Volatile Organic Compound–Drug Receptor Interactions: A Potential Tool for Drug Design in the Search for Remedies for Increasing Toxic Occupational Exposure
Abstract
:1. Introduction
2. Volatile Organic Compounds (VOCs)
2.1. Coal Tar Pitch: A Veritable Source of VOCs
2.2. VOCs Cause Chromosomal Aberration and DNA Damage
- Benzene Exposure and Chromosomal Aberrations
- Formaldehyde is a known carcinogen that causes DNA damage in lung cells.
- Acetaldehyde and genotoxicity in hepatocytes.
2.3. Some VOCs Are Mutagenic and Genotoxic
- Benzene and Genotoxicity In Bone Marrow Cells
- Formaldehyde’s Mutagenicity in Human Nasal Epithelial Cells
- The effects of toluene and DNA damage in mammalian liver cells
- Acetaldehyde is involved in the increased mutagenicity of gastrointestinal cells
3. Drug Receptors
4. Classifications of Receptors
4.1. G Protein-Coupled Receptors (GPCRs)
4.2. Ligand-Gated Ion Channels
4.3. Tyrosine Kinase-Linked Receptors
4.4. Intracellular Receptors
5. Roles of Receptor in VOC–Drug Interactions
5.1. Receptor Selectivity
5.2. Receptor Affinity
5.3. Efficacy and Safety
6. Computational Modeling Technique for Stimulating VOC–Drug Receptor Interactions
6.1. Molecular Docking
6.2. Structural-Activity Relationship Studies
6.3. Computational VOC Ligand–Receptor Interactions
- Olfactory receptor-ligand binding
- Plant VOC and Insect Olfactory Receptor Studies
- Human Pathogen Detection
7. High-Throughput Screening Methods
8. Fragment-Based Drug Design
9. Molecular Dynamics (MD) Simulations
10. Modulatory Receptor Activity Role
10.1. Allosteric Modulation
10.2. Competition for Binding Sites
11. Regulatory Hurdles in Drug Approval for Occupational Exposure
- Phase I Trials: These are the first to assess the safety, tolerability, absorption, distribution metabolism, and excretion of a drug with fewer healthy volunteers or subjects exposed to workplace hazards [106].
- Phase II Trials: Next, associated clinical studies are carried out to evaluate safety and efficacy in an even larger population of people exposed to or prone to occupational exposure.
- Phase III trials are large-scale research studies conducted to confirm drug effectiveness, observe undesirable effects, and collect data essential for the medication’s usage at the workplace [107].
12. Emerging Technological Trends
12.1. Quantum Mechanics/Molecular Mechanics (QMs/MMs)
12.2. Combination of Multi-Omics Strategies in VOC–Drug Receptor Interaction Research
12.3. Targeting Specific Biological Pathways for VOC Detoxification
12.4. Cytochrome P450 Enzymes
12.5. Glutathione Pathway
12.6. Antioxidant Defense Mechanisms
12.7. Inflammatory Pathways
12.8. Collaborative Efforts and Interdisciplinary Research Initiatives
13. General Environment and Auditing: Monitoring and Risk Evaluation
13.1. Challenges
13.2. Complexity of VOC Mixtures
13.3. Variability in Individual Responses
13.4. Safety Considerations
13.5. Technological and Methodological Limitations
13.6. Mechanistic Studies
13.7. Biomarker Discovery
13.8. Clinical Trials and Applications
13.9. Preventive Strategies
13.10. Interdisciplinary Collaboration
14. Cancer and Cancer Drug Resistance; Role of Big Data in Enhancing Disease Treatment
15. Future Directions on the Mechanisms and Clinical Applications of VOC–Receptor Interactions in Occupational Health
16. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ogbodo, J.O.; Arazu, A.V.; Iguh, T.C.; Onwodi, N.J.; Ezike, T.C. Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Front. Immunol. 2022, 13, 928379. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Niculescu, V.-C. Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.; Mehta, M.S.; Thomas, M.D. Effectiveness of Structured Teaching Programme on Knowledge of Occupational Hazards Prevention and Expressed Practice of Safety Measures among Frontline Pharmaceutical Industrial Workers of Rajasthan. J. Nur. Health Sci. 2017, 5, 64–69. [Google Scholar]
- Fathia, A.M.; Omima, M.E. Structured Teaching Program on Occupational Health Hazards among Painting Workers at Elherafeyien City in Cairo. Biomed. Nurs. 2018, 4, 1–11. [Google Scholar]
- Awodele, O.; Popoola, T.D.; Ogbudu, B.S.; Akinyede, A.; Coker, H.A.; Akintonwa, A. Occupational hazards and safety measures amongst the paint factory workers in Lagos, Nigeria. Saf. Health Work. 2014, 5, 106–111. [Google Scholar] [CrossRef]
- McDonald, J.; Lambert, D. Drug–receptor interactions in anaesthesia. BJA Educ. 2021, 22, 20–25. [Google Scholar] [CrossRef]
- Manucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Ikhlas, M.; Mohamed, A.Y.; Hamza, B.; Ahmed, K.; Mohamed, E. Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool. Int. J. Adv. Manufact. 2018, 97, 1931–1949. [Google Scholar]
