Sedimentary Facies Types and Their Control of Reservoirs in the Lower Jurassic Lacustrine Facies Shale of the Lianggaoshan Formation, Northeastern Sichuan Basin, China
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Background
4. Results
4.1. Sedimentary Sequence Framework
4.2. Sedimentary Facies Type of Shale Reservoirs
- (1)
- Underwater interbranch bay microfacies
- (2)
- Shallow lake mud microfacies
- (3)
- Shallow lake mud microfacies affected by waves or deltas
- (4)
- Semi-deep lake mud microfacies
4.3. Petrological Characteristics of Shale Reservoirs
4.4. Physical Properties of Shale Reservoirs
4.5. Pore Types
- (1)
- Intercrystalline micro-nano-pores
- (2)
- Intergranular micro-nano-pores
- (1)
- Organic gas-generating pores
- (2)
- Dissolution pores
5. Discussion
5.1. Control of Lithofacies Types on Hydrocarbon Enrichment in Shale
5.2. Control of Deep–Semi-Deep Lacustrine Facies Belt on Hydrocarbon Enrichment in Shale
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.B.; Zhu, Y.M.; Wang, H.Y. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin. J. China Coal Soc. 2012, 37, 438–444. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H.M.; Liao, J.J. Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation, Southern Sichuan Basin. Geol. China 2022, 49, 472–484. [Google Scholar] [CrossRef]
- Cui, C.L.; Dong, Z.G.; Wu, D.S. Rock mechanics study and fracability evaluation for Longmaxi Formation of Baoj ing block in Hunan Province. Nat. Gas Geosci. 2019, 30, 626–634. [Google Scholar] [CrossRef]
- Zou, X.Y.; Li, X.Q.; Wang, Y. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin. Nat. Gas Geosci. 2022, 33, 654–665. [Google Scholar] [CrossRef]
- Fan, R.; Zhou, H.; Cai, K. Carbon isotopic geochemistry and origin of natural gases in the southern part of the western Sichuan Depression. Acta Geosci. Sin. 2005, 26, 157–162. [Google Scholar] [CrossRef]
- Gao, C.; Meng, S.; Zhang, J.; Wang, J.; Sun, Y. Effects of cementation on physical properties of clastic rock-originated weathering crust reservoirs in the Kexia region, Junggar Basin, NW China. Energy Geosci. 2023, 4, 74–82. [Google Scholar] [CrossRef]
- Li, Y. Mechanics and fracturing techniques of deep shale from the Sichuan Basin, SW China. Energy Geosci. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Zhou, J.L.; Mou, X.Y.; Guo, H.X.; Wang, X.X.; An, H.Y.; Mo, Q.W.; Long, H.Y.; Dang, C.X.; Wu, J.F.; et al. Pore structure and fractal characteristics of the marine shale of the Longmaxi Formation in the Changning Area, Southern Sichuan Basin, China. Front. Earth Sci. 2022, 10, 1018274. [Google Scholar] [CrossRef]
- Xue, F.; Liu, X.; Wang, T. Research on anchoring effect of jointed rock mass based on 3D printing and digital speckle technology. J. Min. Strat. Control Eng. 2021, 3, 023013. [Google Scholar] [CrossRef]
- Zhao, W.; Bian, C.; Xu, Z. Similarities and differences between natural gas accumulations in Sulige gas field in Ordos Basin and Xujiahe gas field in central Sichuan Basin. Pet. Explor. Dev. 2013, 40, 400–406. [Google Scholar] [CrossRef]
- Guo, H.; Ji, M.; Sun, Z.; Zhou, Z. Energy evolution characteristics of red sandstone under cyclic load. J. Min. Strat. Control Eng. 2021, 3, 043019. [Google Scholar] [CrossRef]
- Liao, F.; Yu, C.; Wu, W. Stable carbon and hydrogen isotopes of natural gas from the Zhongba Gasfield in the Sichuan Basin and implication for gas-source correlation. Nat. Gas Geosci. 2014, 25, 79–86. [Google Scholar] [CrossRef]
- Lan, S.R.; Song, D.Z.; Li, Z.L.; Liu, Y. Experimental study on acoustic emission characteristics of fault slip process based on damage factor. J. Min. Strat. Control Eng. 2021, 3, 033024. [Google Scholar] [CrossRef]
