Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
3.1. Components of the Natural Gas
3.2. Natural Gas Light Hydrocarbon
3.3. Carbon Isotopic Composition of the Natural Gas
4. Results
4.1. Components of the Natural Gas
4.2. Carbon Isotopic Composition of the Natural Gas
5. Discussion
5.1. Genesis Types of the Natural Gas
5.2. Sources of Natural Gas
5.3. Gas Migration and Accumulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Location | Well | Formation | Depth/m | Chemical Composition/% | Carbon Isotopic Composition/‰ (PDB) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | CO2 | CH4 | C2H6 | C3H8 | C4H10 | C5H12 | δ13C1 | δ13C2 | δ13C3 | δ13C4 | ||||
MBB | M121 | J1s | 4222.00 | 1.68 | 0.02 | 93.34 | 3.10 | 0.93 | 0.57 | 0.21 | nd | nd | nd | nd |
MBB | M121 | J1s | 4254.50 | 1.60 | 0.15 | 91.58 | 4.02 | 1.37 | 0.81 | 0.28 | nd | nd | nd | nd |
MBB | M109 | J1s | 4158.00 | 0.69 | 0.67 | 93.30 | 3.42 | 0.98 | 0.59 | 0.21 | nd | nd | nd | nd |
MBB | M113 | J1s | 4205.00 | 1.07 | 0.14 | 92.70 | 3.51 | 1.19 | 0.84 | 0.35 | nd | nd | nd | nd |
MBB | M115 | J1s | 4204.00 | 1.43 | 0.20 | 88.16 | 5.39 | 2.23 | 1.70 | 0.63 | nd | nd | nd | nd |
MBB | M116 | J1s | 4195.00 | 2.68 | 0.23 | 91.11 | 3.40 | 1.19 | 0.80 | 0.32 | nd | nd | nd | nd |
MBB | M117 | J1s | 4237.50 | 1.89 | 0.30 | 90.63 | 3.98 | 1.48 | 1.04 | 0.42 | nd | nd | nd | nd |
MBB | M119 | J1s | 4258.25 | 2.04 | 0.18 | 90.88 | 3.98 | 1.41 | 0.87 | 0.31 | nd | nd | nd | nd |
MBB | M119 | J1s | 4236.00 | 1.69 | 0.19 | 92.17 | 3.55 | 1.23 | 0.75 | 0.25 | nd | nd | nd | nd |
MBB | M003 | J1s | 3915.00 | 1.08 | 0.59 | 92.40 | 3.61 | 1.20 | 0.74 | 0.24 | −41.07 | −29.26 | −27.76 | −26.95 |
MBB | M003 | J1s | 3975.00 | 2.86 | 0.29 | 88.77 | 4.29 | 1.65 | nd | nd | −35.25 | −27.46 | −25.92 | −25.87 |
MBB | MB2 | J1s | 3921.00 | 2.68 | 0.41 | 92.98 | 2.52 | 0.77 | nd | nd | −42.89 | −30.04 | −27.26 | −27.02 |
MBB | MB2 | J1s | 3921.00 | 2.72 | 0.51 | 91.22 | 3.29 | 1.09 | nd | nd | −44.12 | −29.38 | −26.33 | −26.58 |
MBB | MB5 | J1s | 3726.20 | 2.71 | 0.00 | 88.16 | 5.19 | 1.73 | nd | nd | −34.80 | −26.93 | −26.14 | −26.28 |
MBB | MB10 | J1s | 3666.00 | 3.27 | 0.41 | 88.24 | 4.26 | 1.69 | nd | nd | −41.72 | −27.90 | −26.59 | −26.62 |
MBS | M16 | J1s | 4047.25 | 1.60 | 0.40 | 89.90 | 4.30 | 1.47 | 1.05 | 0.53 | −37.56 | −27.52 | −26.73 | −26.76 |
MBS | QS1 | J1s | 3944.50 | 1.35 | 0.70 | 89.90 | 4.34 | 1.53 | 1.10 | 0.52 | −37.40 | −27.55 | −26.72 | −25.94 |
MBS | QS1 | J1s | 3944.75 | 1.65 | 0.46 | 90.66 | 4.33 | 1.48 | 0.92 | 0.27 | −35.60 | −26.14 | −25.53 | −25.14 |
MBS | QS2 | J1s | 3981.00 | 1.09 | 0.45 | 91.18 | 4.31 | 1.47 | 0.94 | 0.33 | −37.49 | −27.54 | −26.71 | −26.80 |