- Thevenet, F.; Verriele, M.; Harb, P.; Thlaijeh, S.; Brun, R.; Nicolas, M.; Angulo-Milhem, S. The indoor fate of terpenes: Quantification of the limonene uptake by materials. Build. Environ. 2020, 188, 107433. [Google Scholar] [CrossRef]
- Veselova, M.A.; Plyuta, V.A.; Khmel, I.A. Volatile compounds of bacterial origin: Structure, biosynthesis, and biological activity. Microbiology 2019, 88, 261–274. [Google Scholar] [CrossRef]
- Atif, A.; Shahzad, A.; Sahar, N.; Arshad, S.; Iqbal, Y.; Rafique, S. Volatile organic compounds: Classification, sampling, extraction, analysis and health impacts. Pharm. Chem. J. 2017, 4, 52–65. [Google Scholar]
- Even, M.; Juritsch, E.; Richter, M. Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation. TrAC Trends Anal. Chem. 2021, 140, 116265. [Google Scholar] [CrossRef]
- Heeley-Hill, A.C.; Grange, S.K.; Ward, M.W.; Lewis, A.C.; Owen, N.; Jordan, C.; Hodgson, G.; Adamson, G. Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. Environ. Sci. Process. Impacts 2021, 23, 699–713. [Google Scholar] [CrossRef]
- Langer, S.; de Wit, C.A.; Giovanoulis, G.; Fäldt, J.; Karlson, L. The effect of reduction measures on concentrations of hazardous semivolatile organic compounds in indoor air and dust of Swedish preschools. Indoor Air 2021, 31, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E. A review of semivolatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Langer, S.; Moldanová, J.; Arrhenius, K.; Ljungström, E.; Ekberg, L. Ultrafine Particles Produced by Ozone/Limonene Reactions in Indoor Air Under Low/Closed Ventilation Conditions. Atmos. Environ. 2008, 42, 4149–4159. [Google Scholar] [CrossRef]
- Abinaya, S.; George, K.V.; Ravi, V. Exposure to volatile organic compounds and associated health risk among workers in lignite mines. Int. J. Environ. Sci. Technol. 2022, 8, 261–274. [Google Scholar]
- Salimi, A.; Talatappe, B.S.; Pourahmad, J. Xylene induces oxidative stress and mitochondria damage in isolated human lymphocytes. Toxicol. Res. 2017, 33, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Administration. Coal Tar Pitch Volatiles, Safety and Health Topics; U.S. Department of Labor: Washington, DC, USA, 2024.
- Roberts, L. (Ed.) Philip Wexler, Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 993–995. [Google Scholar] [CrossRef]
- Toxicological Profile for Creosote. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2024. Chapter 5, Potential For Human Exposure. Available online: https://www.ncbi.nlm.nih.gov/books/NBK606212/ (accessed on 24 July 2024).
- Choi, H.; Harrison, R.; Komulainen, H.; Saborit, J.M.D. Polycyclic aromatic hydrocarbons. In WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010; p. 6. Available online: https://www.ncbi.nlm.nih.gov/books/NBK138709/ (accessed on 24 July 2024).
- Chappell, G.; Pogribny, I.P.; Guyton, K.Z.; Rusyn, I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutat. Res. Mol. Mech. Mutagen. 2016, 768, 27–45. [Google Scholar] [CrossRef]
- Muhammad, F.; Riviere, J.E. Chapter 21—Dermal toxicity. In Veterinary Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 337–350. [Google Scholar] [CrossRef]
- National Toxicology Program. 15th Report on Carcinogens [Internet]. Research Triangle Park (NC): National Toxicology Program; 2021 Dec 21. Coal Tars and Coal-Tar Pitches: CAS No. 8007-45-2 (Coal Tar). Available online: https://www.ncbi.nlm.nih.gov/books/NBK590777/ (accessed on 24 July 2024).
- Boada, L.D.; Henríquez-Hernández, L.A.; Navarro, P.; Zumbado, M.; Almeida-González, M.; Camacho, M.; Álvarez-León, E.E.; Valencia-Santana, J.A.; Luzardo, O.P. Exposure to polycyclic aromatic hydrocarbons (PAHs) and bladder cancer: Evaluation from a gene-environment perspective in a hospital-based case-control study in the Canary Islands (Spain). Int. J. Occup. Environ. Health 2014, 21, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Friesen, M.C.; Demers, P.A.; Spinelli, J.J.; Eisen, E.A.; Lorenzi, M.F.; Le, N.D. Chronic and acute effects of coal tar pitch exposure and cardiopulmonary mortality among aluminum smelter workers. Am. J. Epidemiol. 2010, 172, 790–799. [Google Scholar] [CrossRef]
- Güngör, Ç.; Ece, M.Ş. Competitive adsorption of VOCs (benzene, xylene and ethylbenzene) with Fe3O4@SiO2-NH@BENZOPHENONE magnetic nanoadsorbents. Chem. Eng. J. 2023, 475, 146034. [Google Scholar] [CrossRef]
