CoM-ZSM5 (M = Zn and Ni) Zeolites for an Oxygen Evolution Reaction in Alkaline Media
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of CoM-ZSM5 Electrocatalysts
3.2. Oxygen Evolution Reaction Investigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanan, A.; Solangi, M.Y.; Lakhan, M.N.; Alhazaa, A.; Shar, M.A.; Laghari, A.J.; Soomro, I.A.; Abro, M.I.; Kumar, M.; Aftab, U. CoSe2@Co3O4 nanostructures: A promising catalyst for oxygen evolution reaction in alkaline media. Catal. Commun. 2023, 186, 106830. [Google Scholar] [CrossRef]
- Zhang, M.-C.; Liu, M.-Y.; Yang, M.-X.; Liu, X.-X.; Shen, S.-Y.; Wu, J.-S.; Pei, W.-B. Copper-cobalt bimetallic conductive metal–organic frameworks as bifunctional oxygen electrocatalyst in alkaline and neutral media. J. Solid State Chem. 2023, 325, 124133. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Li, T. Controllable preparation of nickel phosphide using iron and cobalt as electrocatalyst for hydrogen evolution reaction in alkaline media. Mater. Today Chem. 2022, 24, 100914. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, M.H.; Kim, M.; Byeon, J.H.; Jang, J.S.; Kim, J.H.; Lim, D.M.; Park, S.H.; Gu, Y.H.; Kim, J.; et al. Spherical nickel doped cobalt phosphide as an anode catalyst for oxygen evolution reaction in alkaline media: From catalysis to system. Appl. Catal. B Environ. 2023, 327, 122444. [Google Scholar] [CrossRef]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yu, H.; Song, W.; Wang, X.; Li, Y.; Shao, Z.; Yi, B. Zeolite-templated IrxRu1-xO2 electrocatalysts for oxygen evolution reaction in solid polymer electrolyte water electrolyzers. Int. J. Hydrogen Energy 2012, 37, 16786–16794. [Google Scholar] [CrossRef]
- Kim, M.H.; Park, D.H.; Byeon, J.H.; Lim, D.M.; Gu, Y.H.; Park, S.H.; Park, K.W. Fe-doped Co3O4 nanostructures prepared via hard-template method and used for the oxygen evolution reaction in alkaline media. J. Ind. Eng. Chem. 2023, 123, 436–446. [Google Scholar] [CrossRef]
- Du, J.; Zhang, F.; Jiang, L.; Guo, Z.; Song, H. Enhanced cobalt MOF electrocatalyst for oxygen evolution reaction via morphology regulation. Inorg. Chem. Commun. 2023, 158, 111661. [Google Scholar] [CrossRef]
- Wu, Y.; Zang, J.; Dong, L.; Zhang, Y.; Wang, Y. High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media. J. Power Sources 2016, 305, 64–71. [Google Scholar] [CrossRef]
- Mathi, S.; Ashok, V.; Alodhayb, A.N.; Pandiaraj, S.; Shetti, N.P. Cobalt decorated S-doped carbon electrocatalyst assembly for enhanced oxygen evolution reaction. Mater. Today Sustain. 2024, 26, 100717. [Google Scholar] [CrossRef]
- Milikić, J.; Vasić, M.; Amaral, L.; Cvjetićanin, N.; Jugović, D.; Hercigonja, R.; Šljukić, B. NiA and NiX zeolites as bifunctional electrocatalysts for water splitting in alkaline media. Int. J. Hydrogen Energy 2018, 43, 18977–18991. [Google Scholar] [CrossRef]
