Effects of Vegetation Cover Varying along the Hydrological Gradient on Microbial Community and N-Cycling Gene Abundance in a Plateau Lake Littoral Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Process
2.2. Analysis of Soil and Sediment Physicochemical Properties
2.3. DNA Extraction, Quantitative Real-Time PCR (qPCR), and Sequencing
2.4. Statistical Analyses
3. Results
3.1. Physicochemical Characteristics
3.2. Microbial Community Composition and Diversity
3.2.1. Richness and Diversity of Microbial Communities
3.2.2. Microbial Community Structure in Various Soil and Sediment Samples
3.3. Relationship of Microbial Community to the Various Water Levels and Vegetation Types
3.4. Abundances of Nitrogen-Related Functional Genes
3.5. Relationships between Environmental Variables, Microbial Communities, and Functional Genes
4. Discussion
4.1. Relationships between Environmental Variables, Water Levels, and Plant Covers
4.2. Effects of Water Level Fluctuations and Vegetation Cover on the Microbial Diversity and Composition
4.3. Effects of Water Level Fluctuations and Vegetation Cover on the Nitrogen-Related Functional Genes
4.4. Mechanism of Water Level Fluctuation and Vegetation Type Effecting on the Microbial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Liu, W.; Wu, D.; Wang, X.; Zhu, G. Differentiation of nitrogen and microbial community in the littoral and limnetic sediments of a large shallow eutrophic lake (Chaohu Lake, China). J. Soils Sediments 2019, 19, 1005–1016. [Google Scholar] [CrossRef]
- Jeppesen, E.; Sorensen, P.; Johansson, L.; Sondergaard, M.; Lauridsen, T.; Nielsen, A.; Mejlhede, P. Recovery of lakes from eutrophication: Changes in nitrogen retention capacity and the role of nitrogen legacy in 10 Danish lakes studied over 30 years. Hydrobiologia 2024. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, B.; Hou, Z.; Peng, J.; Li, D.; Chu, Z. Response of Nitrogen Removal Performance and Microbial Distribution to Seasonal Shock Nutrients Load in a Lakeshore Multicell Constructed Wetland. Processes 2023, 11, 2781. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Wang, W.; Zhou, L.; Jiang, B.; Op Den Camp, H.; Risgaard-Petersen, N.; Schwark, L.; Peng, Y.; Hefting, M.; et al. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nat. Geosci. 2013, 6, 103–107. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, D.; Wu, J.; Chen, Q.; Long, C.; Li, Y.; Cheng, X. Anti-seasonal submergence dominates the structure and composition of prokaryotic communities in the riparian zone of the Three Gorges Reservoir, China. Sci. Total. Environ. 2019, 663, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, L.; Li, Y.; Zhang, W.; Niu, L.; Wang, L. The bacterial community structure and N-cycling gene abundance in response to dam construction in a riparian zone. Environ. Res. 2021, 194, 110717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; O’Connor, P.; Zhang, J.; Ye, X. Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone. Geoderma 2021, 384, 114801. [Google Scholar] [CrossRef]
- Middleton, J.A.; de Sosa, L.L.; Martin, B.C.; Jones, D.L.; Gleeson, D.B. Soil microbes of an urban remnant riparian zone have greater potential for N removal than a degraded riparian zone. Environ. Microbiol. 2020, 22, 3302–3314. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, W.; Liu, L.; Zhuang, L.; Zhao, S.; Su, Y.; Li, Y.; Wang, M.; Wang, C.; Xu, L.; et al. Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation. Environ. Sci. Technol. 2018, 52, 6226–6236. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, G.; Wang, C.; Zhang, X.; Xu, M. Importance of denitrification driven by the relative abundances of microbial communities in coastal wetlands. Environ. Pollut. 2019, 244, 47–54. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, S.; Wang, H. Periodic inundations drive community assembly of amphibious plants in floodplain lakes. Hydrobiologia 2020, 847, 4207–4217. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Wang, X.; Huang, J.; Shen, L. Mechanisms Driving the Distribution and Activity of Mineralization and Nitrification in the Reservoir Riparian Zone. Microb. Ecol. 2023, 6, 1829–1846. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, J.; Tang, B.; He, L.; Xu, Y.; Yang, C. Eco-Environmental Changes Due to Human Activities in the Erhai Lake Basin from 1990 to 2020. Sci. Rep. 2024, 14, 8646. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Ma, Y.; Wang, H.; Cao, Y.; Yuan, C.; Ren, W.; Ni, L.; Cai, Q.; Xiao, W.; Fu, H.; et al. Water Level Regulation for Eco-social Services Under Climate Change in Erhai Lake Over the Past 68 years in China. Front. Environ. Sci. 2021, 9, 697694. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, W.; Qin, B. An indispensable role of overlying water in nitrogen removal in shallow lakes. Sci. Total. Environ. 2024, 923, 171487. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Guo, L.; Zhang, Q.; Liu, G.; Liu, W. Edaphic Conditions Regulate Denitrification Directly and Indirectly by Altering Denitrifier Abundance in Wetlands along the Han River, China. Environ. Sci. Technol. 2017, 51, 5483–5491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, X.; Zhou, Y.; Zhang, J.; Zhang, X. Discrepancies in Karst Soil Organic Carbon in Southwest China for Different Land Use Patterns: A Case Study of Guizhou Province. Int. J. Environ. Res. Public Health 2019, 16, 4199. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhou, J.; Li, Q.; Tang, J.; Chen, X. Effects of Land-Use Type and Flooding on the Soil Microbial Community and Functional Genes in Reservoir Riparian Zones. Microb. Ecol. 2022, 83, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, M.; Yang, Y.; Yu, H.; Xiao, F.; Mao, C.; Huang, J.; Yu, Y.; Wang, Y.; Wu, B.; et al. Nitrite and nitrate reduction drive sediment microbial nitrogen cycling in a eutrophic lake. Water. Res. 2022, 220, 118637. [Google Scholar] [CrossRef]
- Li, D.; Chu, Z.; Zeng, Z.; Sima, M.; Huang, M.; Zheng, B. Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands. Sci. Total Environ. 2021, 797, 148989. [Google Scholar] [CrossRef]
- Geng, S.; Cao, W.; Yuan, J.; Wang, Y.; Guo, Y.; Ding, A.; Zhu, Y.; Dou, J. Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol. Environ. Saf. 2020, 203, 110931. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Santonja, M.; Bragazza, L.; Buttler, A. Shift in plant-soil interactions along a lakeshore hydrological gradient. Sci. Total. Environ. 2020, 742, 140254. [Google Scholar] [CrossRef] [PubMed]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G. Denitrification across Landscapes and Waterscapes: A Synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [PubMed]
- Pucciariello, C.; Perata, P. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant. Cell Environ. 2017, 40, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Penton, C.R.; Deenik, J.L.; Popp, B.N.; Bruland, G.L.; Engstrom, P.; St Louis, D.; Tiedje, J. Importance of sub-surface rhizosphere-mediated coupled nitrification–denitrification in a flooded agroecosystem in Hawaii. Soil. Biol. Biochem. 2013, 57, 362–373. [Google Scholar] [CrossRef]
- Shi, B.; Cheng, X.; Jiang, S.; Pan, J.; Zhu, D.; Lu, Z.; Jiang, Y.; Liu, C.; Guo, H.; Xie, J. Unveiling the power of COD/N on constructed wetlands in a short-term experiment: Exploring microbiota co-occurrence patterns and assembly dynamics. Sci. Total Environ. 2024, 912, 169568. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xiao, L.; Lu, H.; Lu, S.; Li, J.; Guo, X.; Zhao, X. Nitrogen removal from summer to winter in a field pilot-scale multistage constructed wetland-pond system. J. Environ. Sci. 2022, 111, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, C.; Cai, J.; Hu, Y.; Shao, K.; Tang, X.; Gong, Y.; Yao, X.; Xu, Q.; Gao, G. Relationships between environmental factors and N-cycling microbes reveal the indirect effect of further eutrophication on denitrification and DNRA in shallow lakes. Water. Res. 2023, 245, 120572. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Dong, W.; Chang, Y.; Yan, G.; Chu, Z.; Ling, Y.; Wang, Z.; Fan, T.; Li, C. Nitrogen removal and microbial community for the treatment of rural domestic sewage with low C/N ratio by A/O biofilter with Arundo donax as carbon source and filter media. J. Water Process. Eng. 2020, 37, 101509. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Q.; Sun, H.; Jia, L.; Zhao, L.; Wu, W. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study. Water. Res. 2021, 196, 117067. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Zhou, J.; Ju, F. Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants. ISME J. 2023, 17, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, B.; Huang, T.; Yang, W.; Liu, X.; Niu, L. Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: Novel insight into abundance of denitrification genes and community interactions. Bioresour. Technol. 2022, 351, 127013. [Google Scholar] [CrossRef]