MBS | QS4 | J1s | 4014.25 | 1.56 | 0.31 | 90.79 | 4.39 | 1.48 | 0.91 | 0.33 | −37.82 | −27.57 | −26.72 | −26.97 |
MSWB | M101 | J1s | 4204.00 | 2.95 | 0.62 | 89.51 | 4.25 | 1.47 | 0.84 | 0.24 | −36.64 | −27.21 | −26.72 | −26.75 |
SXB | S006 | J1s | 3577.00 | 0.92 | 0.68 | 91.12 | 4.38 | 1.47 | 0.90 | 0.33 | nd | nd | nd | nd |
SXB | S006 | C | 4373.00 | 4.35 | 0.21 | 88.82 | 3.70 | 1.07 | 1.08 | 0.54 | −41.62 | −28.68 | −25.88 | −25.40 |
SXB | S007 | C | 4408.50 | 11.95 | 0.09 | 71.36 | 5.32 | 4.36 | 4.55 | 1.78 | −40.58 | −30.17 | −26.85 | −26.75 |
SXB | SX1 | C | 4438.00 | 5.21 | 0 | 78.97 | 6.52 | 3.96 | 3.95 | 1.39 | −33.43 | −26.69 | −26.00 | −25.44 |
SXB | SX1 | C | 4473.00 | 5.49 | 0.37 | 77.25 | 7.92 | 3.73 | 3.70 | 1.55 | −35.36 | −27.50 | −26.63 | −26.37 |
SXB | S015 | J1s | nd | 4.68 | 1.07 | 75.10 | 9.11 | 4.04 | 4.04 | 1.49 | −42.5 | −29.31 | −26.87 | −26.47 |
SXB | SX8 | J1s | nd | 1.25 | 0.63 | 84.04 | 7.61 | 2.98 | 1.97 | 0.77 | −34.44 | −26.06 | −24.66 | −25.61 |
SXB | SX14 | J1s | nd | 3.63 | 0.82 | 75.41 | 8.45 | 4.72 | 3.45 | 1.40 | −36.98 | −27.75 | −27.20 | −27.96 |
MBB | MB11 | J1s | 3710.75 | 1.31 | 0.82 | 84.98 | 6.69 | 3.01 | 1.93 | 0.75 | −37.11 | −28.19 | −26.78 | −26.7 |
MBB | MB2 | J1s | 3907.00 | 2.81 | 0.07 | 91.56 | 3.40 | 1.13 | 0.64 | 0.23 | −35.65 | −26.84 | −26.16 | −26.44 |
MBB | M003 | J1s | 3971.50 | 3.39 | 0.60 | 89.31 | 4.58 | 1.31 | 0.64 | 0.18 | −37.82 | −26.58 | −24.68 | −23.64 |
MBB | MB9 | J1s | 3761.25 | 1.82 | 0.35 | 90.57 | 4.42 | 1.37 | 0.97 | 0.50 | −42.92 | −27.11 | −25.73 | −26.00 |
MBB | MB9 | J1s | 3778.00 | 1.71 | 1.29 | 84.56 | 5.75 | 2.67 | 1.90 | 0.93 | −45.57 | −31.39 | −28.67 | −27.47 |
MBB | M005 | J1s | 3890.25 | 2.36 | 0.42 | 86.76 | 6.41 | 2.38 | 1.59 | 0.08 | −44.08 | −30.16 | −27.67 | −27.4 |
MBB | M006 | J1s | 3759.25 | 2.01 | 0.45 | 85.84 | 6.38 | 2.71 | 1.95 | 0.66 | −39.46 | −28.18 | −28.01 | −27.3 |
MBB | MB5 | J1s | 3726.20 | 3.96 | 0.22 | 89.21 | 4.46 | 1.12 | 0.81 | 0.23 | −35.58 | −27.41 | −26.19 | −26.5 |
MBB | M108 | J1s | 4179.00 | 2.74 | 0.30 | 89.66 | 3.53 | 1.10 | 0.75 | 0.37 | −35.28 | −25.74 | −25.28 | −25.8 |
MBB | M109 | J1s | 4185.00 | 1.81 | 0.22 | 91.97 | 4.16 | 1.10 | 0.50 | 0.12 | −38.96 | −24.66 | −23.56 | nd |
MBB | M11 | J1s | 4139.00 | 3.60 | 1.49 | 88.58 | 3.30 | 1.01 | 0.68 | 0.32 | −35.15 | −25.71 | −25.13 | −25.64 |
MBB | M11 | J1s | 4177.00 | 1.65 | 0.27 | 91.82 | 3.86 | 1.33 | 0.77 | 0.22 | −34.84 | −27.09 | −26.35 | −26.61 |
MBB | M7 | J1s | 4227.50 | 2.40 | 0.47 | 90.92 | 3.54 | 1.19 | 0.80 | 0.36 | −35.72 | −26.43 | −25.85 | −26.37 |
MBB | M7 | J1s | 4260.00 | 3.65 | 0.50 | 89.99 | 3.33 | 1.15 | 0.71 | 0.31 | −37.88 | −27.90 | −27.17 | −27.66 |
