Impact of Storage Conditions on Stability of Bioactive Compounds and Bioactivity of Beetroot Extract and Encapsulates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Plant Material
2.3. Extraction Procedure
2.4. Encapsulation Process
2.5. Chemical Characterization
Content of Bioactive Compounds
- Total phenolic content
- Total betalain content
- HPLC analysis
- Encapsulation efficiency
- Bioactivity analysis
- Antioxidant activity
- Anti-Inflammatory Activity
- Antihyperglycemic Activity
2.6. Storage Stability Study
2.7. Statistical Analysis
3. Results and Discussion
3.1. Content of Bioactive Compounds, Encapsulation Efficiencies, and Bioactivities
3.2. Storage Stability
3.3. Correlation Analysis
3.4. Kruskal–Wallis One-Way Analysis of Variance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Shi, J.; Xie, S.Y.; Zhang, T.Y.; Soladoye, O.P.; Aluko, R.E. Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Rahimi, P.; Abedimanesh, S.; Namin, S.A.M.; Ostadrahimi, A. Betalains, the nature-inspired pigments, in health and diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. [Google Scholar] [CrossRef]
- Flores-Mancha, M.A.; Ruíz-Gutiérrez, M.G.; Sánchez-Vega, R.; Santellano-Estrada, E.; Chávez-Martínez, A. Characterization of betabel extract (Beta vulgaris) encapsulated with maltodextrin and inulin. Molecules 2020, 25, 5498. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Čanadanović-Brunet, J.; Ćetković, G.; Jakišić, M.; Djilas, S.; Vulić, J.; Stajčić, S. Encapsulation of beetroot pomace extract: RSM optimization, storage and gastrointestinal stability. Molecules 2016, 21, 584. [Google Scholar] [CrossRef]
- Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Characterization, stability, and bioaccessibility of betalain and phenolic compounds from Opuntia stricta var. Dillenii fruits and products of their industrialization. Foods 2021, 10, 1593. [Google Scholar] [CrossRef]
- Flores-Mancha, M.A.; Ruíz-Gutiérrez, M.G.; Sánchez-Vega, R.; Santellano-Estrada, E.; Chávez-Martínez, A. Effect of encapsulated beet extracts (Beta vulgaris) added to yogurt on the physicochemical characteristics and antioxidant activity. Molecules 2021, 26, 4768. [Google Scholar] [CrossRef]
- Bartosz, T.; Irene, T. Polyphenols encapsulation—Application of innovation technologies to improve stability of natural products. Phys. Sci. Rev. 2016, 1, 20150005. [Google Scholar] [CrossRef]
- Castro-Enríquez, D.D.; Montaño-Leyva, B.; Del Toro-Sánchez, C.L.; Juaréz-Onofre, J.E.; Carvajal-Millan, E.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Barreras-Urbina, C.G.; Rodríguez-Félix, F. Stabilization of betalains by encapsulation—A review. J. Food Sci. Technol. 2020, 57, 1587–1600. [Google Scholar] [CrossRef]
- Rodriguez, E.B.; Vidallon, M.L.P.; Mendoza, D.J.R.; Dalisay, K.A.M.; Reyes, C.T. Stabilization of betalains from the peel of red dragon fruit [Hylocereus polyrhizus (Weber) Britton & Rose] through biopolymeric encapsulation. Philipp. Agric. 2015, 98, 382–391. [Google Scholar]
- Labuschagne, P. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Res. Int. 2018, 107, 227–247. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef]
