Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. HD
2.4. SD
2.5. CM
2.6. Particle Size Distribution
2.7. Scanning Electron Microscopy
2.8. Gas Chromatography–Mass Spectrometry Analysis
2.9. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Optimization of HD and SD Parameters for the Isolation of Fennel Seeds EO
3.2. Effect of CM on the Isolation of Fennel Seeds EO
3.3. Chemical Characterization of Fennel Seeds EO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anka, Z.M.; Gimba, S.N.; Nanda, A.; Salisu, L. Phytochemistry and Pharmacological Activities of Foeniculum Vulgare. IOSR J. Pharm. 2020, 10, 1–10. [Google Scholar]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A Review of Its Botany, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. Biomed. Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [Green Version]
- Mallik, S.; Sharangi, A.B.; Sarkar, T. Phytochemicals of Coriander, Cumin, Fenugreek, Fennel and Black Cumin: A Preliminary Study. Natl. Acad. Sci. Lett. 2020, 43, 477–480. [Google Scholar] [CrossRef]
- Sharopov, F.; Valiev, A.; Satyal, P.; Gulmurodov, I.; Yusufi, S.; Setzer, W.; Wink, M. Cytotoxicity of the Essential Oil of Fennel (Foeniculum vulgare) from Tajikistan. Foods 2017, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Ghasemian, A.; Al-Marzoqi, A.-H.; Mostafavi, S.K.S.; Alghanimi, Y.K.; Teimouri, M. Chemical Composition and Antimicrobial and Cytotoxic Activities of Foeniculum Vulgare Mill Essential Oils. J. Gastrointest. Cancer 2020, 51, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Sayed-Ahmad, B.; Straumīte, E.; Šabovics, M.; Krūma, Z.; Merah, O.; Saad, Z.; Hijazi, A.; Talou, T. Effect of Addition of Fennel (Foeniculum vulgare L.) on the Quality of Protein Bread. Proc. Latv. Acad. Sci. 2017, 71, 509–514. [Google Scholar] [CrossRef]
- Kalleli, F.; Bettaieb Rebey, I.; Wannes, W.A.; Boughalleb, F.; Hammami, M.; Saidani Tounsi, M.; M’hamdi, M. Chemical Composition and Antioxidant Potential of Essential Oil and Methanol Extract from Tunisian and French Fennel (Foeniculum vulgare Mill.) Seeds. J. Food Biochem. 2019, 43, e12935. [Google Scholar] [CrossRef] [PubMed]
- Javed, R.; Hanif, M.A.; Ayub, M.A.; Rehman, R. Fennel. In Medicinal Plants of South Asia; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–256. [Google Scholar]
- Belabdelli, F.; Piras, A.; Bekhti, N.; Falconieri, D.; Belmokhtar, Z.; Merad, Y. Chemical Composition and Antifungal Activity of Foeniculum vulgare Mill. Chem. Afr. 2020, 3, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Leong, S.Y.; Khelfa, A.; Greiner, R.; Chemat, F. Extraction Methods of Essential Oils from Herbs and Spices. In Essential Oils in Food Processing; Wiley: Hoboken, NJ, USA, 2017; pp. 21–55. [Google Scholar]