- Dewi, R.; Hamid, Z.A.; Rajab, N.; Shuib, S.; Razak, S.A. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum. Exp. Toxicol. 2019, 39, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Dixit, M.; Kumar, A. Chapter 4—In Vitro Gene Genotoxicity Test Methods. In Vitro Toxicology; Dhawan, A., Kwon, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 67–89. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, J.C.; Sherman, M.W.; Wang, D.S.; Chuvalo-Abraham, J.C.L.; Ruiz, L.H.; Contreras, L.M. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci. Rep. 2020, 10, 16545. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.-Y.; Li, W.-K.; Li, J.-S.; Hong, Q.-H.; Khodahemmati, S.; Gao, J.-F.; Zhou, Z.-X. Effects of DNA Damage and Oxidative Stress in Human Bronchial Epithelial Cells Exposed to PM2.5 from Beijing, China, in Winter. Int. J. Environ. Res. Public Health 2020, 17, 4874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Chen, H.; Liu, Y.; Wang, A.; Hou, H.; Hu, Q. Acetaldehyde induces similar cytotoxic and genotoxic risks in BEAS-2B cells and HHSteCs: Involvement of differential regulation of MAPK/ERK and PI3K/AKT pathways. Environ. Sci. Pollut. Res. 2023, 30, 79423–79436. [Google Scholar] [CrossRef]
- Stein, S.; Lao, Y.; Yang, I.-Y.; Hecht, S.S.; Moriya, M. Genotoxicity of acetaldehyde- and crotonaldehyde-induced 1,N2-propanodeoxyguanosine DNA adducts in human cells. Mutat. Res. Toxicol. Environ. Mutagen. 2006, 608, 1–7. [Google Scholar] [CrossRef]
- Tsuruta, H.; Sonohara, Y.; Tohashi, K.; Shioi, N.A.; Iwai, S.; Kuraoka, I. Effects of acetaldehyde-induced DNA lesions on DNA metabolism. Genes. Environ. 2020, 42, 2. [Google Scholar] [CrossRef] [PubMed]
- Costa-Amaral, I.C.; Carvalho, L.V.B.; Santos, M.V.C.; Valente, D.; Pereira, A.C.; Figueiredo, V.O.; de Souza, J.M.; Castro, V.S.; Trancoso, M.d.F.; Fonseca, A.S.A.; et al. Environmental Assessment and Evaluation of Oxidative Stress and Genotoxicity Biomarkers Related to Chronic Occupational Exposure to Benzene. Int. J. Environ. Res. Public Health 2019, 16, 2240. [Google Scholar] [CrossRef] [PubMed]
- Salem, E.; El-Garawani, I.; Allam, H.; El-Aal, B.A.; Hegazy, M. Genotoxic effects of occupational exposure to benzene in gasoline station workers. Ind. Health 2018, 56, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xu, K.; Ji, S.; Pu, Y.; Yu, L.; Yin, L.; Zhang, J.; Pu, Y. Toxicity in hematopoietic stem cells from bone marrow and peripheral blood in mice after benzene exposure: Single-cell transcriptome sequencing analysis. Ecotoxicol. Environ. Saf. 2020, 207, 111490. [Google Scholar] [CrossRef] [PubMed]
- Barlas, B.; McIntyre, R.E.; Salguero, I.; van der Weyden, L.; Barros, A.; Vicente, J.R.; Karimpour, N.; Haider, A.; Ranzani, M.; Turner, G.; et al. Genetic determinants of micronucleus formation in vivo. Nature 2024, 627, 130–136. [Google Scholar] [CrossRef]
- Hosea, R.; Hillary, S.; Naqvi, S.; Wu, S.; Kasim, V. The two sides of chromosomal instability: Drivers and brakes in cancer. Signal Transduct. Target. Ther. 2024, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Jahan, S.A.; Lee, J.-T. Exposure to Formaldehyde and Its Potential Human Health Hazards. J. Environ. Sci. Health Part C 2011, 29, 277–299. [Google Scholar] [CrossRef]
- Neuss, S.; Holzmann, K.; Speit, G. Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol. Lett. 2010, 198, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.M.; Brucker, N.; Charão, M.; Bulcão, R.; Freitas, F.; Baierle, M.; Nascimento, S.; Valentini, J.; Cassini, C.; Salvador, M.; et al. Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 746, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Naz, S.; Ma, Y.; Ullah, Q.; Khan, M.Z.; Wang, J.; Lu, X.; Luosang, D.-Z.; Tabassum, S.; Chatha, A.M.M.; et al. An Overview of Comet Assay Application for Detecting DNA Damage in Aquatic Animals. Agriculture 2023, 13, 623. [Google Scholar] [CrossRef]
- Swain, U.; Rao, K.S. Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging. Mech. Ageing Dev. 2011, 132, 374–381. [Google Scholar] [CrossRef]
- Setshedi, M.; Wands, J.R.; de la Monte, S.M. Acetaldehyde Adducts in Alcoholic Liver Disease. Oxidative Med. Cell. Longev. 2010, 3, 178–185. [Google Scholar] [CrossRef]
- Vijayraghavan, S.; Porcher, L.; A Mieczkowski, P.; Saini, N. Acetaldehyde makes a distinct mutation signature in single-stranded DNA. Nucleic Acids Res. 2022, 50, 7451–7464. [Google Scholar] [CrossRef] [PubMed]
- Salaspuro, M. Key role of local acetaldehyde in upper GI tract carcinogenesis. Best. Pr. Res. Clin. Gastroenterol. 2017, 31, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Padilla-González, G.F.; Leuner, O.; Melnikovova, I.; Fernandez-Cusimamani, E. Pharmacology of natural volatiles and essential oils in food, therapy, and disease prophylaxis. Front. Pharmacol. 2021, 12, 740302. [Google Scholar] [CrossRef] [PubMed]
- Zehetner, P.; Höferl, M.; Buchbauer, G. Essential Oil Components and Cytochrome P450 Enzymes: A Review. Flavour. Fragr. J. 2019, 34, 223–240. [Google Scholar] [CrossRef]
- Sadgrove, N.; Madeley, L.; Van Wyk, B.-E. Volatiles from African species of Croton (Euphorbiaceae), including new diterpenes in essential oil from Croton gratissimus. Heliyon 2019, 5, e02677. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.; Ashour, M.L.; Youssef, F.S.; Gad, H. Inhibition of cytochrome P450 (CYP3A4) activity by extracts from 57 plants used in traditional chinese medicine (TCM). Pharmacogn. Mag. 2017, 13, 300–308. [Google Scholar] [CrossRef]