- Vinodh, R.; Deviprasath, C.; Muralee Gopi, C.V.V.; Raghavendra Kummara, V.G.; Atchudan, R.; Ahamad, T.; Kim, H.-J.; Yi, M. Novel 13X Zeolite/PANI electrocatalyst for hydrogen and oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 28337–28349. [Google Scholar] [CrossRef]
- Milikić, J.; Stojanović, S.; Damjanović-Vasilić, L.; Vasilić, R.; Šljukić, B. Efficient bifunctional cerium-zeolite electrocatalysts for oxygen evolution and oxygen reduction reactions in alkaline media. Synth. Met. 2023, 292, 117231. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Liu, Z.; Ma, Y.; Gu, Y.; Zhao, L.; Zhou, Q.; Xu, W. Bimetal zeolite imidazolate framework derived Mo0.84Ni0.16-Mo2C@NC nanosphere for overall water splitting in alkaline solution. J. Colloid Interface Sci. 2021, 592, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Liu, H.; Jiang, X.; Jiang, Y.; Cheng, J.; Tu, Y.; Xiao, W.; Li, C.; Yan, X. Bimetallic zeolite imidazolium framework derived multiphase Co/HNC as pH-universal catalysts with efficient oxygen reduction performance for microbial fuel cells. Electrochim. Acta 2023, 438, 141548. [Google Scholar] [CrossRef]
- Milikić, J.; Stojanović, S.; Damjanović-Vasilić, L.; Vasilić, R.; Rakočević, L.; Lazarević, S.; Šljukić, B. Porous cerium-zeolite bifunctional ORR/OER electrocatalysts in alkaline media. J. Electroanal. Chem. 2023, 944, 117668. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Miao, X.; Yang, W.; Wang, C.; Pan, Q. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. Int. J. Hydrogen Energy 2020, 45, 33028–33036. [Google Scholar] [CrossRef]
- Bensafi, B.; Chouat, N.; Djafri, F. The universal zeolite ZSM-5: Structure and synthesis strategies. A review. Coord. Chem. Rev. 2023, 496, 215397. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; ISBN 9780080554341. [Google Scholar]
- Tao, Y.; Wei, W.; Gu, Q.; Jiang, X.; Li, D. Desilicated zeolite ZSM-5 based composite polymer electrolytes for solid-state lithium metal batteries. Mater. Lett. 2023, 351, 134934. [Google Scholar] [CrossRef]
- Dong, X.; Mi, W.; Yu, L.; Jin, Y.; Lin, Y.S. Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous Mesoporous Mater. 2016, 226, 406–414. [Google Scholar] [CrossRef]
- Chen, L.; Kishore, B.; Walker, M.; Dancer, C.E.J.; Kendrick, E. Nanozeolite ZSM-5 electrolyte additive for long life sodium-ion batteries. Chem. Commun. 2020, 56, 11609–11612. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Qiu, X.; Chen, L. PVDF-PEO/ZSM-5 based composite microporous polymer electrolyte with novel pore configuration and ionic conductivity. Solid State Ionics 2006, 177, 709–713. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, Y.; Jamil, M.I.; Lu, J.; Zhang, Q.; Zhan, X.; Chen, F. Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J. Memb. Sci. 2018, 564, 753–761. [Google Scholar] [CrossRef]
- Smeets, P.J.; Woertink, J.S.; Sels, B.F.; Solomon, E.I.; Schoonheydt, R.A. Transition-Metal Ions in Zeolites: Coordination and Activation of Oxygen. Inorg. Chem. 2010, 49, 3573–3583. [Google Scholar] [CrossRef] [PubMed]
