N-Substituted (Hexahydro)-1H-isoindole-1,3(2H)-dione Derivatives: New Insights into Synthesis and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Measurement
2.3. Chemical Synthesis
2.4. Anti-Oxidant Activity
2.5. Molecular Modeling
2.5.1. Molecular Docking
2.5.2. Computational Pharmacokinetics (ADME-Tox)
2.5.3. Computational Pharmacodynamic Profiles of Compounds
3. Results
3.1. Total Antioxidant Capacity (TAC) Measurements
3.2. Pharmacokinetics and Pharmacodynamics Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benz, G. Synthesis of Amides and Related Compounds; Comprehensive Organic Synthesis; Pergamon Press: Oxford, UK, 1991; Volume 6, pp. 381–417. [Google Scholar]
- Bansode, T.N.; Shelke, J.V.; Dongre, V.G. Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines. Eur. J. Med. Chem. 2009, 44, 5094–5098. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Dimopoulos, M.A.; Chen, C.; Cibeira, M.T.; Attal, M.; Spencer, A.; Rajkumar, S.V.; Yu, Z.; Olesnyckyj, M.; Zeldis, J.B.; et al. Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. Blood 2008, 112, 4445–4451. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zhu, Y.; Shi, C.; Stewart, A.K. Mechanism of immunomodulatory drugs’ action in the treatment of multiple myeloma. Acta Biochim. Biophys. Sin. 2014, 46, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Ruchelman, A.L.; Man, H.W.; Zhang, W.; Chen, R.; Capone, L.; Kang, J.; Parton, A.; Corral, L.; Schafer, P.H.; Darius, B.; et al. Isosteric analogs of lenalidomide and pomalidomide: Synthesis and biological activity. Bioorg. Med. Chem. Lett. 2013, 23, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Khidre, R.E.; Abu-Hashem, A.A.; El-Shazly, M. Synthesis and anti-microbial activity of some 1-substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile derivatives. Eur. J. Med. Chem. 2011, 46, 5057–5064. [Google Scholar] [CrossRef] [PubMed]
- Sabastiyan, A.; YosuvaSuvaikin, M. Synthesis, characterization and antimicrobial activity of 2-(dimethylaminomethyl)isoindoline-1,3-dione and its cobalt (II) and nickel (II) complexes. Adv. Appl. Sci. Res. 2012, 3, 45–50. [Google Scholar]
- Santos, J.L.; Yamasaki, P.R.; Chin, C.M.; Takashi, C.H.; Pavan, F.R.; Leite, C.Q. Synthesis and in vitro anti mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem. 2009, 17, 173795–173799. [Google Scholar] [CrossRef]
- Noguchi, T.; Fujimoto, H.; Sano, H.; Miyajima, A.; Miyachi, H.; Hashimoto, Y. Angiogenesis inhibitors derived from thalidomide. Bioorg. Med. Chem. Lett. 2005, 15, 5509–5513. [Google Scholar] [CrossRef]
- Chan, S.H.; Lam, K.H.; Chui, C.H.; Gambari, R.; Yuen, M.C.; Wong, R.S.; Cheng, G.Y.; Lau, F.Y.; Au, Y.K.; Cheng, C.H.; et al. The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines. Eur. J. Med. Chem. 2009, 44, 2736–2740. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhao, J.H.; Pan, X.D.; Zhang, P.C. Synthesis and antiviral activity of phthiobuzone analogues. Chem. Pharm. Bull. 2010, 58, 208–211. [Google Scholar] [CrossRef]
- Kathuria, V.; Pathak, D.P. Synthesis and anticonvulsant activity of some N-substituted phthalimide analogues. Pharm. Innov. J. 2012, 1, 55–59. [Google Scholar] [CrossRef]
- Mbarki, S.; Elhallaoui, M. 3D-QSAR for a-glucosidase inhibitory activity of N-(phenoxyalkyl) phthalimide derivatives. Int. J. Recent. Res. Appl. Stud. 2012, 11, 395–401. [Google Scholar]
- Lima, L.M.; Castro, P.; Machado, A.L.; Fraga, C.A.; Lugnier, C.; de Moraes, V.L.; Barreiro, E.J. Synthesis and antiinflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg. Med. Chem. 2002, 10, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Kumar, P.; Kumar, N.; Singh, B. Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini Rev. Med. Chem. 2010, 10, 678–704. [Google Scholar] [CrossRef]