- Ha, J.; Park, H.; Park, J.; Park, S.B. Recent advances in identifying protein targets in drug discovery. Cell Chem. Biol. 2020, 28, 394–423. [Google Scholar] [CrossRef]
- Chukwu, L.C.; Ekenjoku, A.J.; Okam, P.C.; Ohadoma, S.C.; Olisa, C.L. Review of Pharmacologic Receptors and Advances. World J. Innov. Res. 2020, 8, 91–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Yu, Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J. Med. Chem. 2020, 63, 15258–15278. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Dalziel, J.E. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front. Pharmacol. 2020, 11, 587664. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Scully, C.C.G.; de Graaf, C.; Brown, A.J.H.; Maguire, J.J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 2020, 19, 389–413. [Google Scholar] [CrossRef]
- Duncan, A.L.; Song, W.; Sansom, M.S. Lipid-Dependent Regulation of Ion Channels and G Protein–Coupled Receptors: Insights from Structures and Simulations. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 31–50. [Google Scholar] [CrossRef]
- Slosky, L.M.; Caron, M.G.; Barak, L.S. Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery. Trends Pharmacol. Sci. 2021, 42, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Shah, S.; Bhattacharya, D.; Toukam, D.K.; Cáceres, R.; Krummel, D.A.P.; Sengupta, S. Ligand-Gated Ion Channels as Targets for Treatment and Management of Cancers. Front. Physiol. 2022, 13, 839437. [Google Scholar] [CrossRef] [PubMed]
- Devlin, C.L. The pharmacology of gamma-aminobutyric acid and acetylcholine receptors at the echinoderm neuromuscular junction. J. Exp. Biol. 2001, 204, 887–896. [Google Scholar] [CrossRef]
- Gillis, A.; Sreenivasan, V.; Christie, M.J. Intrinsic Efficacy of Opioid Ligands and Its Importance for Apparent Bias, Operational Analysis, and Therapeutic Window. Mol. Pharmacol. 2020, 98, 410–424. [Google Scholar] [CrossRef]
- Berg, K.A.; Clarke, W.P. Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity. Int. J. Neuropsychopharmacol. 2018, 21, 962–977. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Consonni, V. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Ding, H.; Zhang, C.; Huang, R.; Tan, T. QSAR analysis and molecular docking studies on tyrosinase inhibitors of flavonoids. Sci. Rep. 2017, 7, 11112. [Google Scholar]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef]
- Dror, R.O.; Dirks, R.M.; Grossman, J.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys. 2012, 41, 429–452. [Google Scholar] [CrossRef]
- Schneidman-Duhovny, D.; Bemeur, C.; Wreschner, A.M. Applications of pharmacophore modeling in drug discovery. Exp. Opin. Drug Discov. 2020, 15, 1101–1114. [Google Scholar]
- Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 2009, 77, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 1962, 194, 178–180. [Google Scholar] [CrossRef]
- Temml, V.; Kutil, Z. Structure-based molecular modeling in SAR analysis and lead optimization. Comput. Struct. Biotechnol. J. 2021, 19, 1431–1444. [Google Scholar] [CrossRef]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wu, Z.; Hsieh, C.-Y.; Chen, G.; Liao, B.; Wang, Z.; Shen, C.; Cao, D.; Wu, J.; Hou, T. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J. Chemin. 2021, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Tropsha, A. QSAR without borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [Google Scholar] [CrossRef]
- Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; et al. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2020, 9, 71. [Google Scholar] [CrossRef]
- Jimenez, R.C.; Casajuana-Martin, N.; García-Recio, A.; Alcántara, L.; Pardo, L.; Campillo, M.; Gonzalez, A. The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol. 2021, 19, 21. [Google Scholar] [CrossRef]
- Giordano, D.; Facchiano, A.; D’Auria, S.; Loreto, F. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. eLife 2021, 10, e66741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prabhakar, P.K.; Wang, H.T.; Smith, P.J.; Yang, J.Y.; Barnes, W.J.; Peña, M.J.; Moremen, K.W.; Urbanowicz, B.R. Heterologous expression of plant glycosyltransferases for biochemistry and structural biology. Methods Cell Biol. 2020, 160, 145–165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Funk, M.A.; Leitner, J.; Gerner, M.C.; Hammerler, J.M.; Salzer, B.; Lehner, M.; Battin, C.; Gumpelmair, S.; Stiasny, K.; Grabmeier-Pfistershammer, K.; et al. Interrogating ligand-receptor interactions using highly sensitive cellular biosensors. Nat. Commun. 2023, 14, 7804. [Google Scholar] [CrossRef]