- Mimica-Dukić, N.; Kujundžić, S.; Soković, M.; Couladis, M. Essential Oil Composition and Antifungal Activity of Foeniculum vulgare Mill. Obtained by Different Distillation Conditions. Phytother Res 2003, 17, 368–371. [Google Scholar] [CrossRef]
- Božović, M.; Navarra, A.; Garzoli, S.; Pepi, F.; Ragno, R. Esential Oils Extraction: A 24-Hour Steam Distillation Systematic Methodology. Nat. Prod. Res. 2017, 31, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Farhoosh, R.; Farahnaky, A.; Javidnia. Shahidi Comparison of Extraction Parameters and Extracted Essential Oils from Mentha piperita L. Using Hydrodistillation and Steamdistillation. Int. Food Res. J. 2015, 22, 283–288. [Google Scholar]
- Périno-Issartier, S.; Ginies, C.; Cravotto, G.; Chemat, F. A Comparison of Essential Oils Obtained from Lavandin via Different Extraction Processes: Ultrasound, Microwave, Turbohydrodistillation, Steam and Hydrodistillation. J. Chromatogr. A 2013, 1305, 41–47. [Google Scholar] [CrossRef]
- Lilia, C.; Abdelkader, A.; Karima, A.-K.A.; Tarek, B. The Effect of Ultrasound Pre-Treatment on the Yield, Chemical Composition and Antioxidant Activity of Essential Oil from Wild Lavandula stoechas L. J. Essent. Oil-Bear. Plants 2018, 21, 253–263. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of Bioactive Compounds and Essential Oils from Mediterranean Herbs by Conventional and Green Innovative Techniques: A Review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Ebadi, M.-T.; Ghobadian, B.; Ghomi, H. Optimization of DBD-Plasma Assisted Hydro-Distillation for Essential Oil Extraction of Fennel (Foeniculum vulgare Mill.) Seed and Spearmint (Mentha spicata L.) Leaf. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100300. [Google Scholar] [CrossRef]
- Cvitković, D.; Lisica, P.; Zorić, Z.; Pedisić, S.; Repajić, M.; Dragović-Uzelac, V.; Balbino, S. The Influence of Cryogrinding on Essential Oil, Phenolic Compounds and Pigments Extraction from Myrtle (Myrtus communis L.) Leaves. Processes 2022, 10, 2716. [Google Scholar] [CrossRef]
- Katiyar, N.K.; Biswas, K.; Tiwary, C.S. Cryomilling as Environmentally Friendly Synthesis Route to Prepare Nanomaterials. Int. Mater. Rev. 2021, 66, 493–532. [Google Scholar] [CrossRef]
- Saxena, S.N.; Barnwal, P.; Balasubramanian, S.; Yadav, D.N.; Lal, G.; Singh, K.K. Cryogenic Grinding for Better Aroma Retention and Improved Quality of Indian Spices and Herbs: A Review. J. Food Process Eng. 2018, 41, e12826. [Google Scholar] [CrossRef]
- Mékaoui, R.; Benkaci-Ali, F.; Scholl, G.; Eppe, G. Effect of the Extraction Technique, Heating Time and Cryogenic Grinding (N2 at −196 °C) on the Composition of Cumin Seeds Volatile Oil. J. Essent. Oil-Bear. Plants 2016, 19, 1903–1919. [Google Scholar] [CrossRef]
