.01 | 3.15 | 13.01 |
ZS86-2 | 427.50 | 409.99 | 27.42 | 1.24 | 39.98 | 3.78 | 3.74 | 3.52 | 13.31 |
ZS73-1 | 895.53 | 372.73 | 22.85 | 1.35 | 66.68 | 3.25 | 3.30 | 3.34 | 22.81 |
ZS73-2 | 895.78 | 390.50 | 22.84 | 1.28 | 56.12 | 3.28 | 3.33 | 3.43 | 24.86 |
ZS73-3 | 897.20 | 413.05 | 23.09 | 1.16 | 27.31 | 3.95 | 3.91 | 3.76 | 25.34 |
ZS73-4 | 897.38 | 413.90 | 22.99 | 1.15 | 29.80 | 4.01 | 3.96 | 3.68 | 25.34 |
ZS73-5 | 898.88 | 396.00 | 26.77 | 1.19 | 50.39 | 3.35 | 3.46 | 2.18 | 22.42 |
ZS72-1 | 1108.40 | 417.78 | 22.76 | 1.30 | 32.94 | 3.56 | 3.61 | 2.91 | 26.24 |
ZS72-2 | 1111.15 | 405.65 | 22.40 | 1.36 | 44.76 | 3.17 | 3.30 | 3.37 | 25.13 |
ZS34-1 | 784.60 | 417.67 | 23.50 | 1.34 | 56.58 | 3.55 | 3.50 | 2.90 | 28.12 |
ZS34-2 | 785.05 | 426.89 | 23.59 | 1.36 | 45.61 | 3.44 | 3.39 | 3.19 | 27.13 |
ZS34-3 | 785.30 | 426.53 | 23.84 | 1.43 | 48.84 | 3.28 | 3.23 | 3.88 | 28.37 |
ZS93-1 | 674.35 | 397.72 | 21.85 | 1.24 | 79.45 | 2.55 | 2.61 | 2.38 | 11.86 |
ZS93-2 | 675.90 | 400.49 | 23.30 | 1.36 | 79.77 | 2.95 | 2.92 | 2.53 | 17.95 |
ZS78-1 | 702.50 | 399.70 | 23.73 | 1.28 | 62.66 | 2.79 | 2.83 | 2.61 | 21.14 |
ZS78-2 | 705.50 | 414.04 | 22.88 | 1.20 | 42.80 | 3.25 | 3.17 | 2.16 | 21.04 |
ZS98-1 | 1229.90 | 408.27 | 24.28 | 1.28 | 38.89 | 3.28 | 3.22 | 3.11 | 19.05 |
Hyper-Parameter of GBDT | Importance | Hyper-Parameter of RF |
---|---|---|
n_estimators learning_rate max_feature | ★★★★★ | n_estimators Max_depth |
Init Subsamples Loss function | ★★★★ | Min_samples_leaf |
Max_depth Min_samples_split Min_impurity_decrease | ★★★ | Min_sample_split |
Max_leaf_nodes criterion | ★★ | Max_feature |
Random_state | ★ | Criterion |
RF Model | Search Space | Results | GBDT Model | Search Space | Results |
---|---|---|---|---|---|
n_estimators | [100,400] | 210 | n_estimators | [50,200] | 170 |
Max_depth | [2,16] | 6 | learning_rate | [0.1,2.0] | 0.25 |
Max_features | (log2,sqrt,auto) | auto | criterion | (friedman_mse,mse) | friedman_mse |
Min_samples_ leaf | [2,10] | 4 | Loss function | (ls,huber,quantile) | huber |
Min_samples_ split | [1,10] | 9 | max_depth | [2,30] | 4 |
max_features | [‘log2’,‘sqrt’,‘auto’] | auto | |||
min_impurity_decrease | [0,5] | 2 |
Models | RSQ | MSE | The Relative Error |
---|---|---|---|
RF model | 0.66 | 8.38 | 10.42% |
BO-RF model | 0.66 | 7.63 | 9.50% |
GBDT model | 0.71 | 6.51 | 9.54% |
BO-GBDT model | 0.82 | 4.04 | 7.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Qiu, F.; Xiao, F.; Chen, S.; Fang, Y. CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China. Processes 2023, 11, 527. https://doi.org/10.3390/pr11020527
Yang C, Qiu F, Xiao F, Chen S, Fang Y. CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China. Processes. 2023; 11(2):527. https://doi.org/10.3390/pr11020527
Chicago/Turabian StyleYang, Chao, Feng Qiu, Fan Xiao, Siyu Chen, and Yufeng Fang. 2023. "CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China" Processes 11, no. 2: 527. https://doi.org/10.3390/pr11020527
APA StyleYang, C., Qiu, F., Xiao, F., Chen, S., & Fang, Y. (2023). CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China. Processes, 11(2), 527. https://doi.org/10.3390/pr11020527