- Hinze, A.; Pelletier, J.; Ghaninia, M.; Marois, E.; Hill, S.R.; Ignell, R. Knockout of OR39 reveals redundancy in the olfactory pathway regulating the acquisition of host seeking in Anopheles coluzzii. Proc. R. Soc. B Biol. Sci. 2023, 290, 20232092. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, J.K.; Roberts, R.E.; Sonntag, Y.; Hou, X.-Q.; Grosse-Wilde, E.; Machara, A.; Zhang, D.-D.; Hansson, B.S.; Johanson, U.; Löfstedt, C.; et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 2021, 19, 16. [Google Scholar] [CrossRef]
- Kamble, S.A.; Barale, S.S.; Mohammed, A.A.; Paymal, S.B.; Naik, N.M.; Sonawane, K.D. Structural insights into the potential binding sites of Cathepsin D using molecular modelling techniques. Amino Acids 2024, 56, 33. [Google Scholar] [CrossRef]
- Kleinheinz, D.; D’onofrio, C.; Carraher, C.; Bozdogan, A.; Ramach, U.; Schuster, B.; Geiß, M.; Valtiner, M.; Knoll, W.; Andersson, J. Activity of Single Insect Olfactory Receptors Triggered by Airborne Compounds Recorded in Self-Assembled Tethered Lipid Bilayer Nanoarchitectures. ACS Appl. Mater. Interfaces 2023, 15, 46655–46667. [Google Scholar] [CrossRef]
- Konopka, J.K.; Task, D.; Afify, A.; Raji, J.; Deibel, K.; Maguire, S.; Lawrence, R.; Potter, C.J. Olfaction in Anopheles mosquitoes. Chem. Senses 2021, 46, bjab021. [Google Scholar] [CrossRef]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath biomarkers in Non-Carcinogenic diseases. Clin. Chim. Acta 2023, 552, 117692. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Wu, S.; Hua, Q.; Bao, C.; Liu, H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 606915. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol. Diagn. Ther. 2023, 27, 321–347. [Google Scholar] [CrossRef]
- Inglese, J.; Johnson, R.L.; Simeonov, A.; Xia, M.; Zheng, W.; Austin, C.P.; Auld, D.S. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 2007, 3, 466–479. [Google Scholar] [CrossRef]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef]
- Fan, F.; White, M.A. Label-free screening for GPCR ligands using FRET-based sensors. J. Biomol. Screen. 2015, 20, 639–647. [Google Scholar]
- Ekins, S. the Next era: Deep learning in pharmaceutical research. Pharm. Res. 2016, 33, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 2011, 10, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Shalem, O.; Sanjana, N.E.; Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 2015, 16, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Judson, R.S.; Houck, K.A.; Kavlock, R.J.; Knudsen, T.B.; Martin, M.T.; Mortensen, H.M.; Reif, D.M.; Rotroff, D.M.; Shah, I.; Richard, A.M.; et al. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project. Environ. Health Perspect. 2010, 118, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.W.; Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem. 2009, 1, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Erlanson, D.A. Introduction to fragment-based drug discovery. In Fragment-Based Drug Discovery and X-Ray Crystallography; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–32. [Google Scholar]
- Blundell, T.L.; Jhoti, H.; Abell, C. High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov. 2002, 1, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Shuker, S.B.; Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996, 274, 1531–1534. [Google Scholar] [CrossRef]
- Scott, D.E.; Coyne, A.G.; Hudson, S.A.; Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry 2012, 51, 4990–5003. [Google Scholar] [CrossRef] [PubMed]
- Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010, 467, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005, 435, 677–681. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of animal models in biomedical research: A review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef]
- Hancock, D.G.; Ditcham, W.; Ferguson, E.; Karpievitch, Y.V.; Stick, S.M.; Waterer, G.W.; Clements, B.S. A phase I clinical trial assessing the safety, tolerability, and pharmacokinetics of inhaled ethanol in humans as a potential treatment for respiratory tract infections. Front. Med. 2024, 11, 1324686. [Google Scholar] [CrossRef]
- Van-Norman, G. Drugs, Devices, and the FDA: Part 1: An Overview of Approval Processes for Drugs. J. Am. CollCardiol. Basic. Trans. Sci. 2016, 1, 170–179. [Google Scholar]
- Bernabeu-Martínez, M.A.; Merino, M.R.; Gago, J.M.S.; Sabucedo, L.M.; Wanden-Berghe, C.; Sanz-Valero, J. Guidelines for safe handling of hazardous drugs: A systematic review. PLoS ONE 2018, 13, e0197172. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.J.; Ferner, R.E.; Evans, S.J. Monitoring for adverse drug reactions. Br. J. Clin. Pharmacol. 2006, 61, 371–378. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Labeling Regulatory Requirements for Medical Devices; HHS Pub FDA: Silver Spring, MD, USA, 1989; pp. 89–4203.