- Karthik, C.S.; Mallesha, L.; Mallu, P. Investigation of antioxidant properties of phthalimide derivatives. Can. Chem. Trans. 2015, 3, 199–206. [Google Scholar] [CrossRef]
- Fregnan, A.M.; Brancaglion, G.A.; Galvão, A.F.C.; D’Sousa Costa, C.O.; Moreira, D.R.M.; Soares, M.B.P.; Bezerra, D.P.; Silva, N.C.; de Souza Morais, S.M.; Oliver, J.Q.; et al. Synthesis of piplartine analogs and preliminary findings on structure–antimicrobial activity relationship. Med. Chem. Res. 2017, 26, 603–614. [Google Scholar] [CrossRef]
- Mahmoud, R.M.; Abou-Elmagd, W.S.I.; Abdelwahab, S.S.; Soliman, E.-S.A. Synthesis and Spectral Characterization of Novel 2, 3-Disubstituted Quinazolin-4(3H) one Derivatives. Am. J. Org. Chem. 2012, 2, 1–8. [Google Scholar] [CrossRef]
- Awad, S.; Hussein, A.; Razzak, A.; Kubba, M. Synthesis, characterization and antimicrobial activity of new 2,5-disubstituted-1,3,4-thiadiazole derivatives. Der Pharm. Chem. 2015, 7, 250–260. [Google Scholar]
- Al-Omran, F.; El-Khair, A.A. Synthesis, Spectroscopy and X-Ray Characterization, of Novel Derivatives of Substituted 2-(Benzothiazol-2′-ylthio)acetohydrazide. Int. J. Org. Chem. 2016, 6, 31–43. [Google Scholar]
- Kaur, R.; Singh, R.; Kumar, A.; Singh, K. Click Chemistry Approach to Isoindole-1,3-dione Tethered 1,2,3-Triazole Derivatives. SynOpen 2019, 3, 67–70. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Jiang, L.L.; Yang, S.G.; Zuo, Y.; Wang, Z.F.; Xi, Z.; Yang, G.F. Hexahydrophthalimide–benzothiazole hybrids as a new class of protoporphyrinogen oxidase inhibitors: Synthesis, structure–activity relationship, and DFT calculations. New J. Chem. 2014, 38, 4510–4518. [Google Scholar] [CrossRef]
- Lamie, P.F.; Philoppes, J.N.; El-Gendy, A.O.; Rarova, L.; Gruz, J. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents. Molecules 2015, 20, 16620–16642. [Google Scholar] [CrossRef]
- Tetere, Z.; Zicane, D.; Ravina, I.; Mierina, I.; Rijkure, I. Synthesis and Antioxidant Properties of Novel Quinazoline Derivatives. Mater. Sci. App. Chem. 2014, 30, 51–54. [Google Scholar] [CrossRef]
- Konus, M.; Algso, M.; Yilmaz, C.; Khorsheed, B.A.; Köroğlu, A.; Çetin, D.; Ergin, D.; Kivrak, A. Synthesis of Ethynyl-Thiophene Derivatives, Antioxidant Properties and ADME Analysis. Chem. Sel. 2022, 7, e2022002. [Google Scholar] [CrossRef]
- Mehdhar, F.S.; Abdel-Galil, E.; Saeed, A.; Abdel-Latif, E.; Abd El Ghani, G.E. Synthesis of New Substituted Thiophene Derivatives and Evaluating their Antibacterial and Antioxidant Activities. Polycycl. Aromat. Compd. 2022, 1–16. [Google Scholar] [CrossRef]
- Mishra, R.; Kumar, N.; Sachan, N. Thiophene and Its Analogs as Prospective Antioxidant Agents: A Retrospective Study. Mini Rev. Med. Chem. 2022, 22, 1420–1437. [Google Scholar] [CrossRef] [PubMed]
- Pedgaonkar, G.S.; Sridevi, J.P.; Jeankumar, V.U.; Saxena, S.; Devi, P.B.; Renuka, J.; Yogeeswari, P.; Sriram, D. Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis. Eur. J. Med. Chem. 2014, 86, 613–627. [Google Scholar] [CrossRef]
- Kumar, A.; Kumari, N.; Bhattacherjee, S.; Venugopal, U.; Parwez, S.; Siddiqi, M.I.; Krishnan, M.Y.; Panda, G. Design, synthesis and biological evaluation of (Quinazoline 4-yloxy)acetamide and (4-oxoquinazoline-3(4H)-yl)acetamide derivatives as inhibitors of Mycobacterium tuberculosis bd oxidase. Eur. J. Med. Chem. 2022, 242, 114639. [Google Scholar] [CrossRef]
- AbdElhameid, M.K.; Labib, M.B.; Negmeldin, A.T.; Al-Shorbagy, M.; Mohammed, M.R. Design, synthesis, and screening of ortho-amino thiophene carboxamide derivatives on hepatocellular carcinomas VEGFR-2 Inhibitors. J. Enzym. Inhib. Med. Chem. 2018, 33, 1472–1493. [Google Scholar] [CrossRef]