- Wan, M.; Xie, B.; Chen, S.; Zou, C.; Zhang, Q.; Ran, Y. Hydrocarbon source correlation of the upper Triassic reservoirs in the Sichuan Basin. Nat. Gas Ind. 2012, 32, 22–24. [Google Scholar]
- Yin, S.; Lv, D.W.; Ding, W.L. New method for assessing microfracture stress sensitivity in tight sandstone reservoirs based on acoustic experiments. Int. J. Geomech. 2018, 18, 04018008. [Google Scholar] [CrossRef]
- Yin, S.; Wu, Z. Geomechanical simulation of low-order fracture of tight sandstone. Mar. Pet. Geol. 2020, 117, 104359. [Google Scholar] [CrossRef]
- Yin, S.; Tian, T.; Wu, Z.; Li, Q. Developmental characteristics and distribution law of fractures in a tight sandstone reservoir in a low-amplitude tectonic zone, eastern Ordos Basin, China. Geol. J. 2020, 55, 1546–1562. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Gao, Y.J.; Zhang, M. Geochemical Characteristics of Gas and Flowback Water in Lake Facies Shale: A Case Study From the Junggar Basin, China. Front. Earth Sci. 2021, 9, 635893. [Google Scholar] [CrossRef]
- Mustafa, A.; Tariq, Z.; Mahmoud, M.; Radwan, A.; Abdulraheem, A.; Abouelresh, M. Data-driven machine learning approach to predict mineralogy of organic-rich shales: An example from Qusaiba Shale, Rub’al Khali Basin, Saudi Arabia. Mar. Pet. Geol. 2022, 137, 105495. [Google Scholar] [CrossRef]
- Radwan, R.; Wood, D.; Mahmoud, M.; Tariq, Z. Gas adsorption and reserve estimation for conventional and unconventional gas resources. In Sustainable Geoscience for Natural Gas Subsurface Systems; Gulf Professional Publishing: Houston, TX, USA, 2022; Volume 2, pp. 345–382. [Google Scholar]
- Sohail, G.; Radwan, A.; Mahmoud, M. A review of Pakistani shales for shale gas exploration and comparison to North American shale plays. Energy Rep. 2022, 8, 6423–6442. [Google Scholar] [CrossRef]
- Zhang, Q.; Radwan, A.; Wang, K.; Liu, C.; Song, Z.; Lu, D.; Zhang, M.; Guo, C.; Yin, S. Pore structure characteristics of different lithofacies of the Longmaxi shale, Western Hunan-Hubei Region, China: Implications for reservoir quality prediction. Geol. J. 2023, 27, 1–10. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, Z.; Hong, H.; Zhang, S.; Qin, C.; Yuan, X.; Zhang, B.; Zhou, C.; Deng, Q. Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 262–271. [Google Scholar] [CrossRef]
- He, W.; Bai, X.; Meng, Q.; Li, J.; Zhang, D.; Wang, Y. Accumulation geological characteristics and majot discoveries of lacustrine shale oil in Sichuan Basin. Acta Pet. Sin. 2022, 43, 885–895. [Google Scholar]
- Liu, H.; Li, J.; Liu, P.; Wang, X.; Wang, Y.; Qiu, Y.; Li, Z.; Wang, W. Enchrichment conditions and strategic exploration direction of Paleogene shale oil in Jiyang Depression. Acta Pet. Sin. 2022, 43, 1717–1727. [Google Scholar] [CrossRef]
- Baouche, R.; Sen, S.; Radwan, A. Geomechanical and Petrophysical Assessment of the Lower Turonian Tight Carbonates, Southeastern Constantine Basin, Algeria: Implications for Unconventional Reservoir Development and Fracture Reactivation Potential. Energies 2023, 15, 7901. [Google Scholar] [CrossRef]
- Elsayed, M.; Isah, A.; Hiba, M.; Hassan, A.; Al-Garadi, K.; Mahmoud, M.; El-Husseiny, A.; Radwan, A. A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: Laboratory and feld-scale measurements. J. Pet. Explor. Prod. Technol. 2022, 12, 2747–2784. [Google Scholar] [CrossRef]
- Hakimi, M.; Hamed, T.; Lotfy, N.; Radwan, A.; Lashin, A.; Rahim, A. Hydraulic fracturing as unconventional production potential for the organic-rich carbonate reservoir rocks in the Abu El Gharadig Field, north western Desert (Egypt): Evidence from combined organic geochemical, petrophysical and bulk kinetics modeling results. Fuel 2023, 334, 126606. [Google Scholar]
- GB/T 29172-2012; Practices for Core Analysis. National Standards of People’s Republic of China: Beijing, China, 2012.
