Novel Ferrocene-Containing Triacyl Derivative of Resveratrol Protects Ovarian Cells from Toxicity Caused by Ortho-Substituted Polychlorinated Biphenyls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Conditions for Cell Culture
2.3. Cell Viability and Proliferation Analysis
2.4. Detection of Reactive Oxygen Species
2.5. Analysis of Cell Death via Cytofluorimetry
2.6. Statistical Analysis
3. Results
3.1. Effect of Ferrocene-Containing Triacyl Derivative of Resveratrol (RF) on Cytotoxicity Induced by PCB 77 or PCB 153 (Cell Proliferation and Viability Endpoints)
3.2. Antioxidant Activity of Ferrocene-Containing Triacyl Derivative of Resveratrol (RF) in PCB 77- or PCB 153-Treated Cells
3.3. Effect of Ferrocene-Containing Triacyl Derivative of Resveratrol (RF) on Apoptosis/Necrosis Induced by PCB 77 or PCB 153
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Delmas, D.; Cornebise, C.; Courtaut, F.; Xiao, J.; Aires, V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int. J. Mol. Sci. 2021, 22, 1295. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Pasquariello, R.; Verdile, N.; Brevini, T.A.L.; Gandolfi, F.; Boiti, C.; Zerani, M.; Maranesi, M. The Role of Resveratrol in Mammalian Reproduction. Molecules 2020, 25, 4554. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef] [PubMed]
- Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants 2019, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Micale, N.; Molonia, M.S.; Citarella, A.; Cimino, F.; Saija, A.; Cristani, M.; Speciale, A. Natural Product-Based Hybrids as Potential Candidates for the Treatment of Cancer: Focus on Curcumin and Resveratrol. Molecules 2021, 26, 4665. [Google Scholar] [CrossRef] [PubMed]
- Kmetič, I.; Murati, T.; Kovač, V.; Landeka Jurčević, I.; Šimić, B.; Radošević, K.; Miletić, M. Novel ferrocene-containing triacyl derivative of resveratrol improves viability parameters in ovary cells. J. Appl. Toxicol. 2023, 43, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Murati, T.; Šimić, B.; Brozovic, A.; Kniewald, J.; Miletić Gospić, A.; Bilandžić, N.; Kmetič, I. PCB 77 action in ovary cells–toxic effects, apoptosis induction and cell cycle analysis. Toxicol. Mech. Methods 2015, 25, 302–311. [Google Scholar] [CrossRef]
- Murati, T.; Šimić, B.; Pleadin, J.; Vukmirović, M.; Miletić, M.; Durgo, K.; Kniewald, J.; Kmetič, I. Reduced cytotoxicity in PCB-exposed Chinese Hamster Ovary (CHO) cells pretreated with vitamin E. Food Chem. Toxicol. 2017, 99, 17–23. [Google Scholar] [CrossRef]
- Miletić, M.; Murati, T.; Šimić, B.; Bilandžić, N.; Brozović, A.; Kmetič, I. Ortho-substituted PCB 153: Effects in CHO-K1 cells. Arh. Hig. Rada Toksikol. 2021, 72, 326–332. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.; Kypke, K.; Kotz, A.; Tritscher, A.; Lee, S.Y.; Magulova, K.; Fiedler, H.; Malisch, R. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit-risk evaluation of breastfeeding. Arch. Toxicol. 2017, 91, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Pessah, I.N.; Lein, P.J.; Seegal, R.F.; Sagiv, S.K. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol. 2019, 138, 363–387. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; De, S.; Chen, Y.; Sutton, D.C.; Ayorinde, F.O.; Dutta, S.K. Polychlorinated biphenyls (PCB-153) and (PCB-77) absorption in human liver (HepG2) and kidney (HK2) cells in vitro: PCB levels and cell death. Environ. Int. 2010, 36, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Kalen, A.L.; Li, L.; Lehmler, H.J.; Robertson, L.W.; Goswami, P.C.; Spitz, D.R.; Aykin-Burns, N. Polychlorinated biphenyl (PCB)—Induced oxidative stress and cytotoxicity can be mitigated by antioxidants following exposure. Free Radic. Bio. Med. 2009, 47, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Techniques, 5th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- O’Hare, S.; Atterwill, C.K. (Eds.) In Vitro Toxicity Testing Protocols, Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 1995; Volume 43. [Google Scholar]
- Schæbel, L.K.; Bonefeld-Jørgensen, E.C.; Vestergaard, H.; Andersen, S. The influence of persistent organic pollutants in the traditional Inuit diet on markers of inflammation. PLoS ONE 2017, 12, e0177781. [Google Scholar] [CrossRef] [PubMed]
- Montano, L.; Pironti, C.; Pinto, G.; Ricciardi, M.; Buono, A.; Brogna, C.; Venier, M.; Piscopo, M.; Amoresano, A.; Motta, O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. Toxics 2022, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.; Britt, J.K.; James, R.C. Development of a neurotoxic equivalence scheme of relative potency for assessing the risk of PCB mixtures. Regul. Toxicol. Pharm. 2007, 48, 148–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sargis, R.M.; Volden, P.A.; Carmean, C.M.; Sun, X.J.; Brady, M.J. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS ONE 2012, 7, e37103. [Google Scholar] [CrossRef]
