Drying Kinetics and Quality Analysis of Coriander Leaves Dried in an Indirect, Stand-Alone Solar Dryer
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Drying Process
2.3. Mathematical Modeling
2.4. Effective Moisture Diffusivity
2.5. Color Measurements
2.6. Measurement of Water Activity (Aw)
2.7. Measurement of Total Phenol Content
2.8. Measurement of Total Antioxidant Capacity (TAC)
2.9. Statistical Analysis
2.10. Result and Discussion
2.11. Drying of Coriander Leaves
3. Drying Kinetic Models
3.1. Moisture Diffusivity
3.2. Physicochemical Quality Parameters
3.3. Color Parameters Change
3.4. Water Activity
3.5. Total Phenol Content
3.6. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, D.; Tewari, P. Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renew. Energy 2015, 80, 244–250. [Google Scholar] [CrossRef]
- Bansal, N.K. Solar Crop Drying. In Physics and Technology of Solar Energy: Volume 1 Solar Thermal Applications; Garg, H.P., Dayal, M., Furlan, G., Sayigh, A.A.M., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 413–445. [Google Scholar]
- Ghasemi Pirbalouti, A.; Mahdad, E.; Craker, L. Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarikhah, G.; Ebadi, M.-T.; Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Al-Hamdani, A.; Jayasuriya, H.; Pathare, P.B.; Al-Attabi, Z. Drying Characteristics and Quality Analysis of Medicinal Herbs Dried by an Indirect Solar Dryer. Foods 2022, 11, 4103. [Google Scholar] [CrossRef]
- Hidar, N.; Ouhammou, M.; Mghazli, S.; Idlimam, A.; Hajjaj, A.; Bouchdoug, M.; Jaouad, A.; Mahrouz, M. The impact of solar convective drying on kinetics, bioactive compounds and microstructure of stevia leaves. Renew. Energy 2020, 161, 1176–1183. [Google Scholar] [CrossRef]
- Singh, S.; Gill, R.; Hans, V.; Singh, M. A novel active-mode indirect solar dryer for agricultural products: Experimental evaluation and economic feasibility. Energy 2021, 222, 119956. [Google Scholar] [CrossRef]
- Shalaby, S.; Darwesh, M.; Ghoname, M.; Salah, S.E.; Nehela, Y.; Fetouh, M. The effect of drying sweet basil in an indirect solar dryer integrated with phase change material on essential oil valuable components. Energy Rep. 2020, 6, 43–50. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M.; Mengeş, H.O. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha × piperita L.). Energy Convers. Manag. 2010, 51, 2769–2775. [Google Scholar] [CrossRef]
- Shahidi, F.; Janitha, P.; Wanasundara, P. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Jimenez-Garcia, S.N.; Vazquez-Cruz, M.A.; Ramirez-Gomez, X.S.; Beltran-Campos, V.; Contreras-Medina, L.M.; Garcia-Trejo, J.F.; Feregrino-Pérez, A.A. Changes in the content of phenolic compounds and biological activity in traditional Mexican herbal infusions with different drying methods. Molecules 2020, 25, 1601. [Google Scholar] [CrossRef]
- Alharbi, F.R.; Csala, D. Gulf cooperation council countries’ climate change mitigation challenges and exploration of solar and wind energy resource potential. Appl. Sci. 2021, 11, 2648. [Google Scholar] [CrossRef]
- Lamidi, R.O.; Jiang, L.; Pathare, P.B.; Wang, Y.; Roskilly, A. Recent advances in sustainable drying of agricultural produce: A review. Appl. Energy 2019, 233, 367–385. [Google Scholar] [CrossRef]
- Demir, V.; Gunhan, T.; Yagcioglu, A.K.; Degirmencioglu, A. Mathematical Modelling and the Determination of Some Quality Parameters of Air-dried Bay Leaves. Biosyst. Eng. 2004, 88, 325–335. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. J. Saudi Soc. Agric. Sci. 2019, 18, 309–315. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Pathare, P.B.; Delele, M.A.; Chen, L.; Opara, U.L. Moisture diffusivity of table grape stems during low temperature storage conditions. Biosyst. Eng. 2013, 115, 346–353. [Google Scholar] [CrossRef]