- Akloul, R.; Benkaci-Ali, F.; Eppe, G. Kinetic Study of Volatile Oil of Curcuma longa L. Rhizome and Carum carvi L. Fruits Extracted by Microwave-Assisted Techniques Using the Cryogrinding. J. Essent. Oil Res. 2014, 26, 473–485. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention Indices in the Analysis of Food Aroma Volatile Compounds in Temperature-Programmed Gas Chromatography: Database Creation and Evaluation of Precision and Robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukhopadhyay, S. Response Surface Methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Khammassi, M.; Loupassaki, S.; Tazarki, H.; Mezni, F.; Slama, A.; Tlili, N.; Zaouali, Y.; Mighri, H.; Jamoussi, B.; Khaldi, A. Variation in Essential Oil Composition and Biological Activities of Foeniculum vulgare Mill. Populations Growing Widely in Tunisia. J. Food Biochem. 2018, 42, e12532. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W. Comparative Analysis of Antioxidant Activities of Essential Oils and Extracts of Fennel (Foeniculum vulgare Mill.) Seeds from Egypt and China. Food Sci. Hum. Wellness 2019, 8, 67–72. [Google Scholar] [CrossRef]
- Anwar, F.; Hussain, A.I.; Sherazi, S.T.H.; Bhanger, M.I. Changes in Composition and Antioxidant and Antimicrobial Activities of Essential Oil of Fennel (Foeniculum vulgare Mill.) Fruit at Different Stages of Maturity. J. Herbs Spices Med. Plants 2009, 15, 187–202. [Google Scholar] [CrossRef]
- Lainez-Cerón, E.; Jiménez-Munguía, M.T.; López-Malo, A.; Ramírez-Corona, N. Effect of Process Variables on Heating Profiles and Extraction Mechanisms during Hydrodistillation of Eucalyptus Essential Oil. Heliyon 2021, 7, e08234. [Google Scholar] [CrossRef] [PubMed]
- Sintim, H.Y.; Burkhardt, A.; Gawde, A.; Cantrell, C.L.; Astatkie, T.; Obour, A.E.; Zheljazkov, V.D.; Schlegel, V. Hydrodistillation Time Affects Dill Seed Essential Oil Yield, Composition, and Bioactivity. Ind. Crops Prod. 2015, 63, 190–196. [Google Scholar] [CrossRef]
- Moser, B.R.; Zheljazkov, V.D.; Bakota, E.L.; Evangelista, R.L.; Gawde, A.; Cantrell, C.L.; Winkler-Moser, J.K.; Hristov, A.N.; Astatkie, T.; Jeliazkova, E. Method for Obtaining Three Products with Different Properties from Fennel (Foeniculum vulgare) Seed. Ind. Crops Prod. 2014, 60, 335–342. [Google Scholar] [CrossRef]
- Damayanti, A.; Setyawan, E. Essential Oil Extraction of Fennel Seed (Foeniculum vulgare) Using Steam Distillation. Int. J. Sci. Eng. 2012, 3. [Google Scholar] [CrossRef]
- Leal, P.F.; Almeida, T.S.; Prado, G.H.C.; Prado, J.M.; Meireles, M.A.A. Extraction Kinetics and Anethole Content of Fennel (Foeniculum vulgare) and Anise Seed (Pimpinella anisum) Extracts Obtained by Soxhlet, Ultrasound, Percolation, Centrifugation, and Steam Distillation. Sep. Sci. Technol. 2011, 46, 1848–1856. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Horgan, T.; Astatkie, T.; Schlegel, V. Distillation Time Modifies Essential Oil Yield, Composition, and Antioxidant Capacity of Fennel (Foeniculum vulgare Mill). J. Oleo Sci. 2013, 62, 665–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koşar, M.; Özek, T.; Kürkçüoglu, M.; Başer, K.H.C. Comparison of Microwave-Assisted Hydrodistillation and Hydrodistillation Methods for the Fruit Essential Oils of Foeniculum vulgare. J. Essent. Oil Res. 2007, 19, 426–429. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Tischer, B.; Vendruscolo, R.G.; Wagner, R.; Menezes, C.R.; Barin, C.S.; Giacomelli, S.R.; Budel, J.M.; Barin, J.S. Effect of Grinding Method on the Analysis of Essential Oil from Baccharis articulata (Lam.) Pers. Chem. Pap. 2017, 71, 753–761. [Google Scholar] [CrossRef]
- Mousavi, M.; Zaiter, A.; Becker, L.; Modarressi, A.; Baudelaire, E.; Dicko, A. Optimisation of Phytochemical Characteristics and Antioxidative Properties of Foeniculum vulgare Mill. Seeds and Ocimum basilicum L. Leaves Superfine Powders Using New Parting Process. Phytochem. Anal. 2020, 31, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Afifi, S.M.; El-Mahis, A.; Heiss, A.G.; Farag, M.A. Gas Chromatography–Mass Spectrometry-Based Classification of 12 Fennel (Foeniculum vulgare Miller) Varieties Based on Their Aroma Profiles and Estragole Levels as Analyzed Using Chemometric Tools. ACS Omega 2021, 6, 5775–5785. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Lewinsohn, E.; Tadmor, Y.; Bar, E.; Dudai, N.; Cohen, Y.; Friedman, J. The Inheritance of Volatile Phenylpropenes in Bitter Fennel (Foeniculum vulgare Mill. Var. Vulgare, Apiaceae) Chemotypes and Their Distribution within the Plant. Biochem. Syst. Ecol. 2009, 37, 308–316. [Google Scholar] [CrossRef]
- Krüger, H.; Hammer, K. Chemotypes of Fennel (Foeniculum vulgare Mill.). J. Essent. Oil Res. 1999, 11, 79–82. [Google Scholar] [CrossRef]
- Mota, A.S.; Martins, M.R.; Arantes, S.; Lopes, V.R.; Bettencourt, E.; Pombal, S.; Gomes, A.C.; Silva, L.A. Antimicrobial Activity and Chemical Composition of the Essential Oils of Portuguese Foeniculum vulgare Fruits. Nat. Prod. Commun. 2015, 10, 673–676. [Google Scholar] [CrossRef] [Green Version]
- Božović, M.; Garzoli, S.; Vujović, S.; Sapienza, F.; Ragno, R. Foeniculum vulgare Miller, a New Chemotype from Montenegro. Plants 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Mohammadi Nafchi, A.; Karim, A.A. Chemical Composition, Antioxidant Activity and Antimicrobial Properties of Three Selected Varieties of Iranian Fennel Seeds. J. Essent. Oil Res. 2016, 28, 357–363. [Google Scholar] [CrossRef]
- Bellik, F.-Z.; Benkaci-Ali, F.; Alsafra, Z.; Eppe, G.; Tata, S.; Sabaou, N.; Zidani, R. Chemical Composition, Kinetic Study and Antimicrobial Activity of Essential Oils from Cymbopogon schoenanthus L. Spreng Extracted by Conventional and Microwave-Assisted Techniques Using Cryogenic Grinding. Ind. Crops Prod. 2019, 139, 111505. [Google Scholar] [CrossRef]
Sample | HD | SD | ||||
---|---|---|---|---|---|---|
X1: Solid to Liquid Ratio (g: mL) | X2: Time (min) | EO Yield (%) | X1: Pressure (bar) | X2: Time (min) | EO Yield (%) | |