- Selvakumar, K.; Bavithra, S.; Krishnamoorthy, G.; Venkataraman, P.; Arunakaran, J. Polychlorinated biphenyls-induced oxidative stress on rat hippocampus: A neuroprotective role of quercetin. Sci. World J. 2012, 2012, 980314. [Google Scholar] [CrossRef]
- Selvakumar, K.; Bavithra, S.; Suganthi, M.; Benson, C.S.; Elumalai, P.; Arunkumar, R.; Krishnamoorthy, G.; Venkataraman, P.; Arunakaran, J. Protective Role of Quercetin on PCBs-Induced Oxidative Stress and Apoptosis in Hippocampus of Adult Rats. Neurochem. Res. 2012, 37, 708–721. [Google Scholar] [CrossRef]
- Żwierełło, W.; Maruszewska, A.; Skórka-Majewicz, M.; Goschorska, M.; Baranowska-Bosiacka, I.; Dec, K.; Styburski, D.; Nowakowska, A.; Gutowska, I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics—Review. Chemosphere 2020, 240, 124901. [Google Scholar] [CrossRef]
- Choi, Y.J.; Arzuaga, X.; Kluemper, C.T.; Caraballo, A.; Toborek, M.; Hennig, B. Quercetin blocks caveolae-dependent pro-inflammatory responses induced by co-planar PCBs. Environ. Int. 2010, 36, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Perkins, J.T.; Hennig, B. EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-κB target genes in human endothelial cells. J. Nutr. Biochem. 2016, 28, 164–170. [Google Scholar] [CrossRef]
- Gu, T.; Wang, N.; Wu, T.; Ge, Q.; Chen, L. Antioxidative Stress Mechanisms behind Resveratrol: A Multidimensional Analysis. J. Food Quality 2021, 2021, 5571733. [Google Scholar] [CrossRef]
- Miletić, M.; Kmetič, I.; Kovač, V.; Šimić, B.; Petković, T.; Švob Štrac, D.; Pleadin, J.; Murati, T. Resveratrol ameliorates ortho-polychlorinated biphenyls’ induced toxicity in ovary cells. Environ. Sci. Pollut. Res. 2023, 30, 77318–77327. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Schlezinger, J.J.; Struntz, W.D.; Goldstone, J.V.; Stegeman, J.J. Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquat. Toxicol. 2006, 77, 422–432. [Google Scholar] [CrossRef]
- IARC. Polychlorinated Biphenyls and Polybrominated Biphenyls; (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 107); International Agency for Research on Cancer: Lyon, France, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK361696/pdf/Bookshelf_NBK361696.pdf (accessed on 10 January 2024).
- Phillips, M.C.; Dheer, R.; Santaolalla, R.; Davies, J.M.; Burgueño, J.; Lang, J.K.; Toborek, M.; Abreu, M.T. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway. Toxicol. Appl. Pharmacol. 2018, 339, 24–33. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Mandal, D.; Saha, B.; Sen, G.S.; Das, T.; Sa, G. Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J. Biol. Chem. 2007, 282, 15954–15964. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, G.; Selvakumar, K.; Venkataraman, P.; Elumalai, P.; Arunakaran, J. Lycopene supplementation prevents reactive oxygen species mediated apoptosis in Sertoli cells of adult albino rats exposed to polychlorinated biphenyls. Interdiscip. Toxicol. 2013, 6, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Khanduja, K.L.; Avti, P.K.; Kumar, S.; Mittal, N.; Sohi, K.K.; Pathak, C.M. Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: A Bcl-2 independent mechanism. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 283–289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kmetič, I.; Murati, T.; Kovač, V.; Barišić, L.; Bilandžić, N.; Šimić, B.; Miletić, M. Novel Ferrocene-Containing Triacyl Derivative of Resveratrol Protects Ovarian Cells from Toxicity Caused by Ortho-Substituted Polychlorinated Biphenyls. Processes 2024, 12, 947. https://doi.org/10.3390/pr12050947
Kmetič I, Murati T, Kovač V, Barišić L, Bilandžić N, Šimić B, Miletić M. Novel Ferrocene-Containing Triacyl Derivative of Resveratrol Protects Ovarian Cells from Toxicity Caused by Ortho-Substituted Polychlorinated Biphenyls. Processes. 2024; 12(5):947. https://doi.org/10.3390/pr12050947
Chicago/Turabian StyleKmetič, Ivana, Teuta Murati, Veronika Kovač, Lidija Barišić, Nina Bilandžić, Branimir Šimić, and Marina Miletić. 2024. "Novel Ferrocene-Containing Triacyl Derivative of Resveratrol Protects Ovarian Cells from Toxicity Caused by Ortho-Substituted Polychlorinated Biphenyls" Processes 12, no. 5: 947. https://doi.org/10.3390/pr12050947
APA StyleKmetič, I., Murati, T., Kovač, V., Barišić, L., Bilandžić, N., Šimić, B., & Miletić, M. (2024). Novel Ferrocene-Containing Triacyl Derivative of Resveratrol Protects Ovarian Cells from Toxicity Caused by Ortho-Substituted Polychlorinated Biphenyls. Processes, 12(5), 947. https://doi.org/10.3390/pr12050947