- Remes, C.; Paun, A.; Zarafu, I.; M Tudose, M.; Caproiu, M.T.; Ionita, G.; Bleotu, C.; Matei, L.; Ionita, P. Chemical and biological evaluation of some new antipyrine derivatives with particular properties. Bioorg. Chem. 2012, 41–42, 6–12. [Google Scholar] [CrossRef]
- Bem, M.; Baratoiu, R.; Radutiu, C.; Lete, C.; Mocanu, S.; Ionita, G.; Lupu, S.; Caproiu, M.T.; Madalan, A.M.; Patrascu, B.; et al. Synthesis and structural characterization of some novel methoxyamino derivatives with acid-basa and redox behavior. J. Mol. Struct. 2018, 1173, 291–299. [Google Scholar] [CrossRef]
- Paun, A.; Zarafu, I.; Caproiu, M.T.; Draghici, C.; Maganu, M.; Ionita, P.; Cotar, A.I.; Chifiriuc, M.C. Synthesis and evaluation of several benzocaine derivatives. C. R. Chim. 2013, 16, 665–671. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE). 2022.02 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7. 2022. Available online: https://www.chemcomp.com/Research-Citing_MOE.htm (accessed on 30 March 2023).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Newton-Vinson, P.; Hubálek, F.; Edmondson, D.E.; Mattevi, A. Structure of Human Monoamine Oxidase B, a Drug Target for the Treatment of Neurological Disorders. Nat. Struct. Biol. 2002, 9, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Orlando, B.J.; Malkowski, M.G. Crystal Structure of Rofecoxib Bound to Human Cyclooxygenase-2. Acta Crystallogr. F Struct. Biol. Commun. 2016, 72, 772–776. [Google Scholar] [CrossRef]
- Müller, C.W.; Rey, F.A.; Sodeoka, M.; Verdine, G.L.; Harrison, S.C. Structure of the NF-ΚB P50 Homodimer Bound to DNA. Nature 1995, 373, 311–317. [Google Scholar] [CrossRef]
- Udrea, A.-M.; Dinache, A.; Staicu, A.; Avram, S. Target Prediction of 5,10,15,20-Tetrakis(4′-Sulfonatophenyl)-Porphyrin Using Molecular Docking. Pharmaceutics 2022, 14, 2390. [Google Scholar] [CrossRef]
- Dumitrascu, F.; Udrea, A.-M.; Caira, M.R.; Nuta, D.C.; Limban, C.; Chifiriuc, M.C.; Popa, M.; Bleotu, C.; Hanganu, A.; Dumitrescu, D.; et al. In Silico and Experimental Investigation of the Biological Potential of Some Recently Developed Carprofen Derivatives. Molecules 2022, 27, 2722. [Google Scholar] [CrossRef]
- Bordei, A.T.; Nuta, D.C.; Căproiu, M.T.; Dumitrascu, F.; Zarafu, I.; Ioniță, P.; Bădiceanu, C.D.; Avram, S.; Chifiriuc, M.C.; Bleotu, C.; et al. Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds. Molecules 2020, 25, 266. [Google Scholar] [CrossRef]
- Buiu, C.; Putz, M.V.; Avram, S. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks. Int. J. Mol. Sci. 2016, 17, 1710. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for Ligand-Receptor Docking. Curr. Protoc. Bioinform. 2008, 24, 8.14.1–8.14.40. [Google Scholar] [CrossRef] [PubMed]
- Udrea, A.-M.; Dinache, A.; Pagès, J.-M.; Pirvulescu, R.A. Quinazoline Derivatives Designed as Efflux Pump Inhibitors: Molecular Modeling and Spectroscopic Studies. Molecules 2021, 26, 2374. [Google Scholar] [CrossRef] [PubMed]
- Nistorescu, S.; GradisteanuPircalabioru, G.; Udrea, A.-M.; Simon, A.; Pascu, M.L.; Chifiriuc, M.-C. Laser-Irradiated Chlorpromazine as a Potent Anti-Biofilm Agent for Coating of Biomedical Devices. Coatings 2020, 10, 1230. [Google Scholar] [CrossRef]
- Vlaicu, I.D.; Olar, R.; Maxim, C.; Chifiriuc, M.C.; Bleotu, C.; Stănică, N.; Scăețeanu, G.V.; Dulea, C.; Avram, S.; Badea, M. Evaluating the biological potential of some new cobalt (II) complexes with acrylate and benzimidazole derivatives. Appl. Org. Chem. 2019, 33, e4976. [Google Scholar] [CrossRef]
- pkCSM: Predicting Small-Molecule Pharmacokinetic Properties using Graph-Based Signatures. Available online: https://biosig.lab.uq.edu.au/pkcsm/ (accessed on 30 March 2023).