1 | 1:20 | 80 | 5.00 | 0.15 | 40 | 1.64 |
2 | 1:20 | 80 | 5.12 | 0.15 | 120 | 1.95 |
3 | 1:10 | 120 | 5.50 | 0.85 | 40 | 2.63 |
4 | 1:30 | 40 | 5.10 | 0.85 | 120 | 2.91 |
5 | 1:34.1 | 80 | 5.46 | 0.01 | 80 | 1.74 |
6 | 1:10 | 40 | 4.60 | 0.99 | 80 | 3.02 |
7 | 1:5.9 | 80 | 5.02 | 0.50 | 23.4 | 1.08 |
8 | 1:20 | 80 | 5.10 | 0.50 | 136.6 | 2.71 |
9 | 1:20 | 80 | 5.15 | 0.50 | 80 | 2.08 |
10 | 1:20 | 80 | 5.05 | 0.50 | 80 | 1.93 |
11 | 1:20 | 136.6 | 5.10 | 0.50 | 80 | 2.60 |
12 | 1:20 | 23.4 | 4.40 | 0.50 | 80 | 2.24 |
13 | 1:30 | 120 | 5.40 | 0.50 | 80 | 2.70 |
Mean | 5.08 | 2.25 |
Source of Variation | HD | SD | ||
---|---|---|---|---|
EO Yield (%) | ||||
F-Value | p-Value | F-Value | p-Value | |
X1 | 19.635 | 0.001 * | 15.844 | 0.003 * |
X12 | 8.557 | 0.022 * | - | - |
X2 | 12.170 | 0.010 * | 9.393 | 0.012 * |
X22 | 10.538 | 0.014 * | - | - |
X1X2 | 8.362 | 0.023 * | - | - |
Lack of fit | 5.781 | 0.062 | 1.030 | 0.512 |
R2 | 0.933 | 0.716 | ||
Model | Y = 3.6301 − 0.0032X1 + 0.0012X12 + 0.0271X2 − 0.0001X22 − 0.0004X1X2 | Y = 0.8498 + 1.3499X1 + 0.0090X2 |
Optimized Parameters | EO Yield (%) | |||
---|---|---|---|---|
Predicted | Experimental | |||
HD | Solid to Liquid Ratio (g:mL) | 1:10 | 5.37 | 5.50 |
Distillation time (min) | 120 | |||
SD | Pressure (bar) | 0.83 | 3.03 | 2.95 |
Distillation time (min) | 117 |
Source of Variation | EO Yield (%) |
---|---|
Cryomilling (min) | p < 0.001 * |
1 | 5.05 ± 0.02 a |
3 | 5.38 ± 0.02 b |
5 | 5.83 ± 0.02 c |
7 | 5.33 ± 0.02 b |
Distillation time (min) | p < 0.001 * |
40 | 4.96 ± 0.02 a |
80 | 5.49 ± 0.02 b |
120 | 5.75 ± 0.02 c |
Cryomilling (min) × Distillation time (min) | p < 0.001 * |
1 × 40 | 4.70 ± 0.04 a |
1 × 80 | 4.95 ± 0.04 b |
1 × 120 | 5.50 ± 0.04 c |
3 × 40 | 4.65 ± 0.04 a |
3 × 80 | 6.00 ± 0.04 d |
3 × 120 | 5.50 ± 0.04 c |
5 × 40 | 5.50 ± 0.04 c |
5 × 80 | 5.50 ± 0.04 c |
5 × 120 | 6.49 ± 0.04 e |
7 × 40 | 5.00 ± 0.04 b |
7 × 80 | 5.49 ± 0.04 c |
7 × 120 | 5.50 ± 0.04 c |
Mean | 5.40 |
9 | Compound | RI | RT | p-Value | HD | SD | CM | ||
---|---|---|---|---|---|---|---|---|---|
1:10/120 min | 0.83 bar/117 min | 3 min/80 min | 5 min/120 min | ||||||
mg mL−1 | |||||||||
Monoterpene hydrocarbons | |||||||||
1 | α-Pinene | 941 | 5.314 | <0.001 * | 29.52 ± 0.33 a | 33.18 ± 0.19 b | 44.43 ± 0.60 c | 47.42 ± 0.96 d | |
2 | Camphene | 956 | 5.689 | <0.001 * | 5.35 ± 0.26 a | 6.09 ± 0.39 a | 8.04 ± 0.15 b | 8.40 ± 0.47 b | |
3 | Sabinene | 979 | 6.322 | <0.001 * | 1.41 ± 0.01 a | 1.71 ± 0.02 b | 1.70 ± 0.00 b | 1.86 ± 0.06 c | |
4 | β-Pinene | 983 | 6.425 | <0.001 * | 1.44 ± 0.03 a | 1.61 ± 0.02 b | 1.86 ± 0.02 c | 1.98 ± 0.03 d | |
5 | Myrcene | 995 | 6.779 | <0.001 * | 19.91 ± 0.07 a | 21.52 ± 0.03 b | 23.71 ± 0.02 c | 26.28 ± 0.32 d | |
6 | α-Phellandrene | 1009 | 7.204 | <0.001 * | 4.08 ± 0.01 a | 4.26 ± 0.02 b | 4.63 ± 0.07 c | 4.97 ± 0.05 d | |