- Pathare, P.B.; Sharma, G.P. Effective Moisture Diffusivity of Onion Slices undergoing Infrared Convective Drying. Biosyst. Eng. 2006, 93, 285–291. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Rorie, R.L.; Purcell, L.C.; Mozaffari, M.; Karcher, D.E.; King, C.A.; Marsh, M.C.; Longer, D.E. Association of “greenness” in corn with yield and leaf nitrogen concentration. Agron. J. 2011, 103, 529–535. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Chauhan, R.; Kumar, R.; Sethi, M.; Rana, A. Experimental investigation of an indirect solar dryer integrated with phase change material for drying Valeriana jatamansi (medicinal herb). Case Stud. Therm. Eng. 2017, 10, 302–314. [Google Scholar] [CrossRef]
- Madhava Naidu, M.; Vedashree, M.; Satapathy, P.; Khanum, H.; Ramsamy, R.; Hebbar, H.U. Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chem. 2016, 192, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Mouhoubi, K.; Boulekbache-Makhlouf, L.; Mehaba, W.; Himed-Idir, H.; Madani, K. Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. J. Food Process Eng. 2022, 45, e13932. [Google Scholar] [CrossRef]
- Bensebia, O.; Allia, K. Drying and Extraction Kinetics of Rosemary Leaves: Experiments and Modeling. J. Essent. Oil Bear. Plants 2015, 18, 99–111. [Google Scholar] [CrossRef]
- Püntener, A.; Schlesinger, U.E. Colorants for Non-Textile Applications; Freeman, H.S., Peters, A.T., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2000; pp. 382–455. [Google Scholar]
- Imaizumi, T.; Jitareerat, P.; Laohakunjit, N.; Kaisangsri, N. Effect of microwave drying on drying characteristics, volatile compounds and color of holy basil (Ocimum tenuiflorum L.). Agric. Nat. Resour. 2021, 55, 1–6. [Google Scholar]
- Yilmaz, A.; Alibas, I. The impact of drying methods on quality parameters of purple basil leaves. J. Food Process. Preserv. 2021, 45, e15638. [Google Scholar] [CrossRef]
- Shaw, M.; Meda, V.; Tabil, L., Jr.; Opoku, A., Jr. Drying and color characteristics of coriander foliage using convective thin-layer and microwave drying. J. Microw. Power Electromagn. Energy 2006, 41, 56–65. [Google Scholar] [CrossRef]
- Zalpouri, R.; Kaur, P.; Kaur, A.; Sidhu, G.K. Comparative analysis of optimized physiochemical parameters of dried potato flakes obtained by refractive and convective drying techniques. J. Food Process. Preserv. 2021, 45, e15077. [Google Scholar] [CrossRef]
- Sharma, P.; Chand, T.; Sharma, S. Evaluation of drying kinetics and physico-chemical characteristics of dried kinnow peel. Agric. Res. J. 2017, 54, 545–550. [Google Scholar] [CrossRef]
- Lakshmi, D.; Muthukumar, P.; Layek, A.; Nayak, P.K. Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Sol. Energy 2019, 188, 507–518. [Google Scholar] [CrossRef]
- Vijayan, S.; Thottipalayam, V.A.; Kumar, A. Thin layer drying characteristics of curry leaves (Murraya koenigii) in an indirect solar dryer. Therm. Sci. 2017, 21, 359–367. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lin, H.-Y.; Chang, C.-Y.; Liu, Y.-C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Haard, N.F. Characteristics of edible plant tissues. Princ. Food Sci. 1976, 1, 677–764. [Google Scholar]
- Xylia, P.; Fasko, K.G.; Chrysargyris, A.; Tzortzakis, N. Heat treatment, sodium carbonate, ascorbic acid and rosemary essential oil application for the preservation of fresh Rosmarinus officinalis quality. Postharvest Biol. Technol. 2022, 187, 111868. [Google Scholar] [CrossRef]
- Oboh, G.; Akindahunsi, A. Change in the ascorbic acid, total phenol and antioxidant activity of sun-dried commonly consumed green leafy vegetables in Nigeria. Nutr. Health 2004, 18, 29–36. [Google Scholar] [CrossRef]