MBB | M8 | J1s | 4233.00 | 1.47 | 0.51 | 91.43 | 3.56 | 1.07 | 0.70 | 0.36 | −35.82 | −26.21 | −25.39 | −25.46 |
MBB | M8 | J1s | 4265.50 | 1.09 | 0.42 | 87.70 | 5.86 | 2.23 | 1.53 | 0.62 | −34.69 | −25.91 | −25.33 | −25.74 |
MBS | M16 | J1s | 4041.00 | 2.69 | 0.62 | 87.44 | 5.62 | 1.77 | 0.90 | 0.32 | −36.54 | −26.48 | −25.03 | −26.26 |
MBS | M171 | J1s | 4472.85 | 1.45 | 0.40 | 90.45 | 4.52 | 1.58 | 0.98 | 0.37 | −36.59 | −26.58 | −25.57 | −26.19 |
MBS | M17 | J1s | 4161.50 | 1.86 | 0.57 | 91.20 | 4.02 | 1.07 | 0.60 | 0.24 | −36.9 | −26.86 | −25.64 | −26.38 |
MBS | M12 | J1s | 4235.00 | 3.25 | 0.66 | 80.44 | 6.96 | 4.14 | 2.72 | 0.95 | −34.14 | −27.30 | −26.29 | −26.59 |
MBS | M17 | J1s | 4192.00 | 1.55 | 0.66 | 73.88 | 10.90 | 5.96 | 4.38 | 1.57 | −35.93 | −26.49 | −24.36 | −25.42 |
MSWB | M101 | J1s | 4209.00 | 3.01 | 0.41 | 88.76 | 4.35 | 1.56 | 1.07 | 0.48 | −36.81 | −27.31 | −26.32 | −26.79 |
MSWB | M102 | J1s | 4251.00 | 2.71 | 0.52 | 88.13 | 4.70 | 1.92 | 1.21 | 0.48 | −36.11 | −27.51 | −26.40 | −26.52 |
MSWB | M103 | J1s | 4250.50 | 2.59 | 0.58 | 87.65 | 4.69 | 1.98 | 1.43 | 0.62 | −36.66 | −27.28 | −26.647 | −26.98 |
MSWB | P5 | J1s | 4250.00 | 3.25 | 0.57 | 87.49 | 4.49 | 1.86 | 1.20 | 0.45 | −41.43 | −28.04 | −27.03 | −27.42 |
References
- Glasby, G.P. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol. 2006, 56, 83–96. [Google Scholar] [CrossRef]
- Dai, J.; Gong, D.; Ni, Y.; Huang, S.; Wu, W. Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China. Org. Geochem. 2014, 74, 123–142. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Y.C. Origin and identification of natural gases. Pet. Explor. Dev. 2005, 32, 24–29. [Google Scholar]
- Milkov, A.V. Methanogenic biodegradation of petroleum in the West Siberian Basin (Russia): Significance for formation of giant Cenomanian gas pools. AAPG Bull. 2010, 94, 1485–1541. [Google Scholar] [CrossRef]
- Hutcheon, I.; Krouse, H.R.; Abercrombie, H.J. Controls on the origin and distribution of elemental sulfur, H2S, and CO2 in Paleozoic hydrocarbon reservoirs in Western Canada. ACS Symp. Ser. 1995, 612, 426–438. [Google Scholar]
- Arrouvel, C.; Prinzhofer, A. Genesis of natural hydrogen: New insights from thermodynamic simulations. Int. J. Hydrogen Energy 2021, 46, 18780–18794. [Google Scholar] [CrossRef]
- Milkov, A.V.; Giuseppe, E. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 2018, 125, 109–120. [Google Scholar] [CrossRef]
- Dai, J.X.; Huang, S.P. Discussion on the carbon isotopic reversal of alkane gases from the Huanglong Formation in the Sichuan Basin, China. Acta Pet. Sin. 2010, 31, 710–717. [Google Scholar]