- Dionisi, H.M.; Layton, A.C.; Harms, G.; Gregory, I.R.; Robinson, K.G.; Sayler, G.S. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 2002, 68, 245–253. [Google Scholar] [CrossRef]
- López-Gutiérrez, J.C.; Henry, S.; Hallet, S.; Martin-Laurent, F.; Philippot, L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods 2004, 57, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Bru, D.; Sarr, A.; Philippot, L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 2007, 73, 5971–5974. [Google Scholar] [CrossRef] [PubMed]
- Kandeler, E.; Deiglmayr, K.; Tscherko, D.; Bru, D.; Philippot, L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 2006, 72, 5957–5962. [Google Scholar] [CrossRef]
- Scala, D.J.; Kerkhof, L.J. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol. Lett. 1998, 162, 61–68. [Google Scholar] [CrossRef]
Samples | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | NO2−-N (mg kg−1) | TN (mg g−1) | SOM (mg g−1) | C/N | pH | WC |
---|---|---|---|---|---|---|---|---|
LF | 80.54 ± 43.0 ab | 12.41 ± 3.8 b | 25.83 ± 10.4 a | 1.32 ± 0.5 bc | 21.06 ± 6.7 bc | 16.33 ± 7.8 a | 6.62 ± 0.3 a | 0.25 ± 0.1 b |
LFG | 42.70 ± 25.5 b | 7.14 ± 3.8 b | 34.57 ± 34.61 a | 2.72 ± 0.8 abc | 50.24 ± 11.7 bc | 12.91 ± 1.4 a | 6.89 ± 0.5 a | 0.34 ± 0.1 b |
LG | 80.46 ± 45.3 ab | 28.69 ± 26.4 ab | 21.87 ± 7.5 a | 7.01 ± 3.8 a | 128.50 ± 71.1 a | 13.72 ± 2.4 a | 7.03 ± 0.2 a | 0.35 ± 0.2 b |
IE | 57.81 ± 19.2 ab | 8.38 ± 7.2 b | 16.95 ± 5.3 a | 1.37 ± 1.0 bc | 26.22 ± 18.0 bc | 14.63 ± 3.7 a | 6.95 ± 0.4 a | 0.43 ± 0.0 ab |
IFG | 76.39 ± 23.5 ab | 13.77 ± 10.5 b | 16.80 ± 3.4 a | 2.26 ± 0.9 abc | 44.79 ± 20.5 bc | 13.52 ± 1.3 a | 6.89 ± 0.4 a | 0.40 ± 0.1 b |
IG | 39.90 ± 10.4 b | 14.05 ± 18.4 b | 15.46 ± 2.8 a | 5.12 ± 2.1 ab | 88.66 ± 39.5 ab | 14.02 ± 2.7 a | 6.83 ± 0.2 a | 0.51 ± 0.2 ab |
WE | 53.69 ± 30.6 b | 12.22 ± 8.8 b | 16.73 ± 5.0 a | 1.85 ± 1.1 bc | 32.39 ± 18.60 bc | 17.65 ± 6.8 a | 6.85 ± 0.3 a | 0.43 ± 0.1 b |
WS | 69.18 ± 47.0 ab | 16.88 ± 21.1 b | 16.05 ± 2.3 a | 1.10 ± 0.7 c | 18.35 ± 11.2 c | 18.96 ± 7.6 a | 6.65 ± 0.3 a | 0.36 ± 0.1 b |
WN | 116.97 ± 61.6 a | 73.50 ± 80.9 a | 22.74 ± 16.9 a | 4.64 ± 4.6 ab | 71.04 ± 69.5 ab | 17.59 ± 6.8 a | 6.70 ± 0.3 a | 0.62 ± 0.2 a |
Landward soil (L) | 65.96 ± 39.5 a | 15.39 ± 16.5 a | 27.97 ± 21.7 a | 3.61 ± 3.1 a | 65.34 ± 58.3 a | 14.21 ± 4.4 a | 6.85 ± 0.4 a | 0.32 ± 0.1 b |
Interface sediment (I) | 58.03 ± 22.9 a | 12.07 ± 12.0 a | 16.41 ± 3.7 b | 2.92 ± 2.1 a | 53.22 ± 37.1 a | 14.06 ± 2.5 a | 6.89 ± 0.3 a | 0.45 ± 0.1 a |
Waterward sediment (W) | 74.07 ± 50.4 a | 27.48 ± 45.7 a | 16.05 ± 9.0 b | 2.13 ± 2.6 a | 34.68 ± 39.0 a | 18.20 ± 6.90 a | 6.73 ± 0.3 a | 0.44 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Cao, J.; Liao, W.; Zhu, F.; Hou, Z.; Chu, Z. Effects of Vegetation Cover Varying along the Hydrological Gradient on Microbial Community and N-Cycling Gene Abundance in a Plateau Lake Littoral Zone. Processes 2024, 12, 1276. https://doi.org/10.3390/pr12061276
Yuan J, Cao J, Liao W, Zhu F, Hou Z, Chu Z. Effects of Vegetation Cover Varying along the Hydrological Gradient on Microbial Community and N-Cycling Gene Abundance in a Plateau Lake Littoral Zone. Processes. 2024; 12(6):1276. https://doi.org/10.3390/pr12061276
Chicago/Turabian StyleYuan, Jing, Jing Cao, Wanxue Liao, Feng Zhu, Zeying Hou, and Zhaosheng Chu. 2024. "Effects of Vegetation Cover Varying along the Hydrological Gradient on Microbial Community and N-Cycling Gene Abundance in a Plateau Lake Littoral Zone" Processes 12, no. 6: 1276. https://doi.org/10.3390/pr12061276
APA StyleYuan, J., Cao, J., Liao, W., Zhu, F., Hou, Z., & Chu, Z. (2024). Effects of Vegetation Cover Varying along the Hydrological Gradient on Microbial Community and N-Cycling Gene Abundance in a Plateau Lake Littoral Zone. Processes, 12(6), 1276. https://doi.org/10.3390/pr12061276