- Borjan, D.; Šeregelj, V.; Andrejč, D.C.; Pezo, L.; Šaponjac, V.T.; Knez, Ž.; Vulić, J.; Marevci, M.K. Green techniques for preparation of red beetroot extracts with enhanced biological potential. Antioxidants 2022, 11, 805. [Google Scholar] [CrossRef]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Carmona, J.C.; Robert, P.; Vergara, C.; Sáenz, C. Microparticles of yellow-orange cactus pear pulp (Opuntia ficus-indica) with cladode mucilage and maltodextrin as a food coloring in yogurt. LWT-Food Sci. Technol. 2021, 138, 110672. [Google Scholar] [CrossRef]
- Von Elbe, J.H. Betalains Volume 2: Pigments, colorants, flavors, texture, and bioactive food components. In Handbook of Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P., Eds.; John Wiley and Sons, Inc.: New York, NY, USA, 2003; F.3.1.1.–F.3.1.7.; pp. 123–131. [Google Scholar]
- Gironés-Vilaplana, A.; Mena, P.; Moreno, D.A.; García-Viguera, C. Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. J. Food Sci. Agric. 2014, 94, 1090–1100. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Gironés-Vilaplana, A.; Djilas, S.; Mena, P.; Cetković, G.; Moreno, D.A.; Canadanović-Brunet, J.; Vulić, J.; Stajčić, S.; Krunić, M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014, 94, 2393–2400. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of product of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Ullah, H.M.A.; Zaman, S.; Juhara, F.; Akter, L.; Tareq, S.M.; Masum, E.H.; Bhattacharjee, R. Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complement. Altern. Med. 2014, 14, 346. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D. RStudio Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K. RStudio Dplyr: A Grammar of Data Manipulation; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Peterson, B.G.; Carl, P.; Boudt, K.; Bennett, R.; Ulrich, J.; Zivot, E.; Cornilly, D.; Hung, E.; Lestel, M.; Balkissoon, K.; et al. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Antigo, J.L.D.; Bergamasco, R.C.; Madrona, G.S. Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Sci. Technol. 2018, 38, 72–77. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.T.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Jakišić, M.V.; Vulić, J.J.; Stajčić, S.M.; Šeregelj, V.N. Optimisation of beetroot juice encapsulation by freeze-drying. Pol. J. Food Nutr. Sci. 2020, 70, 25–34. [Google Scholar] [CrossRef]
- Bazaria, B.; Kumar, P. Effect of dextrose equivalency of maltodextrin together with Arabic gum on properties of encapsulated beetroot juice. J. Food Meas. Charact. 2016, 11, 156–163. [Google Scholar] [CrossRef]
- Khan, M.I. Stabilization of betalains: A review. Food Chem. 2016, 197, 1280–1285. [Google Scholar] [CrossRef]
- Do Carmo, E.L.D.; Teodoro, R.A.R.; Félix, P.H.C.; Fernandes, R.V.B.; Oliveira, É.R.; Veiga, T.R.L.A.; Borges, S.V.; Botrel, D.A. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food Chem. 2018, 30, 51–59. [Google Scholar] [CrossRef]
- Janiszewska, E. Microencapsulated beetroot juice as a potential source of betalain. Powder Technol. 2014, 264, 190–196. [Google Scholar] [CrossRef]
- Pitalua, E.; Jimenez, M.; Vernon-Carter, E.J.; Beristain, C.I. Antioxidative activity of microcapsules with beetroot juice using gum Arabic as wall material. Food Bioprod. Process. 2010, 88, 253–258. [Google Scholar] [CrossRef]