- Jović, A.; Milikić, J.; Bajuk-Bogdanović, D.; Milojević-Rakić, M.; Vasiljević, B.N.; Krstić, J.; Cvjetićanin, N.; Šljukić, B. 12-phosphotungstic Acid Supported on BEA Zeolite Composite with Carbonized Polyaniline for Electroanalytical Sensing of Phenols in Environmental Samples. J. Electrochem. Soc. 2018, 165, H1013–H1020. [Google Scholar] [CrossRef]
- Karge, H.G.; Geidel, E. Molecular Sieves—Characterization I; Springer: Berlin/Heidelberg, Germany, 2004; Volume 4, pp. 1–540. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Assessment of Mesoporosity. In Adsorption by Powders and Porous Solids; Elsevier: Amsterdam, The Netherlands, 1999; pp. 191–217. [Google Scholar]
- Anantharaj, S.; Sugime, H.; Noda, S. Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences? J. Electroanal. Chem. 2021, 903, 115842. [Google Scholar] [CrossRef]
- Stevens, M.B.; Enman, L.J.; Batchellor, A.S.; Cosby, M.R.; Vise, A.E.; Trang, C.D.M.; Boettcher, S.W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140. [Google Scholar] [CrossRef]
- Klingan, K.; Ringleb, F.; Zaharieva, I.; Heidkamp, J.; Chernev, P.; Gonzalez-Flores, D.; Risch, M.; Fischer, A.; Dau, H. Water oxidation by amorphous cobalt-based oxides: Volume activity and proton transfer to electrolyte bases. ChemSusChem 2014, 7, 1301–1310. [Google Scholar] [CrossRef]
- Jung, S.; McCrory, C.C.L.; Ferrer, I.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068–3076. [Google Scholar] [CrossRef]
- Doyle, R.L.; Godwin, I.J.; Brandon, M.P.; Lyons, M.E.G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783. [Google Scholar] [CrossRef]
- Wang, H.; Yang, P.; Sun, X.; Xiao, W.; Wang, X.; Tian, M.; Xu, G.; Li, Z.; Zhang, Y.; Liu, F.; et al. Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction. J. Energy Chem. 2023, 87, 286–294. [Google Scholar] [CrossRef]
- Li, G.; Zheng, K.; Li, W.; He, Y.; Xu, C. Ultralow Ru-Induced Bimetal Electrocatalysts with a Ru-Enriched and Mixed-Valence Surface Anchored on a Hollow Carbon Matrix for Oxygen Reduction and Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 51437–51447. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Shen, M.; Yin, X.; Gao, B.; He, L.; Chen, Y.; Lin, B. Molten-salt confined synthesis of nitrogen-doped carbon nanosheets supported Co3O4 nanoparticles as a superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power Sources 2023, 560, 232692. [Google Scholar] [CrossRef]
- Andrić, S.; Milikić, J.; Sevim, M.; Santos, D.M.F.F.; Šljukić, B. Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media. Front. Chem. 2023, 11, 1244148. [Google Scholar] [CrossRef] [PubMed]
- Bastidas, D.M.; Cano, E. Validation of titanium corrosion impedance data using Kramers–Kronig relationships. Surf. Eng. 2006, 22, 384–389. [Google Scholar] [CrossRef]
- Zhong, H.; Campos-Roldán, C.A.; Zhao, Y.; Zhang, S.; Feng, Y.; Alonso-Vante, N. Recent advances of cobalt-based electrocatalysts for oxygen electrode reactions and hydrogen evolution reaction. Catalysts 2018, 8, 559. [Google Scholar] [CrossRef]