- GB/T18602-2001; Rock Pyrolysis Analysis. National Standards of People’s Republic of China: Beijing, China, 2012.
- SY/T5118-2005; Determination of Bitumen from Racks by Chloroform Extraction. National Standards of People’s Republic of China: Beijing, China, 2012.
- Ismail, A.; Din, M.; Radwan, A.; Gabr, M. Rock typing of the Miocene Hammam Faraun alluvial fan delta sandstone reservoir using well logs, nuclear magnetic resonance, artificial neural networks, and core analysis, Gulf of Suez, Egypt. Geol. J. 2023, 16, 1–10. [Google Scholar] [CrossRef]
- He, H.; Peng, S.-P.; Shao, L.-Y. Trace elements and sedimentary settings of Cambrian-Ordovician carbonates in Bachu area, Tarim Basin. Xinjiang Pet. Geol. 2004, 25, 631. [Google Scholar]
- Hu, X.M.; Wang, C.S. Several major geological events and global climate change since 100 Ma. Escploration Nat. 1990, 18, 53–58. [Google Scholar] [CrossRef]
- Ni, Y.; Ma, Q.; Ellis, G. Fundamental studies on kinetic isotope fraction in natural gas systems. Geochim. Cosmochim. Acta 2011, 75, 2696–2707. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X. Seepage characteristic and fracture development of protected seam caused by mining protecting strata. J. Min. Strat. Control Eng. 2021, 3, 033511. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.; Li, S.; Zhao, M.; Zhu, T. Comprehensive characterization and evaluation of deep shales from Wufeng-Longmaxi Formation by LF-NMR technology. Unconv. Resour. 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, D.; Li, X.; Liu, H.; Zhou, L.; Li, P. Source rock and reservoir qualities of middle Jurassic Liang-gaoshan lacustrine shale at fuxing area, Sichuan Basin: Implication for shale-oil enrichment. Unconv. Resour. 2023, 3, 37–43. [Google Scholar] [CrossRef]
- Wang, S. Chemical characteristics of Jurassic-Sinian gasin Sichuan Basin. Nat. Gas Ind. 1994, 14, 1–5. [Google Scholar]
- Xiao, J.F.; Hu, P.J.; Han, L.X. Mechanical properties and compressibility evaluation of Qiongzhusi shale in Weiyuan area in southern Sichuan. Drill. Prod. Technol. 2022, 45, 61–66. [Google Scholar] [CrossRef]
- Yu, C.; Gong, D.; Huang, S. Geochemical char-acteristics of carbon and hydrogen isotopes for the Xujiahe Formation natural gas in Sichuan Basin. Nat. Gas Geosci. 2014, 25, 87–97. [Google Scholar]
- Asante-Okyere, S.; Ziggah, Y.Y.; Marfo, S.A. Improved total organic carbon convolutional neural network model based on mineralogy and geophysical well log data. Unconv. Resour. 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies-An overview. J. AAPG Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Guo, J.C.; Luo, B.; Zhu, H.Y. Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin. J. Nat. Gas Sci. Eng. 2015, 25, 77–87. [Google Scholar] [CrossRef]
- Hao, B.; Hu, S.; Huang, S. Geochemical characteristics and its significance of reservoir bitumen of Longwangmiao Formation in Moxi area, Sichuan Basin. Geoscience 2016, 30, 614–626. [Google Scholar]
- Hu, G.; Xie, Y. Carboniferous Gas Fields in High Steep Structure of Eastern Sichuan; Petroleum Industry Press: Beijing, China, 1997; pp. 47–62. [Google Scholar]
- Mondal, S.; Chatterjee, R.; Chakraborty, S. An integrated approach for reservoir characterisation in deep-water Krishna-Godavari basin, India: A case study. J. Geophys. Eng. 2021, 18, 134–144. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Yang, C.; Wu, Y.J.; Gao, Z.; Jiang, S.L. Geological characteristics and controlling factors of deep shale gas enrichment of the Wufeng-Longmaxi Formation in the southern Sichuan Basin, China. Lithosphere 2022, 2022, 4737801. [Google Scholar] [CrossRef]