- Robert, P.; Victoria, T.; Paula, G.; Vergara, C.; Saenz, C. The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT-Food Sci. Technol. 2015, 60, 1039–1045. [Google Scholar] [CrossRef]
- Saénz, C.; Gómez, H.; Fabry, A.M.; Cancino, B.; Vergara, C.; Paz, R. Soft-drinks prepared with pulp, ultrafiltrated and nanofiltrated purple cactus pear microparticles: Betalains stability. Acta Hortic. 2015, 1067, 343–348. [Google Scholar] [CrossRef]
- Vergara, C.; Saavedra, J.; Sáenz, C.; García, P.; Robert, P. Microencapsulation of pulp and ultrafiltered cactus pear (Opuntia ficus-indica) extracts and betanin stability during storage. Food Chem. 2014, 157, 246–251. [Google Scholar] [CrossRef]
- Karimzadeh, L.; Sohrab, G.; Hedayati, M.; Ebrahimof, S.; Emami, G.; Razavion, T. Effects of concentrated beetroot juice consumption on glycemic control, blood pressure, and lipid profile in type 2 diabetes patients: Randomized clinical trial study. Iran. J. Med. Sci. 2022, 192, 1143–1153. [Google Scholar] [CrossRef]
- Kumar, S.S.; Giridhar, P. Stabilization of bioactive betalain pigment from fruits of Basella rubra L. through maltodextrin encapsulation. Madridge J. Food Technol. 2017, 2, 73–77. [Google Scholar] [CrossRef]
- Woom, K.; Wongm, F.; Chuam, H.; Tangm, P. Stability of spray-dried pigment of red dragon fruit [Hylocereus polyrhizus (Weber) Britton and Rose] as a function of organic acid additives and storage conditions. Philipp. Agric. Sci. 2011, 94, 264–269. [Google Scholar]
- Azeredo, H.M.C.; Santos, A.N.; Souza, A.C.R.; Mendes, K.C.B.; Andrade, M.I.R. Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. Am. J. Food Technol. 2007, 2, 307–312. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Cabanes, J.; Escribano, J.; García-Carmona, F.; Jiménez-Atiénzar, M. Encapsulation of the most potent antioxidant betalains in edible matrixes as powders of different colors. J. Agric. Food Chem. 2013, 61, 4294–4302. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacianin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Díaz-Sánchez, F.; López, E.M.S.; Kerstupp, S.F.; Ibarra, R.V.; Scheinvar, L. Colorant extract from red prickly pear (Opuntia lasiacantha) for food application. Electron. J. Environ. Agric. Food Chem. 2006, 5, 1330–1337. [Google Scholar]
- Tsali, A.; Goula, A.M. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Moser, P.; Telis, V.R.N.; de Andrade Neves, N.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem. 2017, 214, 308–318. [Google Scholar] [CrossRef]
Bioactive Compounds/Bioactivities | E | ME | SPE | M | SP |
---|---|---|---|---|---|
Total phenolics by FC method (mg GAE/100 g) | 869.14 ± 22.29 | 276.36 ± 7.72 a | 337.83 ± 16.57 a | 10.73 ± 0.44 b | 173.18 ± 6.86 b |
Gallic acid * | 111.24 ± 4.98 | 38.89 ± 1.22 a | 49.20 ± 2.23 a | 0.68 ± 0.01 b | 13.50 ± 0.56 b |
Protocatechuic acid * | 9.12 ± 0.41 | 4.44 ± 0.12 | 7.51 ± 0.23 a | n.d. | 2.05 ± 0.08 b |
Catechin * | 139.14 ± 5.65 | 69.9 ± 33.22 | 101.34 ± 3.45 a | n.d. | 59.96 ± 2.11 b |
Epicatechin * | 6.36 ± 0.23 | n.d. | 25.72 ± 1.21 | 2.62 ± 0.11 | n.d. |
Vanillic acid * | 59.78 ± 2.04 | 4.28 ± 0.12 | n.d. | n.d. | 9.01 ± 0.21 |