- Avram, S.; Mernea, M.; Bagci, E.; Hritcu, L.; Borcan, L.C.; Mihailescu, D.F. Advanced Structure-activity Relationships Applied to Mentha spicata L. Subsp. spicata Essential Oil Compounds as AChE and NMDA Ligands, in Comparison with Donepezil, Galantamine and Memantine—New Approach in Brain Disorders Pharmacology. CNS Neurol. Disord. Drug Targets. 2017, 16, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Gallo, K.; Goede, A.; Preissner, R.; Gohlke, B.-O. SuperPred 3.0: Drug classification and target prediction-a machine learning approach. Nucleic Acids Res. 2022, 50, W726–W731. [Google Scholar] [CrossRef] [PubMed]
- Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr. Drug Metab. 2019, 20, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Berechet, A. Cercetări în seria 4-chinazolonei. Nota 1. Sinteza uretanilor N-[2-metil-4-ceto-chinazolinil(3)metal] O-substituiti cu radical alchil. Farmacia 1967, 15, 287–290. [Google Scholar]
Compound | 1a | 1b | 2 |
---|---|---|---|
NF-KB | −8.29 kcal/mol | −8.13 kcal/mol | −7.98 kcal/mol |
COX-2 | −8.55 kcal/mol | −10.58 kcal/mol | −10.44 kcal/mol |
MAO-B | −8.69 kcal/mol | −10.70 kcal/mol | −10.62 kcal/mol |
Pharmacokinetics | Compound 1a | Compound 1b | Compound 2 |
---|---|---|---|
Intestinal absorption (human) % | 82.55 | 77.103 | 78.181 |
Skin Permeability (log Kp) | −3.778 | −3.104 | −2.925 |
Fraction unbound (human) (Fu) | 0.358 | 0.474 | 0.286 |
BBB permeability (logBBB) | −0.129 | −0.422 | −0.463 |
CNS permeability (logPS) | −2.953 | −2.76 | −2.851 |
Renal OCT2 substrate | NO | NO | NO |
AMES toxicity | NO | NO | NO |
hERG I/II inhibitor | NO | NO | NO/YES |
Hepatotoxicity | NO | YES | YES |
Skin Sensitisation | NO | NO | NO |
Oral Rat Acute Toxicity (LD50) (mol/kg) | 2.425 | 2.451 | 1.878 |
Targets | Compound 1a Binding Probability/ Model Accuracy | Compound 1b Binding Probability/ Model Accuracy | Compound 2 Binding Probability/ Model Accuracy |
---|---|---|---|
Nuclear factor NF-kappa-B | 85.47/ 96.09 | 93.29%/ 96.09% | 89.59%/ 96.09% |
Cyclooxygenase-2 | 90.77/ 89.63 | - | 81.17%/ 89.63% |
Monoamine oxidase | - | - | 56.98%/ 91.49% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bădiceanu, C.D.; Mares, C.; Nuță, D.C.; Avram, S.; Drăghici, C.; Udrea, A.-M.; Zarafu, I.; Chiriță, C.; Hovaneț, M.V.; Limban, C. N-Substituted (Hexahydro)-1H-isoindole-1,3(2H)-dione Derivatives: New Insights into Synthesis and Characterization. Processes 2023, 11, 1616. https://doi.org/10.3390/pr11061616
Bădiceanu CD, Mares C, Nuță DC, Avram S, Drăghici C, Udrea A-M, Zarafu I, Chiriță C, Hovaneț MV, Limban C. N-Substituted (Hexahydro)-1H-isoindole-1,3(2H)-dione Derivatives: New Insights into Synthesis and Characterization. Processes. 2023; 11(6):1616. https://doi.org/10.3390/pr11061616
Chicago/Turabian StyleBădiceanu, Carmellina Daniela, Catalina Mares, Diana Camelia Nuță, Speranța Avram, Constantin Drăghici, Ana-Maria Udrea, Irina Zarafu, Cornel Chiriță, Marilena Viorica Hovaneț, and Carmen Limban. 2023. "N-Substituted (Hexahydro)-1H-isoindole-1,3(2H)-dione Derivatives: New Insights into Synthesis and Characterization" Processes 11, no. 6: 1616. https://doi.org/10.3390/pr11061616
APA StyleBădiceanu, C. D., Mares, C., Nuță, D. C., Avram, S., Drăghici, C., Udrea, A. -M., Zarafu, I., Chiriță, C., Hovaneț, M. V., & Limban, C. (2023). N-Substituted (Hexahydro)-1H-isoindole-1,3(2H)-dione Derivatives: New Insights into Synthesis and Characterization. Processes, 11(6), 1616. https://doi.org/10.3390/pr11061616