- Des Marais, D.J.; Donchin, J.H.; Nehring, N.L.; Truesdell, A.H. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature 1981, 292, 826–828. [Google Scholar] [CrossRef]
- Tilley, B.; Muehlenbachs, K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chem. Geol. 2013, 339, 194–204. [Google Scholar] [CrossRef]
- Dai, J.; Xia, X.; Qin, S.; Zhao, J. Origins of partally reversed alkane δ13C values for biogenic gases in China. Org. Geochem. 2004, 35, 405–411. [Google Scholar] [CrossRef]
- Hosgormez, H.; Etiope, G.; Yalin, M.N. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids 2008, 8, 263–273. [Google Scholar] [CrossRef]
- Ogbesejana, A.B.; Bello, O.M.; Ali, T. Origin and depositional environments of source rocks and crude oils from Niger Delta Basin: Carbon isotopic evidence. China Geol. 2020, 3, 602–610. [Google Scholar] [CrossRef]
- Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 1980, 44, 649–661. [Google Scholar] [CrossRef]
- Kotarba, M. Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Žacleř coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland). Org. Geochem. 1990, 16, 549–560. [Google Scholar] [CrossRef]
- Battani, A.; Sarda, P.; Prinzhofer, A. Basin scale natural gas source, migration and trapping traced by noblegases and major elements: The Pakistan Indus basin. Earth Planet. Sci. Lett. 2000, 181, 229–249. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Mello, M.R.; Freitas, L.; Takaki, T. New geochemical characterization of natural gas and its use in oil and gas evaluation. AAPG Mem. 2000, 73, 107–119. [Google Scholar]
- Allan, U.S. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull. 1989, 73, 803–811. [Google Scholar]
- Hillman, J.I.; Cook, A.E.; Daigle, H.; Nole, M.; Malinverno, A.; Meazell, K.; Flemings, P.B. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico. Mar. Pet. Geol. 2017, 86, 1357–1373. [Google Scholar] [CrossRef]
- Wanner, P.; Hunkeler, D. Isotope fractionation due to aqueous phase diffusion–What do diffusion models and experiments tell?–A review. Chemosphere 2019, 219, 1032–1043. [Google Scholar] [CrossRef]
- Losh, S.; Walter, L.; Meulbroek, P.; Martini, A.; Whelan, J. Reservoir Fluids and Their Migration into the South Eugene Island Block 330 Reservoirs, Offshore Louisiana. AAPG Bull. 2002, 86, 1463–1488. [Google Scholar]