- Montgomery, S.L.; Jarvie, D.M.; Bowker, K.A. Mississippian Barnet t shale, Fort Worth basin, north-central Texas: Gas shale play with multitrillion cubic foot potential. AAPG Bull. 2005, 89, 155–175. [Google Scholar] [CrossRef]
- Ni, Y.; Liao, F.; Yao, L. Stable hydrogen isotopic characteristicsof natural gas from the Xujiahe Formation in the central Sichuan Basin and its implications for water salinization. Nat. Gas Geosci. 2019, 30, 880–896. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Zhao, Q.; Liu, D.; Sun, S.; Guo, W.; Liang, F.; Lin, C.; Wang, X. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: Implications for targeting shale gas. Energy Geosci. 2020, 1, 124–133. [Google Scholar] [CrossRef]
- Du, H.; Wang, W.; Shi, Z.; Tan, J.; Cao, H.; Yin, X. Geochemical characteristics and source of natural gas of the Upper Triassic Xujiahe Formation in Malubei area, northeastern Sichuan Basin. Oil Gas Geol. 2019, 40, 34–38. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, Y.; Wang, Z. Non-connected pores of the Longmaxi shale in southern Sichuan Basin of China. Mar. Pet. Geol. 2019, 110, 420–433. [Google Scholar] [CrossRef]
- Huang, J.; Chen, S.; Song, J. Sichuan Basin Hydrocarbon source system and the formation of large and medium-sized gas fields. Sci. China D Serise 1996, 26, 504–510. [Google Scholar] [CrossRef]
- Katz, B.; Gao, L.; Little, J.; Zhao, Y.R. Geology still matters—Unconventional petroleum system disappointments and failures. Unconv. Resour. 2021, 1, 18–38. [Google Scholar] [CrossRef]
- Li, H. Research progress on evaluation methods and factors influencing shale brittleness: A review. Energy Rep. 2022, 8, 4344–4358. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, Z.X.; Zhang, C.M. The shale characteristics and shale gas exploration prospects of the Lower Silurian Long-maxi shale, Sichuan Basin, South China. J. Nat. Gas Sci. Eng. 2014, 21, 636–648. [Google Scholar] [CrossRef]
- Mazumdar, C.; Alleno, E.; Sologub, O. Investigations of the structural, magnetic and Ce-valence properties of quaternary CeM2B2C compounds (M: Co, Ni Rh, Pd Ir and Pt). ChemInform 2003, 34, 18–25. [Google Scholar] [CrossRef]
- Abraham-A, R.M.; Taioli, F.; Nzekwu, A.I. Physical properties of sandstone reservoirs: Implication for fluid mobility. Energy Geosci. 2022, 3, 349–359. [Google Scholar] [CrossRef]
- Haas, J.; Hips, K.; Budai, T. Processes and controlling factors of polygenetic dolomite formation in the Transdanubian Range, Hungary: A synopsis. J. Int. J. Earth Sci. 2017, 106, 991–1021. [Google Scholar] [CrossRef]
- Jiang, Y.; Gu, Y.; Li, K. Types and genesis of reservoir and permeability space of Middle Permian hydrothermal dolomite in the central Sichuan Basin. Nat. Gas Ind. 2018, 38, 16–24. [Google Scholar] [CrossRef]
- Meyer, E.E.; Quicksall, A.N.; Landis, J.D. Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition. Precambrian Res. 2013, 192, 89–106. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, S.; Zhao, Y. Formation mechanism of high quality reservoirs of Lower Cambrian Longwangmiao Formation in central Sichuan Basin. J. Guilin Univ. Technol. 2015, 35, 217–226. [Google Scholar]