- Moosapour, H.; Zarvani, A.; Moayerzadeh, M.; Larijani, B. Ethical considerations of biomedical product development. In Biomedical Product Development: Bench to Bedside; Springer: Cham, Switzerland, 2020; pp. 131–151. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. The Current Biotechnology Regulatory System. In Preparing for Future Products of Biotechnology; National Academies Press (US): Washington, DC, USA, 2017; p. 28. [Google Scholar]
- Römer, F.; Henninger, J.; Le, T.D. International organizations and global labor standards. In International Organizations in Global Social Governance; Palgrave Macmillan: Cham, Switzerland, 2021; pp. 57–81. [Google Scholar]
- Ogbodo, J.O.; Egba, S.I.; Ogbodo, C.G.; Onwurah, I.E.; Njoku, O.U. Effects of exposure to volatile organic compounds (VOCs) content from paint on automobile paint workers in Nsukka, South Eastern Nigeria. Heliyon 2024, 10, e37015. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, A.; Singhal, R.; Yadav, J.P. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intell. Pharm. 2024, 2, 367–380. [Google Scholar] [CrossRef]
- Choudhuri, S.; Yendluri, M.; Poddar, S.; Li, A.; Mallick, K.; Mallik, S.; Ghosh, B. Recent Advancements in Computational Drug Design Algorithms through Machine Learning and Optimization. Kinases Phosphatases 2023, 1, 117–140. [Google Scholar] [CrossRef]
- Patel, V.; Shah, M. Artificial intelligence and machine learning in drug discovery and development. Intell. Med. 2021, 2, 134–140. [Google Scholar] [CrossRef]
- Antony, P.; Vijayan, R. Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant. Biomolecules 2021, 11, 1244. [Google Scholar] [CrossRef]
- Hu, X.; Zeng, Z.; Zhang, J.; Wu, D.; Li, H.; Geng, F. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem. 2022, 405, 134824. [Google Scholar] [CrossRef]
- Cui, M.; Lu, Y.; Mezei, M.; Logothetis, D.E. Molecular Dynamics (MD) Simulations Provide Insights into the Activation Mechanisms of 5-HT2A Receptors. Molecules 2024, 29, 4935. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.-F.; Long, S.-N.; Li, Z.; Tao, W.-Q. Diffusion Behavior of VOC Molecules in Polyvinyl Chloride Investigated by Molecular Dynamics Simulation. Int. J. Environ. Res. Public Health 2023, 20, 3235. [Google Scholar] [CrossRef] [PubMed]
- Manathunga, M.; Götz, A.W.; Merz, K.M. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr. Opin. Struct. Biol. 2022, 75, 102417. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, G.; Mandelli, D. How exascale computing can shape drug design: A perspective from multiscale QM/MM molecular dynamics simulations and machine learning-aided enhanced sampling algorithms. Curr. Opin. Struct. Biol. 2024, 86, 102814. [Google Scholar] [CrossRef]
- Tzeliou, C.E.; Mermigki, M.A.; Tzeli, D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022, 27, 2660. [Google Scholar] [CrossRef]
- Ouma, R.B.O.; Ngari, S.M.; Kibet, J.K. A review of the current trends in computational approaches in drug design and metabolism. Discov. Public Health 2024, 21, 108. [Google Scholar] [CrossRef]
- Vashisht, V.; Vashisht, A.; Mondal, A.K.; Farmaha, J.; Alptekin, A.; Singh, H.; Ahluwalia, P.; Srinivas, A.; Kolhe, R. Genomics for Emerging Pathogen Identification and Monitoring: Prospects and Obstacles. BioMedInformatics 2023, 3, 1145–1177. [Google Scholar] [CrossRef]
- Schwarz, U.I.; Gulilat, M.; Kim, R.B. The Role of Next-Generation Sequencing in Pharmacogenetics and Pharmacogenomics. Cold Spring Harb. Perspect. Med. 2018, 9, a033027. [Google Scholar] [CrossRef]
- Costain, G.; Cohn, R.D.; Scherer, S.W.; Marshall, C.R. Genome sequencing as a diagnostic test. Can. Med. Assoc. J. 2021, 193, E1626–E1629. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, J.; Lin, C.; Zhang, J.; Yan, H.; Guan, Z.; Zhang, C. Single-Cell Transcriptomics Applied in Plants. Cells 2024, 13, 1561. [Google Scholar] [CrossRef]
- Naik, B.; Kumar, V.; Rizwanuddin, S.; Chauhan, M.; Choudhary, M.; Gupta, A.K.; Kumar, P.; Kumar, V.; Saris, P.E.J.; Rather, M.A.; et al. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int. J. Mol. Sci. 2023, 24, 3025. [Google Scholar] [CrossRef] [PubMed]
- Chantada-Vázquez, M.d.P.; Bravo, S.B.; Barbosa-Gouveia, S.; Alvarez, J.V.; Couce, M.L. Proteomics in Inherited Metabolic Disorders. Int. J. Mol. Sci. 2022, 23, 14744. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Ciborowski, M.; Kisluk, J.; Kretowski, A.; Barbas, C. Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1866, 165690. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, S.H.; Kim, J.H.; Hwang, S.; Yoo, H.J. Understanding Metabolomics in Biomedical Research. Endocrinol. Metab. 2016, 31, 7–16. [Google Scholar] [CrossRef]
- Sun, J.; Xia, Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes. Dis. 2023, 11, 100979. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J. Xenobiotics 2021, 11, 94–114. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef] [PubMed]
- Mazari, A.M.A.; Zhang, L.; Ye, Z.-W.; Zhang, J.; Tew, K.D.; Townsend, D.M. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Veter-World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, Z.; Hu, Q.; Yu, X.; Cao, Y.; Xia, Y.; Fu, Y.; Tan, Y.; Jing, C.; Zhang, C. Mediating role of systemic inflammation in the association between volatile organic compounds exposure and periodontitis: NHANES 2011–2014. BMC Oral Health 2024, 24, 1324. [Google Scholar] [CrossRef] [PubMed]