Season | Drying Method | Drying Coefficient | Coefficient of Determination R2 | |
---|---|---|---|---|
a | b | |||
Summer | Sun drying | 1.6882 | −0.2312 | 0.9987 |
Shade drying | 1.3141 | −1.0828 | 0.9777 | |
Indirect solar drying | 1.277 | −0.2336 | 0.9958 | |
Winter | Sun Drying | 1.0678 | −0.2979 | 0.9720 |
Shade drying | 0.4738 | 0.4183 | 0.8872 | |
Indirect solar drying | 0.6911 | −0.3257 | 0.9421 |
Season | Model | Drying Method | Parameters | Coefficient of Determination R2 | Chi-Square, χ2 | Root-Mean-Square Error, RMSE | |||
---|---|---|---|---|---|---|---|---|---|
a | k | n | b | ||||||
Summer | Lewis | Indirect solar | −0.796 | 0.96111 | 3.39 × 10−3 | 3.39 × 10−3 | |||
Direct sun | −1.247 | 0.99810 | 1.74 × 10−4 | 1.74 × 10−4 | |||||
Shade | −0.384 | 0.99626 | 1.87 × 10−4 | 1.87 × 10−4 | |||||
Modified Page | Indirect solar | 0.784 | 1.442 | 0.99782 | 2.62 × 10−4 | 1.99 × 10−4 | |||
Direct sun | 1.256 | 0.9651 | 0.99832 | 1.82 × 10−4 | 1.53 × 10−4 | ||||
Shade | 0.372 | 0.9335 | 0.99745 | 1.50 × 10−4 | 1.27 × 10−4 | ||||
Midilli and Kucuk | Indirect solar | 0.996 | 0.734 | 1.527 | 0.013 | 0.99832 | 2.01 × 10−4 | 1.50 × 10−4 | |
Direct sun | 1.000 | 1.327 | 1.056 | 0.013 | 0.99905 | 1.03 × 10−4 | 8.49 × 10−4 | ||
Shade | 0.996 | 0.393 | 0.943 | 0.000 | 0.99638 | 1.47 × 10−4 | 1.24 × 10−4 | ||
Winter | Lewis | Indirect solar | −0.128 | 0.94954 | 4.23 × 10−3 | 4.23 × 10−3 | |||
Direct sun | −0.217 | 0.99064 | 7.46 × 10−4 | 7.46 × 10−4 | |||||
Shade | −0.067 | 0.96125 | 3.72 × 10−3 | 3.72 × 10−3 | |||||
Modified Page | Indirect solar | 0.134 | 1.401 | 0.97951 | 2.01 × 10−3 | 1.78 × 10−3 | |||
Direct sun | 0.215 | 1.094 | 0.99340 | 5.89 × 10−4 | 5.35 × 10−4 | ||||
Shade | 0.084 | 1.500 | 0.97912 | 2.36 × 10−3 | 2.06 × 10−3 | ||||
Midilli and Kucuk | Indirect solar | 0.989 | −0.004 | 1.243 | −0.087 | 0.98983 | 5.76 × 10−4 | 6.97 × 10−4 | |
Direct sun | 1.001 | 0.190 | 1.061 | −0.002 | 0.99307 | 5.38 × 10−4 | 5.25 × 10−4 | ||
Shade | 0.980 | 0.000 | 4.816 | −0.041 | 0.98374 | 1.42 × 10−3 | 8.50 × 10−4 |
Drying Method | Effective Moisture Diffusivity, m2/s | |
---|---|---|
Summer Season | Winter Season | |
Sun drying | 2.63 × 10−10 | 1.05 × 10−10 |
Shade drying | 6.57 × 10−11 | 3.94 × 10−11 |
Indirect solar drying | 1.31 × 10−10 | 6.57 × 10−11 |
Drying Condition | Physiochemical Properties | ||
---|---|---|---|
Water Activity (Aw) | Total Phenol Content (mg Caffeic Acid/100 g Dry Matter) | Antioxidants μmol Trolox/g Dry Matter | |
Fresh | 0.93 ± 0.00 | 365.44 ± 0.18 | 0.22 ± 0.67 |
Indirect solar-dried (Winter) | 0.61 ± 0.00 | 577.97 ± 0.15 | 3.41 ± 2.11 |
Indirect solar-dried (Summer) | 0.45 ± 0.02 | 852.00 ± 2.29 | 3.53 ± 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasuriya, H.; Pathare, P.B.; Al-Attabi, Z.; Al-Hamdani, A. Drying Kinetics and Quality Analysis of Coriander Leaves Dried in an Indirect, Stand-Alone Solar Dryer. Processes 2023, 11, 1596. https://doi.org/10.3390/pr11061596
Jayasuriya H, Pathare PB, Al-Attabi Z, Al-Hamdani A. Drying Kinetics and Quality Analysis of Coriander Leaves Dried in an Indirect, Stand-Alone Solar Dryer. Processes. 2023; 11(6):1596. https://doi.org/10.3390/pr11061596
Chicago/Turabian StyleJayasuriya, Hemanatha, Pankaj B. Pathare, Zahir Al-Attabi, and Anfal Al-Hamdani. 2023. "Drying Kinetics and Quality Analysis of Coriander Leaves Dried in an Indirect, Stand-Alone Solar Dryer" Processes 11, no. 6: 1596. https://doi.org/10.3390/pr11061596
APA StyleJayasuriya, H., Pathare, P. B., Al-Attabi, Z., & Al-Hamdani, A. (2023). Drying Kinetics and Quality Analysis of Coriander Leaves Dried in an Indirect, Stand-Alone Solar Dryer. Processes, 11(6), 1596. https://doi.org/10.3390/pr11061596