- Prinzhofer, A.; Battani, A. Gas isotopes tracing: An important tool for hydrocarbons exploration. Oil Gas Sci. Technol. 2003, 58, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Schloemer, S.; Krooss, B.M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations. Geofluids 2010, 4, 81–108. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Neto, E.; Battani, A. Coupled use of carbon isotopes and noble gas isotopes in the Potiguar basin (Brazil): Fluids migration and mantle influence. Mar. Pet. Geol. 2010, 27, 1273–1284. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Mello, M.R.; Takaki, T. Geochemical Characterization of Natural Gas: A Physical Multivariable Approach and Its Applications in Maturity and Migration Estimates. AAPG Bull. 2000, 84, 1152–1172. [Google Scholar]
- Bourg, I.C.; Sposito, G. Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications. Geochim. Cosmochim. Acta 2008, 72, 2237–2247. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Y.; Leng, K.; Li, H.; Ma, W.; Cao, J. Geochemistry and origin of natural gas in the eastern Junggar Basin, NW China. Mar. Pet. Geol. 2016, 75, 240–251. [Google Scholar] [CrossRef]
- Yang, H.B.; He, W.J.; Jia, X.Y. The Fourth Evaluation of Oil and Gas Resources in Junggar Basin; Internal Report of Exploration and Development Research Institute of Xinjiang Oilfield Company: Karamay, China, 2016. [Google Scholar]
- IEA. Offshore Energy Outlook; IEA: Paris, France, 2018. [Google Scholar]
- Tao, K.; Cao, J.; Wang, Y.; Ma, W.; Xiang, B.; Ren, J.; Zhou, N. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems. Org. Geochem. 2016, 100, 62–79. [Google Scholar] [CrossRef]
- Huayao, Z.; Fang, H.; Bin, Z.B.C. History of hydrocarbon-filling and remigrating in hinterland of the Junggar Basin. Chin. J. Geol. 2005, 40, 499–509. [Google Scholar]
- Ma, W.; Wei, Y.; Li, X.; Tao, S.; Li, Y.; Zhao, Z. Accumulation process and control factors of Jurassic-Cretaceous distant-source and secondary-filled reservoirs in the hinterland of Junggur Basin. Acta Sci. Nat. Univ. Pekin. 2018, 54, 1195–1204. [Google Scholar]
- Zhu, G.; Su, J.; Yang, H.; Wang, Y.; Fei, A.; Liu, K.; Zhu, Y.; Hu, J.; Zhang, B. Formation mechanisms of secondary hydrocarbon pools in the Triassic reservoirs in the northern Tarim Basin. Mar. Pet. Geol. 2013, 46, 51–66. [Google Scholar] [CrossRef]
- Lei, J.; Worden, R.H.; Cai, C.F. Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin, China. AAPG Bull. 2014, 98, 947–973. [Google Scholar]
- Volk, H.; George, S.C.; Kempton, R.H.; Liu, K.; Ahmed, M.; Ambrose, G.J. Petroleum migration in the Georgina Basin: Evidence from the geochemistry of oil inclusions and bitumens. In Proceedings of the Central Australian Basins Symposium (CABS). Northern Territory Geological Survey, Alice Springs, Northern Territory, Australia, 16–18 August 2007; pp. 282–303. [Google Scholar]