7 | α-Terpinene | 1022 | 7.579 | 0.042 * | 0.33 ± 0.06 a | 0.54 ± 0.04 ab | 0.51 ± 0.02 ab | 0.56 ± 0.16 b | |
8 | p-Cymene | 1030 | 7.833 | <0.001 * | 1.22 ± 0.01 a | 1.43 ± 0.02 b | 1.47 ± 0.00 c | 1.53 ± 0.01 d | |
9 | D-Limonene | 1034 | 7.969 | <0.001 * | 14.01 ± 0.15 a | 15.10 ± 0.06 b | 17.05 ± 0.38 c | 18.89 ± 0.41 d | |
11 | γ-Terpinene | 1064 | 8.984 | <0.001 * | 6.25 ± 0.04 a | 6.85 ± 0.04 b | 7.24 ± 0.11 c | 7.89 ± 0.16 d | |
12 | cis-Sabinene hydrate | 1072 | 9.271 | <0.001 * | 0.77 ± 0.01 b | 0.69 ± 0.01 a | 0.84 ± 0.01 c | 0.88 ± 0.02 c | |
Oxygenated monoterpenes | |||||||||
10 | Eucalyptol | 1037 | 8.066 | <0.001 * | 1.00 ± 0.01 a | 0.96 ± 0.03 a | 1.09 ± 0.00 b | 1.18 ± 0.03 c | |
13 | L-Fenchone | 1092 | 10.044 | <0.001 * | 157.81 ± 1.08 b | 145.90 ± 0.39 a | 184.05 ± 3.78 c | 191.17 ± 2.02 d | |
14 | Camphor | 1149 | 12.180 | <0.001 * | 3.52 ± 0.03 b | 3.27 ± 0.04 a | 3.96 ± 0.10 c | 4.24 ± 0.07 d | |
16 | Carvone | 1245 | 16.138 | 0.775 | 1.12 ± 0.03 a | 1.13 ± 0.04 a | 1.15 ± 0.03 a | 1.14 ± 0.02 a | |
Phenylpropanoids | |||||||||
15 | Estragole | 1200 | 14.368 | <0.001 * | 21.79 ± 0.11 a | 25.32 ± 0.14 b | 25.72 ± 0.46 b | 27.79 ± 0.58 c | |
18 | trans-Anethole | 1289 | 18.055 | <0.001 * | 605.88 ± 4.34 a | 625.70 ± 3.47 b | 637.31 ± 4.55 c | 647.04 ± 2.84 c | |
Others | |||||||||
17 | p-Anisaldehyde | 1257 | 16.614 | 0.663 | 4.31 ± 0.03 a | 4.38 ± 0.11 a | 4.43 ± 0.01 a | 4.33 ± 0.21 a | |
Total (%) | Monoterpene hydrocarbons | <0.001 * | 9.58 ± 0.03 a | 10.34 ± 0.04 b | 11.50 ± 0.03 c | 12.10 ± 0.23 d | |||
Oxygenated monoterpenes | <0.001 * | 18.58 ± 0.02 b | 16.81 ± 0.10 a | 19.63 ± 0.22 c | 19.82 ± 0.20 c | ||||
Phenylpropanoids | <0.001 * | 71.35 ± 0.04 c | 72.36 ± 0.13 d | 68.41 ± 0.23 b | 67.65 ± 0.25 a | ||||
Others | 0.002 * | 0.49 ± 0.01 c | 0.49 ± 0.01 c | 0.46 ± 0.00 ab | 0.43 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marčac, N.; Balbino, S.; Tonković, P.; Medved, A.M.; Cegledi, E.; Dragović, S.; Dragović-Uzelac, V.; Repajić, M. Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment. Processes 2023, 11, 2354. https://doi.org/10.3390/pr11082354
Marčac N, Balbino S, Tonković P, Medved AM, Cegledi E, Dragović S, Dragović-Uzelac V, Repajić M. Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment. Processes. 2023; 11(8):2354. https://doi.org/10.3390/pr11082354
Chicago/Turabian StyleMarčac, Nina, Sandra Balbino, Petra Tonković, Ana Marija Medved, Ena Cegledi, Sanja Dragović, Verica Dragović-Uzelac, and Maja Repajić. 2023. "Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment" Processes 11, no. 8: 2354. https://doi.org/10.3390/pr11082354
APA StyleMarčac, N., Balbino, S., Tonković, P., Medved, A. M., Cegledi, E., Dragović, S., Dragović-Uzelac, V., & Repajić, M. (2023). Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment. Processes, 11(8), 2354. https://doi.org/10.3390/pr11082354