- Rowlinson, M.J.; Evans, M.J.; Carpenter, L.J.; Read, K.A.; Punjabi, S.; Adedeji, A.; Fakes, L.; Lewis, A.; Richmond, B.; Passant, N.; et al. Revising VOC emissions speciation improves the simulation of global background ethane and propane. Atmos. Meas. Tech. 2024, 24, 8317–8342. [Google Scholar] [CrossRef]
- Chen, R.; Snyder, M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Compr. Pharmacol. 2022, 9, 408–422. [Google Scholar] [CrossRef] [PubMed Central]
- Gallego, E.; Perales, J.F.; Calaf, J.M. Continuous monitoring of volatile organic compounds through sensorization. Automatic sampling during pollution/odour/nuisance episodic events. Atmos. Environ. 2023, 299, 119657. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lin, C.; Nguyen, M.K.; Hussain, A.; Bui, X.-T.; Ngo, H.H. A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023, 14, 58–80. [Google Scholar] [CrossRef]
- Yu, T.; Wang, Y.; Chen, L.; Leng, W.; Shi, Y.; Lin, B.; Zhao, J.; Wang, Z.; Mo, J.; Liu, C. Determination of uptake rates of volatile organic compounds by 24-hour passive sampling and their application in enclosed ship cabin environments. Build. Environ. 2023, 248, 111068. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Kharisov, B.I.; González, C.M.O.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191378. [Google Scholar] [CrossRef] [PubMed]
- Epping, R.; Koch, M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023, 28, 1598. [Google Scholar] [CrossRef] [PubMed]
- Ncube, A.; Mtetwa, S.; Bukhari, M.; Fiorentino, G.; Passaro, R. Circular Economy and Green Chemistry: The Need for Radical Innovative Approaches in the Design for New Products. Energies 2023, 16, 1752. [Google Scholar] [CrossRef]
- Ratti, R. Industrial applications of green chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2020, 2, 263. [Google Scholar] [CrossRef]
- Hajivand, P.; Jansen, J.C.; Pardo, E.; Armentano, D.; Mastropietro, T.F.; Azadmehr, A. Application of metal-organic frameworks for sensing of VOCs and other volatile biomarkers. Co-Ord. Chem. Rev. 2023, 501, 215558. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Ligor, T.; Bocos-Bintintan, V.; A Mayhew, C.; Buszewski, B. Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD. J. Clin. Med. 2020, 10, 32. [Google Scholar] [CrossRef]
- Axsom, J.E.; Schmidt, H.D.; Matura, L.A.; Libonati, J.R. The Influence of Epigenetic Modifications on Metabolic Changes in White Adipose Tissue and Liver and Their Potential Impact in Exercise. Front. Physiol. 2021, 12, 686270. [Google Scholar] [CrossRef]
- Batterman, S.; Su, F.-C.; Li, S.; Mukherjee, B.; Jia, C. HEI Health Review Committee. Personal exposure to mixtures of volatile organic compounds: Modeling and further analysis of the RIOPA data. Res. Rep. 2014, 3–63. [Google Scholar] [PubMed] [PubMed Central]
- Jung, S.J.; Mehta, J.S.; Tong, L. Effects of environment pollution on the ocular surface. Ocular Surf. 2018, 16, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Rösch, C.; Kohajda, T.; Röder, S.; von Bergen, M.; Schlink, U. Relationship between sources and patterns of VOCs in indoor air. Atmos. Pollut. Res. 2014, 5, 129–137. [Google Scholar] [CrossRef]
- Wang, T.; Tao, J.; Li, Z.; Lu, X.; Liu, Y.; Zhang, X.; Wang, B.; Zhang, D.; Yin, S. Characteristic, source apportionment and effect of photochemical loss of ambient VOCs in an emerging megacity of Central China. Atmos. Res. 2024, 305, 107429. [Google Scholar] [CrossRef]
- Nored, A.; Fu, X.; Qi, R.; Batbaatar, N.; Jia, C. Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks. Int. J. Environ. Res. Public Health 2024, 21, 1464. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front. Chem. 2020, 8, 726. [Google Scholar] [CrossRef] [PubMed]
- Schapin, N.; Majewski, M.; Varela-Rial, A.; Arroniz, C.; De Fabritiis, G. Machine learning small molecule properties in drug discovery. Artif. Intell. Chem. 2023, 1, 100020. [Google Scholar] [CrossRef]
- Liu, H.; Tang, T. Pan-cancer genetic analysis of disulfidptosis-related gene set. Cancer Genet. 2023, 278–279, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Zhu, A.; Liu, P.; Fu, P.; Li, Y.; Chen, S.; Gao, X. Pan-cancer analysis of the disulfidptosis-related gene RPN1 and its potential biological function and prognostic significance in gliomas. Heliyon 2024, 10, e31875. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Sellers, W.R.; Liu, X.S. Big Data Approaches for Modeling Response and Resistance to Cancer Drugs. Annu. Rev. Biomed. Data Sci. 2018, 1, 1–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garg, P.; Malhotra, J.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers 2024, 16, 2478. [Google Scholar] [CrossRef]