p-Hydroxybenzoic acid * | n.d. | 11.82 ± 0.32 | n.d. | n.d. | 9.08 ± 0.23 |
Chlorogenic acid * | 8.89 ± 41.34 | 5.49 ± 0.23 | n.d. | n.d. | n.d. |
Caffeic acid * | 6.34 ± 0.21 | 0.84 ± 0.02 | n.d. | n.d. | n.d. |
Ferulic acid * | n.d. | n.d. | 2.54 ± 0.09 a | n.d. | 3.52 ± 0.12 b |
Sinapic acid * | n.d. | n.d. | 14.86 ± 0.54 a | n.d. | 19.06 ± 0.76 b |
Total phenolics by HPLC method * | 340.87 | 135.70 | 201.17 | 3.30 | 116.18 |
Betacyanins (mg BE/100 g) | 32.07 ± 0.34 | 10.37 ± 0.15 | 9.22 ± 0.14 | n.d. | n.d. |
Betaxanthins (mg VE/100 g) | 35.95 ± 0.35 | 14.05 ± 0.14 | 14.06 ± 0.22 | n.d. | n.d. |
Total betalains (mg/100 g) | 68.03 ± 0.69 | 24.42 ± 0.29 | 23.28 ± 0.35 | n.d. | n.d. |
AADPPH (mg TE/100 g) ** | 1352.13 ± 20.87 | 656.57 ± 6.43 a | 607.34 ± 17.75 a | n.d. | 46.75 ± 2.01 b |
RP (mg TE/100 g) ** | 882.04 ± 20.49 | 338.17 ± 5.98 a | 339.29 ± 8.94 a | 2.04 ± 0.07 b | 20.50 ± 0.27 b |
AAABTS (mg TE/100 g) ** | 1667.09 ± 44.34 | 712.55 ± 32.48 a | 687.82 ± 13.65 a | 44.62 ± 1.92 b | 116.24 ± 3.51 b |
AIA (%) *** | 75.51 ± 2.01 | 82.50 ± 0.04 | 70.35 ± 0.44 a | 82.20 ± 0.09 | 33.66 ± 0.73 b |
Inhibition AHgA (%) *** | 34.42 ± 0.57 | 53.71 ± 2.68 a | 28.03 ± 2.01 a | 30.54 ± 1.93 b | 7.12 ± 1.11 b |
Retention of Bioactive Compound/ Bioactivity | Kinetic Parameters | ME | SPE | E |
---|---|---|---|---|
Betalains | k | 0.0049 | 0.0015 | 0.0138 |
t1/2 | 141.43 | 462.00 | 50.22 | |
Betacyanins | k | 0.0038 | 0.0035 | 0.0163 |
t1/2 | 182.37 | 198.00 | 42.52 | |
Betaxanthins | k | 0.0058 | 0.0004 | 0.0118 |
t1/2 | 119.48 | 1732.50 | 58.73 | |
Phenolics | k | <0 | <0 | 0.0053 |
t1/2 | Higher than E | Higher than E | 130.75 | |
RP | k | 0.0016 | 0.0037 | 0.0062 |
t1/2 | 433.13 | 187.30 | 111.77 | |
AADPPH | k | 0.0017 | <0 | 0.0051 |
t1/2 | 407.65 | Higher than E | 135.88 | |
AAABTS | k | <0 | <0 | 0.0044 |
t1/2 | Higher than E | Higher than E | 157.50 | |
AIA | k | <0 | 0.0085 | 0.0006 |
t1/2 | Higher than E | 81.53 | 1155.00 | |
AHgA | k | 0.0018 | 0.0075 | 0.0062 |
t1/2 | 385.00 | 92.40 | 111.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postružnik, V.; Stajčić, S.; Borjan, D.; Ćetković, G.; Knez, Ž.; Knez Marevci, M.; Vulić, J. Impact of Storage Conditions on Stability of Bioactive Compounds and Bioactivity of Beetroot Extract and Encapsulates. Processes 2024, 12, 1345. https://doi.org/10.3390/pr12071345
Postružnik V, Stajčić S, Borjan D, Ćetković G, Knez Ž, Knez Marevci M, Vulić J. Impact of Storage Conditions on Stability of Bioactive Compounds and Bioactivity of Beetroot Extract and Encapsulates. Processes. 2024; 12(7):1345. https://doi.org/10.3390/pr12071345
Chicago/Turabian StylePostružnik, Vesna, Slađana Stajčić, Dragana Borjan, Gordana Ćetković, Željko Knez, Maša Knez Marevci, and Jelena Vulić. 2024. "Impact of Storage Conditions on Stability of Bioactive Compounds and Bioactivity of Beetroot Extract and Encapsulates" Processes 12, no. 7: 1345. https://doi.org/10.3390/pr12071345
APA StylePostružnik, V., Stajčić, S., Borjan, D., Ćetković, G., Knez, Ž., Knez Marevci, M., & Vulić, J. (2024). Impact of Storage Conditions on Stability of Bioactive Compounds and Bioactivity of Beetroot Extract and Encapsulates. Processes, 12(7), 1345. https://doi.org/10.3390/pr12071345