- Ali, A.; Younas, M.; Ullah, M.; Hussain, M.; Toqeer, M.; Bhatti, A.S.; Khan, A. Characterization of secondary reservoir potential via seismic inversion and attribute analysis: A case study. J. Pet. Sci. Eng. 2019, 178, 272–293. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Yin, H.; Imin, A.; Ding, X. Origin and preservation of deep natural gas in the lower assemblage of the western Junggar Basin. J. China Univ. Min. Technol. 2022, 51, 148–159. [Google Scholar]
- Chen, J.P.; Wang, X.L.; Deng, C.P.; Liang, D.G.; Zhang, Y.Q.; Zhao, Z.; Wang, Y.T. Geochemical features of source rocks and crude oil in the Junggar Basin, northwestem China. Acta Geol. Sin. 2016, 90, 37–67. [Google Scholar]
- Saadati, H.; Al-Iessa, H.J.; Alizadeh, B.; Tarhandeh, E.; Jazayeri, M.H.; Bahrami, H.; Rashidi, M. Geochemical characteristics and isotopic reversal of natural gases in eastern Kopeh-Dagh, NE Iran. Mar. Pet. Geol. 2016, 78, 76–87. [Google Scholar] [CrossRef]
- Qiu, N.S.; Yang, H.B.; Wang, X.L. Tectonic-thermal evolution in the Junggar Basin. Chin. J. Geol. 2002, 37, 423–429. [Google Scholar]
- Milkov, A.V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org. Geochem. 2011, 42, 184–207. [Google Scholar] [CrossRef]
- Mango, F.D. The light hydrocarbons in petroleum: A critical review. Org. Geochem. 1997, 26, 417–440. [Google Scholar] [CrossRef]
- Hu, T.L.; Ge, B.X.; Zhang, Y.G.; Liu, B. Development and application of fingerprint parameters of source rock adsorbed hydrocarbon and natural gas light hydrocarbon. Pet. Geol. Exp. 1990, 12, 375–394,450. [Google Scholar]
- Leythaeuser, D.; Schaefer, R.; Cornford, C.; Weiner, B. Generation and migration of light hydrocarbons (C2–C7) in sedimentary basins. Org. Geochem. 1979, 1, 191–204. [Google Scholar] [CrossRef]
- Qian, H.T.; Su, D.X.; Ablimit, I.; Wang, X.Y.; Li, Z.H.; Wang, G.D. Petroleum geological characteristics and exploration potential in slope area of Well Pen-1 Western Depression in Junggar Basin. Nat. Gas Geosci. 2021, 32, 551–561. [Google Scholar]
- Chen, J.P.; Sun, Y.G.; Zhong, N.N.; Huang, Z.K.; Deng, C.P. Lacustrine facies hydrocarbon expulsion efficiency of hydrocarbon source rock and hydrocarbon expulsion model. In Proceedings of the Fourteenth China Mineral Rock Geochemistry Academic Annual Conference, Nanjing, China, 21 April 2013. [Google Scholar]
- Harry, D.J. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull. 2009, 93, 341–356. [Google Scholar]
- Mango, F.D. The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis. Geochim. Cosmochim. Acta 1990, 54, 1315–1323. [Google Scholar] [CrossRef]
- Wu, M. Geochemical Study on Hydrocarbon Accumulation in Deep Strata of the Central Junggar Basin, Northwest China; Nanjing University: Nanjing, China, 2012. [Google Scholar]
- Schoell, M. Genetic characterization of natural gases. AAPG Bull. 1983, 67, 2225–2238. [Google Scholar]