- Mattioli, G.; Giannozzi, P.; Amore Bonapasta, A.; Guidoni, L. Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 2013, 135, 15353–15363. [Google Scholar] [CrossRef]
Sample | SBET a m2/g | Sexternal b m2/g | Vmicro c cm3/g | Vtot d cm3/g |
---|---|---|---|---|
ZSM5 | 349 | 40 | 0.147 | 0.255 |
Co-ZSM5 | 344 | 45 | 0.142 | 0.303 |
CoZn-ZSM5 | 342 | 46 | 0.142 | 0.263 |
CoNi-ZSM5 | 360 | 54 | 0.145 | 0.307 |
Element | ZSM5 | Co-ZSM5 | CoZn-ZSM5 | CoNi-ZSM5 |
---|---|---|---|---|
wt % | ||||
O | 57.94 ± 0.35 | 54.59 ± 0.37 | 58.65 ± 0.40 | 55.10 ± 0.27 |
Si | 39.51 ± 0.33 | 42.57 ± 0.34 | 37.88 ± 0.36 | 41.75 ± 0.25 |
Al | 2.55 ± 0.10 | 2.54 ± 0.09 | 2.52 ± 0.11 | 2.71 ± 0.07 |
Co | 0.27 ± 0.13 | 0.24 ± 0.14 | 0.25 ± 0.09 | |
Zn | 0.71 ± 0.23 | |||
Ni | 0.20 ± 0.19 |
OER Electrocatalysts | Eonset/V | ηonset/mV | b/mV dec−1 | j at 2 V/mA cm−2 | References |
---|---|---|---|---|---|
Co-ZSM5 | 1.61 | 410 | 269 | 6.8 | This work |
CoZn-ZSM5 | 1.64 | 440 | 234 | 2.3 | This work |
CoNi-ZSM5 | 1.61 | 410 | 134 | 9.5 | This work |
Ce-ZSM-5 | 1.68 | 480 | 207 | 1.6 | [16] |
Ce-ZSM-5 cal | 1.66 | 460 | 202 | 1.7 | [16] |
Ce-β | 1.72 | 520 | 312 | 2.6 | [16] |
Ce-β cal | 1.61 | 410 | 114 | 7.3 | [16] |
Ce-Cli | 1.73 | 530 | 220 | 1.2 | [13] |
Ce-Cli cal | 1.69 | 490 | 278 | 1.54 | [13] |
Ce-13X | 1.67 | 470 | 280 | 2.14 | [13] |
Ce-13X cal | 1.60 | 400 | 296 | 4.6 | [13] |
NiA | / | / | 463 | ~13 | [11] |
NiX | / | / | 842 | ~3 | [11] |
Co3O4/NCN | / | ~380 | 102 | / | [34] |
Co-O@HNC | / | / | 105.7 | / | [35] |
CoRu-A@HNC | / | / | 180.6 | / | [35] |
Co@NC | / | / | 90 | / | [36] |
Co3O4@NCNs | / | / | 220 | / | [36] |
CoPt/mpg-CN | 1.62 | / | 160 | / | [37] |
CoPt/C (46.7 wt% Pt) | 1.59 | / | 208 | / | [37] |
Electrocatalyst | Rs (Ω) | Rct (Ω) | Qe (mF) |
---|---|---|---|
Co-ZSM5 | 4.8 | 68.7 | 6.5 × 10−4 |
CoZn-ZSM5 | 109.3 | 133.4 | 1.1 × 10−3 |
CoNi-ZSM5 | 29.5 | 31.5 | 6.4 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milikić, J.; Stojanović, S.; Rondović, K.; Damjanović-Vasilić, L.; Rac, V.; Šljukić, B. CoM-ZSM5 (M = Zn and Ni) Zeolites for an Oxygen Evolution Reaction in Alkaline Media. Processes 2024, 12, 907. https://doi.org/10.3390/pr12050907
Milikić J, Stojanović S, Rondović K, Damjanović-Vasilić L, Rac V, Šljukić B. CoM-ZSM5 (M = Zn and Ni) Zeolites for an Oxygen Evolution Reaction in Alkaline Media. Processes. 2024; 12(5):907. https://doi.org/10.3390/pr12050907
Chicago/Turabian StyleMilikić, Jadranka, Srna Stojanović, Katarina Rondović, Ljiljana Damjanović-Vasilić, Vladislav Rac, and Biljana Šljukić. 2024. "CoM-ZSM5 (M = Zn and Ni) Zeolites for an Oxygen Evolution Reaction in Alkaline Media" Processes 12, no. 5: 907. https://doi.org/10.3390/pr12050907
APA StyleMilikić, J., Stojanović, S., Rondović, K., Damjanović-Vasilić, L., Rac, V., & Šljukić, B. (2024). CoM-ZSM5 (M = Zn and Ni) Zeolites for an Oxygen Evolution Reaction in Alkaline Media. Processes, 12(5), 907. https://doi.org/10.3390/pr12050907