- Jing, C.; Mao, X.; Wang, Z.; Sun, K.; Ma, R.; Wu, J.; Cao, H. Next-generation sequencing-based detection of EGFR, KRAS, BRAF, NRAS, PIK3CA, Her-2 and TP53 mutations in patients with non-small cell lung cancer. Mol. Med. Rep. 2018, 18, 2191–2197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmid, W.; Jochum, B.; Padberg, I.; Demmer, K.D.; Mertz, M.; Joerger, C.; Britschgi, M.S.; Matter, S.I.; Rothschild, A. Omlin, How to read a next-generation sequencing report—What oncologists need to know. ESMO Open 2022, 7, 100570. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Zhang, Y.; Tyner, J.W.; Kemp, C.J.; Shmulevich, I. Knowledge graphs facilitate prediction of drug response for acute myeloid leukemia. iScience 2024, 27, 110755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, Y.-Y.; Hsieh, C.-Y.; Wen, J.-H.; Tseng, T.-Y.; Huang, J.-H.; Oyang, Y.-J.; Huang, H.-C.; Juan, H.-F. scDrug+: Predicting drug-responses using single-cell transcriptomics and molecular structure. Biomed. Pharmacother. 2024, 177, 117070. [Google Scholar] [CrossRef] [PubMed]
- Djomkam Zune, A.L.; Olwal, C.O.; Tapela, K.; Owoicho, O.; Nganyewo, N.N.; Lyko, F.; Paemka, L. Pathogen-Induced Epigenetic Modifications in Cancers: Implications for Prevention, Detection and Treatment of Cancers in Africa. Cancers 2021, 13, 6051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging deeper into volatile organic compounds associated with cancer. Biol. Methods Protoc. 2019, 4, bpz014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, L.; Men, Q.; Zhang, Z.; Yue, H.; Cui, S.; Huang, X.; Zhang, Y.; Wang, J.; Chen, M.; Li, H. Significance of Volatile Organic Compounds to Secondary Pollution Formation and Health Risks Observed during a Summer Campaign in an Industrial Urban Area. Toxics 2024, 12, 34. [Google Scholar] [CrossRef]
Classes | Abbreviation | Example | Sources | Boiling Point | Reference |
---|---|---|---|---|---|
Very volatile organic compounds | VVOCs | Propane, butane, methyl-chloride, methane, and acetylene | Vegetation (isoprene and monoprene), soil and microbial activity (methane), volcanic emissions (methane and acetylene), combustion (propane, methane, ethane, and butane), refrigerants (chlorofluorocarbons), landfill gas (methane), natural gas (methane) | 0 to 50–100 | [1,2] |
Volatile organic compounds | VOCs | Benzene (C6H6), formaldehyde (CH2O), toluene (C7H8), acetone (C3H6O), ethylbenzene (C8H10), chloroform (CHCL3), naphthalene (C10H8), trichloroethylene (C2HCL3), tetrachloroethylene (C2CL4) d-limonene, ethanol (ethyl alcohol), 2-proanol (isopropyl alcohol) | Benzene (gasoline), toluene (paint, thinner, adhesives), ethylbenzene (paint, ink), xylene (printing chemicals, rubber and leather industry), formaldehyde (building materials, preservatives, and household products, acetone (nail polish remover), naphthalene (mothballs), tetra chloroethylene degreasing agents, microbes | 50–100 to 240–260 | [1,13] |
Semi-volatile organic compound | SVOC | Pesticides such as chloride and dichlorodiphenyltrichloroethane (DDT), aldrin, dieldrin, plasticizers, e.g., phthalates, fire retardants, e.g., PCB-52,101,53, naphthalene, anthracene, benzo[a]pyrene and PBB, bisphenol A (BPA), nonylphenol | Pesticides, herbicides, burning of fossil fuels, volcanic eruption, carpets, flooring and wall covering), home care products (air freshener, perfumes, lotions, and shampoos) | 240–260 to 380–400 | [1,14] |
Example of VOCs | Target Receptor | Effects on Receptors |
---|---|---|
Benzene | Bone marrow | Hematotoxicity and immunotoxicity [17]. |
Toluene | Central nervous system receptors (GABA_A and NMDA) | Neurological effects. This interaction can modify the effects of drugs acting on these receptors, such as sedatives and anesthetics [17]. |
Formaldehyde | Cellular signaling pathways and glutathione receptors | Formation of adducts with DNA and proteins, affecting cellular signaling pathways and receptor functions. Inhibition of cellular detoxification processes and altering drug efficacy [17]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogbodo, J.O.; Egba, S.I.; Ikechukwu, G.C.; Paul, P.C.; Mba, J.O.; Ugwu, O.P.-C.; Ezike, T.C. Volatile Organic Compound–Drug Receptor Interactions: A Potential Tool for Drug Design in the Search for Remedies for Increasing Toxic Occupational Exposure. Processes 2025, 13, 154. https://doi.org/10.3390/pr13010154
Ogbodo JO, Egba SI, Ikechukwu GC, Paul PC, Mba JO, Ugwu OP-C, Ezike TC. Volatile Organic Compound–Drug Receptor Interactions: A Potential Tool for Drug Design in the Search for Remedies for Increasing Toxic Occupational Exposure. Processes. 2025; 13(1):154. https://doi.org/10.3390/pr13010154
Chicago/Turabian StyleOgbodo, John Onyebuchi, Simeon Ikechukwu Egba, Gavin Chibundu Ikechukwu, Promise Chibuike Paul, Joseph Obinna Mba, Okechukwu Paul-Chima Ugwu, and Tobechukwu Christian Ezike. 2025. "Volatile Organic Compound–Drug Receptor Interactions: A Potential Tool for Drug Design in the Search for Remedies for Increasing Toxic Occupational Exposure" Processes 13, no. 1: 154. https://doi.org/10.3390/pr13010154
APA StyleOgbodo, J. O., Egba, S. I., Ikechukwu, G. C., Paul, P. C., Mba, J. O., Ugwu, O. P.-C., & Ezike, T. C. (2025). Volatile Organic Compound–Drug Receptor Interactions: A Potential Tool for Drug Design in the Search for Remedies for Increasing Toxic Occupational Exposure. Processes, 13(1), 154. https://doi.org/10.3390/pr13010154