- Chen, J.; Wang, X.; Chen, J.; Ni, Y.; Xiang, B.; Liao, F.; He, W.; Yao, L.; Li, E. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks. Sci. China Earth Sci. 2021, 64, 470–493. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Pernaton, R. Isotopically light methane in natural gas: Bacterial imprint or diffusive fractionation? Chem. Geol. 1997, 142, 193–200. [Google Scholar] [CrossRef]
- Hou, L.; Wang, J.; Kuang, L.; Zhang, G.; Liu, L.; Kuang, J. Provenance Sediments and Its Exploration Significance-A Case from Member 1 of Qingshuihe Formation of Lower Cretaceous in Junggar Basin. Earth Sci. Front. 2009, 16, 337–348. [Google Scholar] [CrossRef]
- Kou, C.H. Origins and Accumulation Model of Hydrocarbon in Deep Strata of the Central Junggar Basin, Northwestern China; Nanjing University: Nanjing, China, 2017. [Google Scholar]
- Cheshmeh Sefidi, A.; Ajorkaran, F. A novel MLP-ANN approach to predict solution gas-oil ratio. Pet. Sci. Technol. 2019, 37, 2302–2308. [Google Scholar] [CrossRef]
No. | Well | Formation | Depth/m | No. | Well | Formation | Depth/m | No. | Well | Formation | Depth/m |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | M121 | J1s | 4222 | 19 | QS2 | J1s | 3981 | 37 | MB5 | J1s | 3726 |
2 | M121 | J1s | 4255 | 20 | QS4 | J1s | 4014 | 38 | M108 | J1s | 4179 |
3 | M109 | J1s | 4158 | 21 | M101 | J1s | 4204 | 39 | M109 | J1s | 4185 |
4 | M113 | J1s | 4205 | 22 | S006 | J1s | 3577 | 40 | M11 | J1s | 4139 |
5 | M115 | J1s | 4204 | 23 | S006 | C | 4373 | 41 | M11 | J1s | 4177 |
6 | M116 | J1s | 4195 | 24 | S007 | C | 4409 | 42 | M7 | J1s | 4228 |
7 | M117 | J1s | 4238 | 25 | SX1 | C | 4438 | 43 | M7 | J1s | 4260 |
8 | M119 | J1s | 4258 | 26 | SX1 | C | 4473 | 44 | M8 | J1s | 4233 |
9 | M119 | J1s | 4236 | 27 | S015 | J1s | nd | 45 | M8 | J1s | 4266 |
10 | M003 | J1s | 3915 | 28 | SX8 | J1s | nd | 46 | M16 | J1s | 4041 |
11 | M003 | J1s | 3975 | 29 | SX14 | J1s | nd | 47 | M171 | J1s | 4473 |
12 | MB2 | J1s | 3921 | 30 | MB11 | J1s | 3711 | 48 | M17 | J1s | 4162 |
13 | MB2 | J1s | 3921 | 31 | MB2 | J1s | 3907 | 49 | M12 | J1s | 4235 |
14 | MB5 | J1s | 3726 | 32 | M003 | J1s | 3972 | 50 | M17 | J1s | 4192 |
15 | MB10 | J1s | 3666 | 33 | MB9 | J1s | 3761 | 51 | M101 | J1s | 4209 |
16 | M16 | J1s | 4047 | 34 | MB9 | J1s | 3778 | 52 | M102 | J1s | 4251 |
17 | QS1 | J1s | 3945 | 35 | M005 | J1s | 3890 | 53 | M103 | J1s | 4251 |
18 | QS1 | J1s | 3945 | 36 | M006 | J1s | 3759 | 54 | P5 | J1s | 4250 |
Category | Carboniferous | Jurassic Sangonghe Formation | |||
---|---|---|---|---|---|
Shixi Bulge | Shixi Bulge | Mobei Bulge | Mobei Slope | Mosuowan Bulge | |