- Liang, Y.; Li, Y.; Fu, X.; Yuan, X.; Yang, J.; Zheng, J. Origin and wholehydrocarbon geochemical characteristics of oil and gas from Xujiahe group of Chuanzhong-Chuannan Transitional Belt. Nat. Gas Geosci. 2006, 17, 593–596. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Wang, S.; Cao, J.T.; Li, M.; Pang, X.J.; Zhou, Z.L.; Fan, X.Q.; Dai, Q.Q.; Yang, L.; et al. Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs. Earth-Sci. Rev. 2018, 185, 234–258. [Google Scholar] [CrossRef]
- Mazzullo, S.J. Organogenic dolomitization in peritidal to deep-sea sediments. J. Sediment. Res. 2000, 70, 10–23. [Google Scholar] [CrossRef]
- Qiu, Z.; Zou, C.; Wang, H. Discussion on the characteristics and controlling factors of differential enrichment of shale gas in the Wufeng-Longmaxi formations in south China. J. Nat. Gas Geosci. 2020, 5, 117–128. [Google Scholar] [CrossRef]
- Saein, A.; Riahi, Z. Controls on fracture distribution in Cretaceous sedimentary rocks from the Isfahan region, Iran. Geol. Mag. 2017, 156, 1092–1104. [Google Scholar] [CrossRef]
- Tang, L.; Song, Y.; Jiang, S. Sealing mechanism of the roof and floor for the Wufeng-Longmaxi shale gas in the southern Sichuan Basin. Energy Fuels 2020, 34, 6999–7018. [Google Scholar] [CrossRef]
- Tan, K.; Yao, J.; Chen, J.; Tang, D.; Qin, Y.; Wu, Q. Controlling effect of source-reservoir assemblage on natural gas accumulation: A case study of the upper Triassic Xujiahe Formation in the Sichuan Basin. Front. Earth Sci. 2022, 10, 1028439. [Google Scholar] [CrossRef]
- Vafaie, A.; Kivi, I.R.; Moallemi, S.A.; Habibnia, B. Permeability prediction in tight gas reservoirs based on pore structure characteristics: A case study from South Western Iran. Unconv. Resour. 2021, 1, 9–17. [Google Scholar] [CrossRef]
- Yu, H.; Taleghani, A.D.; Lian, Z. On how pumping hesitations may improve complexity of hydraulic fractures, a simulation study. Fuel 2019, 249, 294–308. [Google Scholar] [CrossRef]
- Zhang, D.W. Development prospect of natural gas industry in the Sichuan Basin in the next decade. Nat. Gas Ind. 2021, 41, 34–45. [Google Scholar] [CrossRef]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, C.; Lv, X.; Zhu, X.; Zhang, J.; Wang, J.; Wang, M.; Xu, R. Sedimentary Facies Types and Their Control of Reservoirs in the Lower Jurassic Lacustrine Facies Shale of the Lianggaoshan Formation, Northeastern Sichuan Basin, China. Processes 2023, 11, 2463. https://doi.org/10.3390/pr11082463
Ni C, Lv X, Zhu X, Zhang J, Wang J, Wang M, Xu R. Sedimentary Facies Types and Their Control of Reservoirs in the Lower Jurassic Lacustrine Facies Shale of the Lianggaoshan Formation, Northeastern Sichuan Basin, China. Processes. 2023; 11(8):2463. https://doi.org/10.3390/pr11082463
Chicago/Turabian StyleNi, Chao, Xueju Lv, Xinjian Zhu, Jianyong Zhang, Jiahao Wang, Mingyang Wang, and Ruibin Xu. 2023. "Sedimentary Facies Types and Their Control of Reservoirs in the Lower Jurassic Lacustrine Facies Shale of the Lianggaoshan Formation, Northeastern Sichuan Basin, China" Processes 11, no. 8: 2463. https://doi.org/10.3390/pr11082463
APA StyleNi, C., Lv, X., Zhu, X., Zhang, J., Wang, J., Wang, M., & Xu, R. (2023). Sedimentary Facies Types and Their Control of Reservoirs in the Lower Jurassic Lacustrine Facies Shale of the Lianggaoshan Formation, Northeastern Sichuan Basin, China. Processes, 11(8), 2463. https://doi.org/10.3390/pr11082463