CH4/% | 71.36~88.82 | 75.10~91.12 | 84.56~93.34 | 73.88~91.20 | 87.49~89.51 |
79.10 | 81.42 | 89.97 | 87.58 | 88.31 | |
C2H6/% | 3.70~7.92 | 4.38~9.11 | 3.10~6.69 | 4.02~10.90 | 4.25~4.70 |
5.87 | 7.39 | 4.25 | 5.37 | 4.5 | |
C3H8/% | 1.07~4.36 | 1.47~4.72 | 0.93~3.01 | 1.07~5.96 | 1.47~1.98 |
3.28 | 3.30 | 1.50 | 2.20 | 1.76 | |
C4H10/% | 1.08~4.55 | 0.90~4.04 | 0.50~1.95 | 0.60~4.38 | 0.84~1.43 |
3.32 | 2.59 | 0.98 | 1.45 | 1.15 | |
C5H12/% | 0.54~1.78 | 0.33~1.49 | 0.08~0.93 | 0.24~1.57 | 0.24~0.62 |
1.32 | 1.00 | 0.36 | 0.54 | 0.45 | |
CO2/% | 0.00~0.37 | 0.63~1.07 | 0~1.49 | 0.31~0.70 | 0.41~0.62 |
0.17 | 0.80 | 0.40 | 0.52 | 0.54 | |
C1/C1-5 | 0.82~0.93 | 0.80~0.93 | 0.87~0.95 | 0.76~0.94 | 0.91~0.93 |
0.85 | 0.8 | 0.93 | 0.90 | 0.92 |
Stratum | TOC/% | (S1 + S2)/(mg/g) | Chloroform Bitume “A”/% | Hydrogen Index/(mg/g.TOC) | Kerogen Type |
---|---|---|---|---|---|
J2x | 0.40~5.87 | 0.05~17.70 | 0.016~0.918 | / | Ⅲ |
1.42 | 2.03 | 0.267 | / | ||
J1b | 0.42~5.86 | 0.08~29.67 | 0.025~4.916 | / | Ⅲ |
1.68 | 3.03 | 0.555 | / | ||
P2w | 0.18~14.03 | 0.01~37.52 | 0.0007~0.8024 | 1.20~950.00 | Ⅲ |
1.69 | 2.06 | 0.0692 | 74.16 | ||
P1f | 0.03~4.43 | 0.1~59.84 | 0.0004~1.8933 | 3.33~1872.37 | Ⅱ |
0.93 | 4.66 | 0.2507 | 306.54 | ||
P1j | 0.1~14.04 | 0.01~17.60 | 0.0025~0.4539 | 1.64~507.89 | Ⅲ |
2.38 | 1.81 | 0.052 | 55.85 | ||
C | 0.03~19.8 | 0.01~37.52 | 0.001~0.3515 | 1.63~365.06 | Ⅲ |
1.63 | 0.84 | 0.031 | 52.45 |
Category | Carboniferous | Jurassic Sangonghe Formation | ||||
---|---|---|---|---|---|---|
Shixi Bulge | Shixi Bulge | Mobei Bulge | Mobei Slope | Mosuowan Bulge | ||
Oil-associated | δ13C1-δ13C2/‰ | −10.41 | −13.19 | −14.72~−12.85 | / | −13.19 |
Ro/% | 1.19 | 1.00 | 0.75~0.96 | / | 1.55 | |
Coal-derived | δ13C1-δ13C2/‰ | −7.86~−5.64 | −11.59~−8.38 | −15.81~−7.75 | −10.25~−6.84 | −10.2~−8.15 |
Ro/% | 1.22~1.79 | 0.93~1.33 | 0.61~1.30 | 0.97~1.36 | 1.01~1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Qu, J.; Zha, M.; Liu, H.; Ding, X.; Zhou, M.; Gao, T. Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes 2023, 11, 689. https://doi.org/10.3390/pr11030689
Liu K, Qu J, Zha M, Liu H, Ding X, Zhou M, Gao T. Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes. 2023; 11(3):689. https://doi.org/10.3390/pr11030689
Chicago/Turabian StyleLiu, Keshun, Jiangxiu Qu, Ming Zha, Hailei Liu, Xiujian Ding, Minghui Zhou, and Tianze Gao. 2023. "Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China" Processes 11, no. 3: 689. https://doi.org/10.3390/pr11030689
APA StyleLiu, K., Qu, J., Zha, M., Liu, H., Ding, X., Zhou, M., & Gao, T. (2023). Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes, 11(3), 689. https://doi.org/10.3390/pr11030689